PROCEEDINGS
—OF Proc. R. Soc. A (2007) 463, 2753-2781
THE ROYAL doi:10.1098 /rspa.2007.0130

SOCIETY Published online 21 August 2007

REVIEW

Analysis of the adiabatic limit for solitons in
classical field theory
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We discuss the approximation of classical field theories by reduced systems of differential
equations on the space of equilibria (the adiabatic limit). Various examples in which the
approximation provides a useful description of the low-energy dynamics of solitons are
discussed, including the sine-Gordon equation, the Yang—Mills—Higgs equations and the
Chern—-Simons—Schrédinger system. Particular emphasis is given to theorems on the
validity of such approximations and proofs are given in some model cases.
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1. Introduction

The equations of classical field theory are typically systems of partial differential
equations which can be written as evolutionary dynamical systems that define a
well-posed initial-value problem. Even when this initial-value problem is well
understood from the analytical perspective, it is not necessarily easy to make
contact with the phenomenology described by the field theory, particularly in
strongly nonlinear situations. Therefore, it is of interest to obtain a simpler
description of the dynamics in various limiting regimes of particular physical
interest. In this paper, we will discuss one such regime, the adiabatic limit, with
particular reference to soliton dynamics, in which it corresponds to the energy
being close to minimum. Here, the word soliton is used for a spatially localized,
finite-energy, time-independent solution of the equations, while the word
adiabatic is intended to suggest the approximation of an evolution by a slow
motion through some space of equilibria. We will explain how this notion of
adiabatic approximation enables one to formulate and prove theorems which
provide a rigorous description of the low-energy dynamics of solitons. The fact
that an adiabatic approximation could be used to provide an effective and
practical description of the low-energy dynamics of solitons, in rather
complicated systems of equations, arose in the work of Manton (1982). In that
article, it was proposed that the Yang—Mills—Higgs equations could be
approximated by the geodesic motion on the moduli space of monopoles, i.e.
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the space of gauge equivalence classes of minimizers of the static energy. For this
reason, the adiabatic approximation, as used to study soliton dynamics, is often
referred to as the moduli space approximation. It will become apparent in §§1c
and 2 that the adiabatic approximation is equivalent, under rescaling, to the
problem of motion under a strong constraining potential. As a general reference
for solitons in classical field theory, and physical applications of the adiabatic
approximation, we refer to Manton & Sutcliffe (2004).

In the remainder of this section, we discuss some examples and formulate some
theorems on the adiabatic limit. In §2, we formulate corresponding theorems for
certain model problems and provide proofs which are quite close to those that
work for the more complicated systems such as the Yang—Mills—Higgs equations.
In §3, we briefly mention some refinements of the analysis and directions for
further work. We start in §1a by discussing three examples informally, before
explaining more carefully the structural features relevant to our work in §1b, and
then formulating some theorems precisely in §1c.

(a) Some examples

We now start to discuss three examples. The first of these has been chosen on
account of its simplicity. The second and third illustrate how the approximation
can be used in different settings.

(i) Ezample 1: the sine-Gordon equation

The simplest example from field theory is the sine-Gordon equation

0
at2  9z?

We work with boundary conditions at infinity §(— % )=0 and (+ ) =27. As is
explained in §1b6(iv), under these conditions the only equilibria (static solutions)
are the solitons 0 (z— X;) =4 arctan e” “0, which are completely determined by
their centre Xy=R. Thus the moduli space of solitons Mg can be identified with
the real line R, and the adiabatic approximation consists of giving a dynamical
system on R which approximates (1.1). It is perhaps to be expected, in view of
translation invariance, that this system is just X; = 0, and this is indeed the case;
see theorem 1.1 for a precise statement, which is proved in §26b.

+sin 6 = 0. (1.1)

(ii) Ezample 2: the Yang—Mills—Higgs equations

Yang—Mills theory is a nonlinear variant of Maxwell’s electromagnetism in
which the field strength is described by a two-form F,,d2"*dz”, which (locally)
takes values in a Lie algebra, in our case su(2). The Yang-Mills-Higgs equations
on R =R XR? can be expressed explicitly as a system of equations for an
su(2)-valued one-form A= A, dt+ A; dz' + A, dz* + A; d2® and an su(2)-valued
function @(t, ). The field can be derived from the one-form A according to

94, 94,
=_—— A, A 1.2
uv 6$M axv + [ o V]) ( )
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where [-, -] means matrix commutation, and we write
The equations are
D;E; = [®, Dy 9],
Di®—Di® = 0.

Here, we use standard relativistic notation in which Greek indices u, v, etc. take
values in {0, 1, 2,3} while Roman indices take values in {1, 2,3}, and the
summation convention is used. In geometrical terms, we are solving for an SU(2)
connection A on a two-dimensional complex vector bundle E=C?*XR'*? coupled
to @, a section of the three-dimensional real vector bundle associated with E via
the adjoint representation of SU(2) on its Lie algebra su(2). (The section @ is
called the Higgs field.) The differential operator

D,=9d,+[A,, ] (1.5)

is the covariant derivative determined by the connection A, acting on su(2)-
valued sections. An important property of the equations is gauge invariance: let
9(t, z) be a smooth SU(2)-valued function, then (A, @) is a smooth solution of
equations (1.4) if and only if (¢gdg™' + gAg™", g®g~!) is a smooth solution. This
gauge invariance can be factored out by imposing additional conditions, for
example in temporal gauge it is required that Ay=0.

There are static solutions of (1.4) with Ay=0, which minimize the energy
functional (1.12), under appropriate boundary conditions at infinity. They come
in families &), indexed by an integer k€ Z of topological origin, as described in
§1b6(iv). These families are infinite dimensional, but on dividing S by the action
of the gauge transformations one obtains a finite-dimensional manifold M,
known as the charge k& monopole moduli space. This space also inherits a
Riemannian metric from the L? inner product, and it was suggested by Manton
(1982) that the geodesics with respect to this metric should provide a good finite-
dimensional approximation to (1.4) in the low-energy limit. Theorem 1.4, which
asserts the validity of this on long, but finite, time intervals, was proved by
Stuart (1994b). In this example, as well as the previous one, the space of solitons
is an isotropic submanifold of the phase space. In fact, the approximation can be
used in other settings, as will be illustrated by §laf(iii), in which the space of
solitons is a symplectic submanifold.

(iii) Ezample 3: the Chern—Simons—Schridinger system

The Chern—Simons—Schrodinger system, introduced by Manton (1997), is a
gauge theoretic generalization of the two-dimensional nonlinear Schrodinger
equation whose static soliton solutions are Abelian Higgs, or Ginzburg-Landau,
vortices (Jaffe & Taubes 1982). The dependent variables are a complex field
O(t, z), an electric field E=FE;dz’ and a magnetic field B(t, z), all defined
for (t,z)€ERXZX, where ¥ is a two-dimensional spatial domain taken to be
a Riemann surface with metric gy dz’ dz”, area du, and complex structure
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J:T*X— T*X (where j, k, ... take values in {1, 2}). The equations are

E +dB = —J{i®, D®),

(0, —14y)® = —A4,®— = (1—|®|))® and

M| >

B=_(r—|2]).

The coupling in (1.6) involves the space—time covariant derivative
D = (Dy, Dy, Dy) = (9, —iAy, D1, Ds),

whose spatial part is written D= (D;, Dy). The commutator determines the
electric field E; and the magnetic field B in the usual way

1 .
[D,, D,)® =—iF,,®, where Fy =FE, and 5 Fi dz’ dz* = Bdy,. (1.7)

In geometrical terms, we fix a one- dlmensmnal complex vector bundle L— X, on
which is given an inner product and norm |a|* = (a, a). We are then solving for an
S' connection on the bundle L=RXL— R XX, with associated covariant
derivative D, and a section @ of L. To be more explicit, fix a connection on L
determined by a covariant derivative operator V, so that the spatial part of D
takes the form D;=V;—iA; for a real one-form A;dz’; here V is independent of
time. (It is generally not p0551ble to choose V to be flat and it will have a
curvature determined by a function b such that [V;, V;]® dz’ dz* =—ib du,®; it is
always possible to choose b= const.) Then at each tlme teR, we are solving for a
section @(t) of L, a one-form A(t)= A,(t)dz' + Ay(t)dz* on 2, and a real-valued
function Ay(t) on X. The electric field is given by

Ej=0,4;—0d;4,
and the magnetic field by
Bdu, = bdu, +dA.

The two-form —iE;dt A dz’ —iBdu, is the curvature associated w1th the space—
time covariant derlvatlve D=(0;,— 1A0, —iA). For the case ¥=R?, this system
was proposed by Manton (1997), who derived it as the Euler— Lagrange equation
for the Lagrangian (1.13). A global existence result was proved by Demoulini
(2007). As for example 2, an important property of the system (1.6) is gauge
invariance: let x(t, r) be a smooth real-valued function, then (4, @) is a smooth
solution if and only if (dx + A, ®eX) is a smooth solution.

In this case, there are soliton solutions called Abelian Higgs, or Ginzburg—
Landau, vortices. There is a special case, A=1, in which the adiabatic
approximation is particularly powerful because the space of vortices is then
unusually large—large enough that the motion on it can provide information on
the dynamical interaction of several vortices. We call this the self-dual, or
Bogomoln'yi, case. As discussed in §1b(iv), after dividing out by the gauge group,
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we obtain, for A=1, finite-dimensional moduli spaces of self-dual vortices. These
moduli spaces can be identified with Sym® (X), the symmetric N-fold product of
the spatial domain X¥. The solitons lie in the phase space as a symplectic
submanifold, and the moduli spaces Sym”(Z) inherit a symplectic structure. For
A=1, the system (1.6) can be approximated by a first-order Hamiltonian system
on Sym™(X) (see theorem 1.6). For a discussion of phenomenological aspects of
vortex dynamics in this system, see Manton (1997), Romao & Speight (2004) and
Krusch & Sutcliffe (2006).

(b) Solitons and classical field equations

Classical field equations have certain structural features which are crucial for
the developments under discussion: they possess both a variational formulation
and a Hamiltonian formulation (possibly with constraints) and are usually
Lorentz covariant. (This last feature is not necessarily relevant to problems
arising from condensed matter physics, an example of which is the Chern—
Simons—Schrodinger system, §laf(iii).) A more specialized feature which we
exploit here is the Bogomoln’yi structure, which ensures the existence of
relatively large spaces of equilibria on which to approximate the dynamics. We
now discuss these features as a preparation for some precise formulations of
approximation theorems.

(i) Variational formulation

The equations we study are all Euler-Lagrange equations, i.e. can be written
in the form of the condition of vanishing derivative,

DS =0, (1.8)

for some action functional S, depending upon the fields and their partial
derivatives up to some order (usually up to first order). The variational
formulation of a field theory as in (1.8) is often called a Lagrangian formulation,
and it is then referred to as a Lagrangian system. This is not only an appealing
unifying principle in field theory, but also a useful analytical device. In
particular, at the static level, many of the soliton solutions of interest are
solutions of (1.8), which minimize some energy functional V that can be derived
from the Lagrangian S. The direct variational method can then be used to prove
the existence of solutions and derive information important for stability analysis.
(It should be said, however, that more specific, often somewhat ad hoc, methods
are needed for a really good detailed understanding of the properties of the
solitons.) Regarding time-dependent problems, while the variational method
does not seem to be useful in the analysis of general solutions of the Cauchy
problem, it can be useful, for example, in the construction of time-periodic
solutions; see Demoulini & Stuart (2000) for a relevant example.

An important class of systems is that in which S takes the form S= [ £ d¢
with £: TM—R a function on the tangent bundle of a Riemannian manifold
(M, g) that takes the familiar form ‘kinetic energy’ minus ‘potential energy’,

L=T-V= %g(ljf, ) —V(W), (1.9)
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where 7—W(7) is a curve in M with velocity ¥(r) € Ty M. Lagrangian
systems of this type will be referred to as natural Lagrangian systems (following
the terminology of §19 in Arnold (1989)).

Ezample 1: the sine-Gordon equation. Equation (1.1) arises formally as the
Fuler-Lagrange equation associated with the functional

S(0) = J (% (67 —62) — (1 —cos 0)>dx dt. (1.10)

This action has the form of a natural Lagrangian system, in which the kinetic
energy is defined with the L? metric and the potential energy is

V(9) = J G 02 + (1—cos 0)) dz.

Ezample 2: the Yang—Mills—Higgs equations. Equations (1.4) can be derived

from the action

S(A,®) = %jw((wom? +|E*) —20(A, @))dz dt, (1.11)

where v(A, @) is the density of the static energy

V(A, @) = JRSU(A, )dz = JRS (% (D,®, D) + i (Fy, F]k))dx (1.12)
and the Killing inner product (A, B) = —(1/2)tr AB is used. The first equation of
(1.4), which is obtained by variation of Ay, plays the role of a constraint in the
sense that if it holds for the initial data then the remaining two equations imply
its validity at later times. This variational formulation of (1.4) makes it apparent
that, ignoring the constraint equation, (1.4) is in fact an infinite-dimensional
natural Lagrangian system. To be precise, recall that it is always possible to
apply a gauge transformation such that Ag=0. The second and third equations of
(1.4) are then the Euler-Lagrange equations of the action S just given, with A,
set equal to 0, and this action is indeed of the form (1.9), the kinetic energy being
determined by the L? norm, and with V playing the role of potential energy.

Ezample 3: Chern—Simons—Schridinger system. Equations (1.6) can be derived
formally as the Euler-Lagrange equations associated with the functional

1
S(A, @) = §J ANF + (i, D) + Ay + 20, (A, ®)dt dy,,  (1.13)
RXX
where
1 ‘ A
nod @) = (8 + Mo D) + {(0F =12) ()

is the density of the Ginzburg-Landau static energy. (The parameters A and 7 are
positive real numbers.) Although S'is not manifestly gauge invariant it changes by
an exact form under gauge transformation, and the Euler-Lagrange equations
(1.6) are gauge invariant. Vortices are critical points of the static energy

V/\,T(Av (p) = J‘EUA’T(A’ d))d:u'ga

as will be discussed further below.
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(ii) Hamiltonian formulation

Recall that given a symplectic manifold (M, w), one can associate to any
differentiable function H: M —R a vector field X such that

w(Xyg,v) = dH(v),

for all vector fields v. The flow generated by this Hamiltonian vector field Xy is
called the Hamiltonian flow associated with H on the phase space M. Natural
Lagrangian system (1.9) can be reformulated as Hamiltonian systems, with phase
space the cotangent bundle M= T, via the Legendre transformation (Arnold
1989). Many classical field equations admit such a Hamiltonian formulation on a
phase space which is a cotangent bundle. However, there are interesting
equations which are Hamiltonian equations on a phase space that is not
necessarily a cotangent bundle. Schrédinger’s equation, and its variants, provides
examples of this type. But, in addition, equations arising from the Chern—Simons
action and various generalizations also give rise to more complicated examples
with interesting soliton solutions. In particular, for (1.6), there is a
complex structure on the phase space given by J: (A4, ®)= (—JA,id), which
allows the introduction of a symplectic structure Q(v, w) = (Jv, w), where (-, -) is
the L? inner product. Using this symplectic form, the system (1.6), in temporal
gauge Ap=0, is a Hamiltonian flow generated by the Hamiltonian functional
V;-(4, @), which was defined immediately following (1.14). (Note that the third
equation of (1.6) is preserved by the evolution and as such is really only a
condition on the initial data. It will be referred to as the constraint equation.)

(iii) Lorentz covariance

The fundamental equations of classical field theory are required, by the
principles of relativity, to be Lorentz covariant and often constitute a system of
nonlinear wave equations of the form

(07 —)U =FU,U,...). (1.15)

This is a semi-linear hyperbolic system of equations. Both of the first two
examples discussed above fall into this class of equations. (In the general
relativistic context, this situation is modified to require general covariance, and
the equations form quasi-linear hyperbolic systems.) On the other hand, there
are many systems of interest in condensed matter physics which are not Lorentz
covariant, in particular the third example introduced above. Correspondingly,
the system (1.6) is not hyperbolic, but can be thought of as a pair of coupled
nonlinear Schrédinger equations, as can be seen by applying a gauge
transformation so that A is divergence free (Coulomb gauge). In the proofs we
provide for certain model problems in §2, we use methods which are, in principle,
capable of adaptation to treat partial differential equations like (1.15) or systems
of nonlinear Schrodinger equations.

(iv) Bogomoln’yi structure and moduli spaces of solitons

As explained previously, the solitons of interest to us are critical points of an
energy functional V. There are certain cases, in which the study of the adiabatic
limit is of particular efficacy, in which this functional possesses a special form
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known as Bogomoln’yi, or self-dual, structure. This means it is possible to write

V(y) = JlG(W +HW),

where #(y) is a number, determined either by the topological type of the
configuration or possibly by the boundary conditions. In this circumstance, the
minimizers, with #(y) fixed, will be given by solutions of G(y)=0, at least if such
solutions exist—in this case, the Bogomoln’yi bound is said to be saturated (i.e.
achieved) by these solutions. It may well be that there are no solutions of G(y) =0
with the given topological type (or given boundary conditions), in which case the
bound is not saturated. The relevance of this structure to the adiabatic limit is
that when the Bogomoln’yi bound is saturated, experience indicates that there is
typically a large space of solitons, and projecting the dynamics onto this space may
capture many of the essential features of the full dynamics. We now investigate the
Bogomoln’yi structure in each of the three examples previously mentioned.

Example 1: sine-Gordon solitons. In this case, the Bogomoln’yi structure
amounts to the simple observation that the potential energy V can be written

1, 1/ _ . 6\*_ 9
V(0) = Eﬁz—i-(l—cosﬁ) dz = 5 614—281115 +4azcos§ dz.

Working with asymptotic boundary conditions §(— o« )=0, §(+ «)=2m, and
choosing the upper sign in this identity, we deduce that V(#)>8, with equality
attained precisely at any one of the soliton, or kink, solutions

Ox(z— X,) =4 arctane”™ Y, X, €R. (1.16)

These are all solutions of the first-order equation 6, =2 sin (6/2); furthermore,
any finite-energy solution satisfying the above boundary conditions equals
0 (z— Xp) for some Xj. Let H® denote the standard Sobolev space of functions
whose derivatives up to order s€N are square integrable, with the standard
norm, and let Hf, be the corresponding local Sobolev space. We introduce the
affine space A; =0+ H'(R) as an appropriate space within which to work;
any 0 € H!, such that V(f)< o satisfying the above asymptotic boundary
conditions lies in A; and vice versa. Thus in this case the moduli space of
solitons Mgq is just the real line R and we have an embedding Fg : Mgq — A
which maps Xp€R to Ex (X)) =60k(-— X;) € A;. This embedding induces,
from L?, a metric on Mgc which is easily computed to be just 8 dXZ. The point
Xo € Mgq =R represents the soliton centred at X, and the induced metric is
invariant under translation.

Ezample 2: Bogomolny-Prasad-Sommerfield (BPS) monopoles in the Yang—
Mills—Higgs equations. The static Yang—Mills—Higgs energy (1.12) provides a
more interesting example of Bogomoln’yi structure. We impose the asymptotic
boundary condition limj,1«|¢(x)| = 1, so that restricted to a large sphere ¢ /|4
defines a map S?— S? of winding number k€Z (for suitable ¢). Using the fact,
proved by Groisser (1984), that this number is equal to the integral
(1/27) [ D® A F, which is a well-defined integer as long as V(A, @) < %, implies
that the energy can be rewritten as

V(A, ) = %JRJ*FiD(DFiéka. (1.17)
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This structure arises as a dimensional reduction of the well-known self-duality
structure possessed by the four-dimensional Yang—Mills functional. The
minimizers of V with negative winding number k will therefore be solutions of
the Bogomoln’yi equations

*F=—D® or Fy, =€,,,D,P, (1.18)
at least if such solutions exist; the space of all minimizers will then be written S;. An
individual minimizer is referred to as a BPS monopole, or just a monopole, of charge
k, and will also satisfy the usual second-order Euler—Lagrange equations
corresponding to the static energy functional V, and as such is gauge equivalent
to a smooth solution and locally gauge equivalent to a real analytic one (Jaffe &
Taubes 1982). A precise description of the space of monopoles S, can be obtained by
integrable systems methods of twistor theory: let M be the moduli space of gauge
equivalence classes of monopoles. There is a circle bundle M, over M, which is

slightly easier to describe: it was proved by Donaldson (1984) that M; can be
identified, via a diffeomorphism with the space of degree k rational maps f
satlsfymg f()=0. (The fibre of the bundle M — M, just corresponds to the
action of the gauge transformatlon determined by the Higgs field itself.) The moduli
space M i is thus a smooth 4k-dimensional manlfold and, furthermore, it inherits a
complete Riemannian metric from the L? inner product in the orlglnal infinite-
dimensional space. (Here, it is necessary to take account of the fact that M & 18
obtained as a quotient space, dividing out by the group ¢ of gauge transformations—
the length of a tangent vector to M, is the minimum L? norm of the various gauge
equivalent representatives.) This metric has special properties: it is hyperkahler
and Ricci flat, which enabled Atiyah & Hitchin (1988) to determine it explicitly
for k=2 and calculate many properties of the geodesic flow.

Ezample 3: self-dual vortices. Ginzburg—Landau vortices are critical points of
the static energy V,.(A,®)= [v;,(A, ®)du,, where the energy density was
defined in (1.14). It turns out that the case A=1 is special: as in the previous
example, the functional is then a dimensional reduction of the four-dimensional
Yang—Mills functional. An indication of this is given by the existence of a
Bogomoln’yi decomposition formula

1
Vi.(A, @) =arN + D[V =0,

5
where, using a complex coordinate z=z'+iz? in which the metric has the form
g= e ((dz")* + (d2?)?), we have D"V =1((V,—id;)+i(V,—i4,))® dz. The
associated Bogomoln’yi equations are then

1
DYV =0, By br-lof) =0 (119)

D7, + = ]BA

For a solution (A, @) of these equations with a given value of the topological
integer N, the field @ will typically have N zeros, each of which can be thought of
as the centre of a vortex. Thus the static solitons can be thought of as a nonlinear
superposition of N vortices which do not interact. The phrase ‘self-dual vortex’ is
often used in the special case A=1 when static multi-vortices exist. Equations
(1.19) were solved exactly by Witten (1977) in the case that X is the upper half-
plane with canonical metric, by reducing them to the Liouville equation.
Following this, Taubes proved an existence theorem when ¥ is the Euclidean
plane (Jaffe & Taubes 1982), and Bradlow (1988) did likewise for ¥ a compact
Riemann surface, by means of a reduction to a nonlinear elliptic equation of
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Kazdan—Warner type. Bradlow proved that if the area of the surface |X| is such
that 7| 2| >4 N, then the Bogomoln’yi bound is saturated: in fact, the minimum
value w7 N of V), ; is achieved on a set whose quotient by the gauge group can be
identified with Sym®™(X), the symmetric N-fold product of ¥. Thus the moduli
space of self-dual vortices is Sym”(Z); it inherits both a metric (induced from the
L? metric, as for monopoles) and a symplectic structure and is a Ké&hler manifold.
Finally, we mention that there are other systems for which the vortices are the
static solutions: see, for example, Stuart (1994a) and Demoulini & Stuart (1997).

(¢) Formulation of some theorems on adiabatic limits

Example 1: slow motion of sine-Gordon solitons. As a first, phenomenologically
rather trivial, example consider solutions 6(¢, z) to (1.1) with smooth initial data
of the form (for each ¢>0)

6°(0, ) = Ok (z) + Oy(x;€), 8,0°(0, 2) = —euybx(x) + vy(z;€), (1.20)
with ||(8o, 9)|| e = O(€%) as e—0. The moduli space approximation in this
case amounts to restricting the Lagrangian (1.10) to the space of solitons
Mg C A, described in the discussion following (1.16). The computation of this
restricted Lagrangian just amounts to the computation of the metric induced
from L? leading to the reduced Lagrangian which is just 8X§. Since the Euler—
Lagrange equation for this Lagrangian is just X, =0, we find that the expected
adiabatic limit description of the motion of sine-Gordon solitons is just uniform
motion on a straight line: Xo(7)=uqr. This is borne out by theorem 1.1.

Theorem 1.1. Consider, for each ¢> 0, the initial-value problem for(1.1) with
smooth initial data (1.20) satisfying ||(0y, 7)|| s = O(€%) as €é—0. Then for
each €>0 there exists a unique global smooth solution 6°(t, x) to(1.1) and (1.20).
Furthermore, as €—0, the rescaled solutions 6°((7/€),x) converge to
O (z— Xo(7)) in the sense that

(06(57')—HK('—XO(T))>HH1 =0, (1.21)

lim max
e—0 |7<T,

for every T,< .

Remark 1.2. Note that the behaviour under discussion is stable in the sense
that any sequence of solutions whose initial data have the prescribed asymptotic
behaviour as e— 0 converges, after rescaling, to the same adiabatic limit. In this
problem, applying Lorentz boosts by velocity eu, to a stationary kink gives very
particular solution sequences having the stated limiting behaviour, but in order
to see that this behaviour is stable, and so physically relevant, it is necessary to
carry out some analysis as in the proof of theorem 1.1.

Remark 1.3. Note that in order to pick up the adiabatic motion in the limit, it
is necessary to consider the rescaled functions 6(7/e, -). This suggests the
introduction of a slow time variable

T = €t. (1.22)
Observe that 0(t, z) solves (1.1) if and only if O(7, -) = 60(7/¢, ) solves
3’0
.
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where u=¢"? is a large parameter. This problem is an example of a strongly
constrained system: as u— + %, the force u V' acts to constrain the solution to
the set of minimizers of V, i.e. to the moduli space Mgq.

The proof of theorem 1.1 given in §2b is carried out in the context of
constrained systems, i.e. for solutions of (1.23) as u— . Prior to this, strongly
constrained finite-dimensional systems are studied in §2a. The proofs given there
are chosen to be adaptable to treat partial differential equations like the sine-
Gordon equation, as well as the more phenomenologically interesting cases such
as the Yang-Mills—Higgs and Chern—Simons—Schrédinger equations which we
now discuss.

Example 2: the Yang—Mills—Higgs equations and motion on the moduli space of
monopoles. In this case, the restriction of the action (1.11) to the space of
monopoles gives a Lagrangian which is again a kinetic energy defined by means
of the metric induced from L?, which is discussed above. There is a technical issue
here in that we are really interested in the action restricted to the moduli space of
gauge equivalence classes of monopoles, M, which is obtained as a quotient
space of the space of monopoles S;, by the group of gauge transformations G,

Sk—> Mk- = Sk/g and, (124)

W (W) (1.25)

So, it is necessary to correctly factor out the gauge group in this reduction—this
is explained by Stuart (1994b), where theorem 1.4 is proved.

Theorem 1.4. Consider the initial-value problem for the Yang—Mills—Higgs
equations (1.4) with initial data ¥(0)=%y(0) € S, a monopole, 0,¥(0)= ey,
with vy € Ty, )S), tangent to the space of monopoles at Wy(0). Then for e
sufficiently small, there exists 7.,>0 such that there is a smooth solution for
|t| < (7./€) which is close in uniform norm to a monopole W(et) € S;, such that
T— (1) =[W(7)] € M, is the constant energy geodesic with initial conditions
(v(0),7(0)) = (o (0)], [wg])-

Remark 1.5. The proof employs energy estimates which actually lead to the
approximation holding in certain integral norms that are similar to, but weaker
than, the Sobolev norms H®. They are based on a norm introduced by Taubes
(1983) for a study of index theory for the Yang-Mills—Higgs functional. The
validity of the approximation in uniform norm is then a consequence of its
validity with respect to these integral norms.

Example 3: the Chern—Simons—Schriodinger system and first-order vortex
dynamics. The system (1.6) is not a natural Lagrangian system, but is
Hamiltonian as detailed in §1b(ii). Here, it is crucial that the space of vortices
is a symplectic submanifold of the phase space, and that the moduli space
SymN(E) inherits a symplectic form w from Q, the symplectic form defined in
§1b(ii). We now define a function h:Sym”™(X)— R by restricting the energy Vs
to the space of vortices, and observing that by gauge invariance this
actually gives a smooth function h on the quotient space SymN(E). It is the
Hamiltonian flow of this function on the phase space (Sym™(X), ) which
determines the slow motion of vortices for A close to 1.
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Theorem 1.6. For e=|A—1| sufficiently small, the system (1.6) can be
approzimated, for times of order 1/e, by the Hamiltonian flow on (Sym™ (), w)
associated with the Hamiltonian h, obtained by restriction of V, ; to the moduli space.

The proof of this will appear in a future paper.

Remark 1.7. In the first two examples, which were natural Lagrangian
systems, the space of solitons was an isotropic submanifold of the phase space
and the adiabatic limit system was also natural Lagrangian. For the case of (1.6),
it was crucial, rather, that the space SymN(E) inherits a symplectic form o from
its construction as a quotient. Thus the basic idea of the adiabatic approximation
can be used in a variety of different settings; parabolic systems obtained from the
gradient flow of (1.14) are another example (Demoulini & Stuart 1997; Strauss &
Sigal 2006)

Remark 1.8. As discussed further in §2, there are two approaches to validating
analytically the adiabatic approximation, based on compactness as in theorem
1.1 or by direct construction as in theorem 1.4.

Remark 1.9. These theorems leave open various interesting related questions
regarding bound states and time-periodic solutions, scattering theory and
singularity formation which are discussed in §3.

2. Proofs in some special cases

In §2a, we explain how to prove theorems analogous to those stated in §1¢ for some
finite-dimensional model problems. Problems of this type have previously been
treated by Rubin & Ungar (1957) and Ebin (1977). The first of these references
treats finite-dimensional problems by means of a compactness argument—
uniform estimates for the solution are obtained which allow passage to the limit,
and then it is proved that the limit is a solution of the constrained system. In
contrast, the second reference provides a direct construction of solutions which are
close to a given solution of the constrained system; this was the line of attack
adopted by Stuart (1994a,b) also, and is briefly explained in §2a(iii). Here,
however, we adopt the compactness method, providing proofs which—with the
use of an additional compactness device, the Lions—Aubin lemma—can be adapted
to the infinite-dimensional setting required for the partial differential equations of
classical field theory discussed previously. (In fact, the article of Ebin does treat
infinite-dimensional problems, but was directed towards the problem of the
incompressible limit in fluid mechanics, and the techniques there would require
some modification to treat the type of problem under consideration here. An
alternative approach to the incompressible limit was given by Klainerman &
Majda (1981).) As an infinite-dimensional example, we then prove theorem 1.1 on
the adiabatic approximation for the sine-Gordon equation in §2b.

(a) Finite-dimensional natural Lagrangian systems

A good starting point is the problem of strongly constrained motion in finite-
dimensional natural Lagrangian systems, i.e. systems of ordinary differential
equations which are the Fuler-Lagrange equations for a Lagrangian of the
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familiar kinetic energy minus potential energy form,

£ =5 I = V). 21)

where Y/(7)=0,%(7) and ¥ : R— R" is a curve in R". Euclidean space R is
endowed with the standard Euclidean norm ||v||* = (v, v) = v-v, and V,;R" >R s
a family of smooth functions parametrized by p€R. The FEuler—Lagrange
equation associated with £ is

¥+ Vi(y) =0. (2.2)

(i) A simple model problem (Ginzburg—Landau constraining potential)

The problem of constrained motion arises, for example, with the family of
potentials

Vaw) = UW) + 45 =P, (2:3)
in the limit u— + o0 in this case, (2.2) can be written as
Vo U'(W) (1= [yI) =0, (2:4)

where (U'(y),v)=DU(¥)(v)¥ v € RY. It would seem reasonable, in view of
energy conservation,

1.
SOOI + Vi((r) = By = const.,

that solutions ¥,, with energy bounded independent of w, will be forced, as
p—+ o, onto the set SV '={y €RY:||y||=1} ie. W, (r)>W(r)e SN L
Furthermore, it may be expected that ¥ (7) will be a solution of the constrained
system, i.e. the Euler-Lagrange equations characterizing critical points of (2.1)

among functions ¥ : R— S¥ 1. The weak formulation of this condition is
|- ar=0,  vee iR vy =0vier (@)

Alternatively, introducing the orthogonal projection operator

Yo

Py v o=y = vy, Yl =1 (2.6)
constrained critical points can be characterized by
|i-vwpimar=0. e cimry), (2.7
which is just the weak formulation of [P’l/,(lp + U'(¥)) =0 or equivalently
v+ Iy + P U () =0 (2.8)

The basic analytical ingredient for the proof which follows is just the following
simple consequence of the Arzela—Ascoli theorem:

Lemma 2.1. Given a sequence of C' functions f, : [—7,,7,] = RY satisfying
max|qi< (|[fo(T)|[+ [Ifo(DI) < C, there exists a subsequence {f,}j=1 which

converges in C([—7,,7,);RY) to a limit f € C([—1,,7,];R").
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Theorem 2.2. Assume that U is a smooth bounded function on RY. For u>0, let
, € C*(R,RY) be the unique solution of (2.4) with initial values

v, (0)=w, W,(0)=u, (2.9)
which satisfy
Wl =1,  Wy-v, =0. (2.10)
Then
W, ->W inCj, asp— 4, (2.11)

where W € C*(R; SN™1) is the wunique solution of (2.8) with initial data
W(0)=W,, ¥(0)=y.

Proof. By the local existence theorem there exists, for every u, a unique local
smooth solution, ¥ ,(7), to (2.4), (2.9) defined on some non-empty time interval
(=T, T,). Now we derive some estimates for fixed u, temporarily writing ¥ in
place of ¥, to avoid a proliferation of symbols. Any solution of (2.4) and (2.9)
satisfies the energy conservation law

1, . n 1
LRI + U +E Q= IR = Sl + U@y = B (212)
Since U is bounded, |U(y)| < L, this implies
1, . u
SIWIF+ 7 A= WIP) < B + L, (2.13)

so that for u>0 we have the a priori estimate for the velocity v= 1,

|[o(T)|| < V2(Ey + L). (2.14)

Furthermore, there exists u, >0 such that for u> u, the solutions lie inside the set
5 7
Nz{we[RN:ESHMFSE}. (2.15)

It follows that for all u>0 the solutions ¥, can be extended for all time.

Furthermore, the fact that the velocities v, = lffu are uniformly bounded by (2.14)
implies, by lemma 2.1, subsequential convergence as u— + % to a limit
¥ € C(R;RY), uniformly on closed bounded intervals. The energy identity
(2.13) implies ||¥(7)|| = 1 so that in fact ¥ € C(R; SV !). Since Uis smooth there
exists L, such that
sup |U'(y)| < L. (2.16)
veN
The next step is to obtain uniform estimates for the derivatives. To this end, and
again writing v in place of ¥,, we decompose the acceleration (1) = ¥/(7), thus

o(r) = o(r) + o7 () = %zp(r) + Py (9(7)). (2.17)
T
The fact that y solves (2.4) implies immediately that o7 = Py (U'(y(1))) is
bounded,
|0 < Ly. (2.18)
Thus to deduce C'' convergence from lemma 2.1 it suffices to estimate 9" (7).
To achieve this it is convenient to define ¢=wv-y, and observe that since
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=10y + ||v]|* we can estimate ¢ in terms of ¢ by means of
v _ =l
0=

1]

To be precise, assuming that ¢(7) €N and (2.16) holds, there exists
c¢= c¢(Ey, L, Ly) such that

Y. (2.19)

19(7)[| < e(1 + (7)) (2.20)
Now a calculation gives the following equation for ¢:
d? /
(g2 +HOIVIF =) o =—D*UW) 00 =300 W), C21)

suggesting the introduction of the quantity

1 .
BY = 28" + u(6|l¥I[* —4)9°). (222)

as a measure of the magnitude of the normal oscillations. Indeed, for y € N,

1, .9
EY> (¢ + ue?), (2.23)
which implies ||9]| < ¢(1+ vV EY) by (2.20). Differentiate with respect to 7 and
substitute from (2.21) to deduce

Do |

d . , ,
2 BN (1) = $(=D*U(W)(v,9) =3v-U'(¥)) + 6u¢’, (2:24)

and hence, since u¢p? < 2EV,
%EN <C(EYN+VEY)< O+ EY), (2.25)

for some Cindependent of u. Now, for the assumed initial data (2.9), ¢(0)=0 and
|¢(0)| is bounded in terms of Ey and L;, and hence there exists C> 0, independent
of u, such that

EN0)< C. (2.26)
The Gronwall inequality applied to (2.25) and (2.26) implies that
EY (1)< Ce™, (2.27)

with both constants independent of u. Given this, it follows from (2.18) and (2.19)
that the acceleration v, = ¥ , of the solution ¥, is bounded uniformly in u> u., as
is \/ud,, where ¢, = v, -¥,. It follows from lemma 2.1 that, along a subsequence
ui, the W, converge in C'(R;RY) to ¥ e C'(R;SV~!) while the normal
component of the velocity converges to 0 (since ¢, = v, ¥, converges to 0).

To identify the limit ¥, observe that since ¥, solves (2.4), and Py (¥)=0,
we have

j<a,<u»%<:)>, W, )dr = j<uﬂ>w#<<>, U, ), (2.28)
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for all { € CF(R; RY). Calculate
V¥, — II’M-CWM +9 (lpu'c)(wu'l‘iju)lpu
1%,]1° [Ll

[aﬂ PW#]C =

Using this and the fact that (¥,,¥,)— (¥, ¥)=0 (since |[¥(7)||=1), we
deduce that, along the subsequence,

<[a‘r’ PII’M]Ca lpu> - _| |l[/| ’2"[[' C’

and hence that

j (&0 — (€. 0| [Pw))dr = j<c, Py (U (W)))dr,

which is the weak formulation of (2.8). Since (2.8) has a unique smooth solution
with initial values as in (2.9), we deduce that the ¥, converge in C "to W without
taking subsequences (since any subsequence has a subsequence which converges
to the same limit ¥). [

There are various ways in which this example can be generalized, for example:

— by allowing several constraints, Gj(w) ¢’, so that the motion is constrained
to a submanifold of co-dimension larger than one, as in §2a(ii), and

— by considering the case that y takes values in an infinite-dimensional vector
space, as in the PDEs of classical field theory described in §§1 and 2b, or even
by allowing y to be a function taking values in a manifold as in the g-model
(wave map) problem (see §3c¢ and Haskins & Speight 2003).

To conclude this section, we shall briefly mention the possibility of increasing
the dimension of the domain. A problem of this type was considered by Bethuel
et al. (1993), where theorem 2.3 was proved.

Theorem 2.3. Let QCR? be a bounded, connected and simply connected,
open set with smooth boundary dQ on which is given a smooth function
g:0Q—> S'={z€C:|2|=1} having zero degree which is the restriction of a
smooth function §: Q— S'. Let H)(Q)= g+ Hy(Q) be the complez-valued H'

Junctions with boundary values g. Then solutions ¥, € qu N C*(2;C) of
2
—Av, = M"pu(l - |lpu’ )a
which minimize the energy [(|Vy|* + (1/2)(1—[¥|*)?), converge in C**, a € (0, 1),
aspu— o, toW & Hg1 N C*(Q; SY), the solution of
—AW = VY|P,
which minimizes the energy [ |Vy/|*.

In this theorem, it is crucial that the boundary value g has zero degree, so that
it does indeed admlt a smooth S'-valued extension to Q: without this assumption
there would be no putative limit function ¥ € C*(Q; S'), extending g, to which
the sequence ¥, might converge. The description of the asymptotic behaviour of

¥, in the case of non-zero degree involves the emergence of rescaled Ginzburg-
Landau vortices at locations determined by a renormalized energy, and has given
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rise to a very large literature starting with Bethuel et al. (1994). Since the focus
of the present survey is on dynamical aspects of adiabatic limits, we will not
attempt to describe the many interesting results in this area.

(ii) Natural Lagrangian systems with vector constraints

In order to generalize theorem 2.2, so as to allow for several constraints, we
consider the Lagrangian of the form (2.1), with V =U+ ,uV where the
constraining potential is of the form V(¥)=||G(y)||*= = i1 G;(¥ )2 for some
vector-valued function G(¥)=(Gi(¥),..., G,(¥)) € R’. We introduce the
following assumptions (which are given at some length so as to fix notation for
the subsequent discussion).

— G1. There is an open set O on which G is a smooth submersion, G : O — R?,
whose level sets S, = {¢ € O : G(¥) = g} are leaves of a smooth foliation of O,
and minycpV(¥) =0={V(¥o) : ¥y € S}

— G2. There are open sets O; CRY® and O, CR® and a diffeomorphism
W0 XOy— O so that every Yy €0 can be written uniquely as ¢ = W(a,g)
with 0 € 01,9 € Oy and G(¥ (0, g)) = ¢g. Furthermore, there is a correspond-
ing orthogonal decomposition of the tangent space TwO =R as

TyO = TySaw) ®NySey) = Py(RY) @Q,(RY),

with corresponding orthogonal projections IP’W, @w satisfying [F"‘p EB@W 1, and
which map, respectively, onto the tangent and normal spaces to the leaves
ie. at y=¥(a,yg),

Py (RY) = Ker DG(y) = D\¥(a,g)(R"™) and
Qu(RY) = DG(¥)"(R*)

where DG(¥)* means the adjoint operator R®— 7,0, defined using the
Euclidean inner products to identify the vector spaces with their duals.
— (8. There exists m, >0 such that

D*V(¥y)(n, n) = m,||n]|?,

for every ¥, € 5y and n € Ny, Sy. Then for y =y, € 5, the decomposition in
(G2) reduces to
N
T‘//OO = Ker L‘//O GBLWO(R ),

where Ly is the symmetric linear operator RY - RY determined by
(v, Lyw) = D*V(Y)(v, w). Furthermore, for v in some set N close to S,
there are N— s eigenvalues which are less than (say) m./4 and s eigenvalues
greater than (say) 3m,/4, and there are corresponding orthogonal spectral
projections Py, and Q, such that

T,0 = P,(R")@Q,(RY).

Remark 2.4. The assumed form of the constraining potential V is chosen to
match the Bogomoln’yi form of the potentials in the field theoretic cases of
interest discussed in §1b(iv). More general forms for V could be handled with
the same methods.

Proc. R. Soc. A (2007)



2770 D. M. A. Stuart

Remark 2.5. Regarding (G3), observe that the fact that 0 is a minimum value
of V implies that V'(y,)=0 for all Yo =W (0,0) € Sy, and hence, by the chain
rule, that Lyw=0VY w € Ty S,= D, ¥ (o, O)(IRN %), i.e. the kernel of the Hessian
contains the tangent space to S. The condition of positivity of the Hessian on the
normal space to Sy is the crucial defining condition of a Morse—Bott critical
submanifold.

We now introduce the constrained system. The minimum value, 0, of the
constraining potential V is attained on the set Sy, and so we consider critical
points of (2.1) among curves 7— (1) € S, CRY, i.e. those for which

J(@, 0 —(U",0)dr =0,

B . (2.29)
V¢ e O, (R,R ) : :(T) (S T\,,(T)SO = [P)\//(T)([R )
An alternative, and more familiar, way to write this condition is
D .
—y+PU = 2.
D v+P,U =0, (2.30)

where D/Dr=Py(d/dr) is the covariant derivative along ¢ determined by the
metric on Sy induced from the ambient Euclidean structure.

Theorem 2.6. Assume that U,Gy, ..., Gy are smooth bounded functions on RY

and the properties (G1)-(G3) hold. For u>0, let v, € C*(R,RY) be the unique
solution of (2.2), with V,= U+ uV = U+ u||G|]?, and with initial values

llfu(O) - ':I]O S5 SO ':IIIJ(O) = U S5 TIPOSO' (231)
Then there exists a non-empty time interval, [—7,,7,], such that
W, ->W in C'([—7.,7.;RY) asp— +w, (2.32)

where ¥ € C*([—7,,7.];S)) is the unique solution of (2.30) with initial data
W(0)=W,, ¥(0) = y.

Remark 2.7. Small modifications of the proof below show that this behaviour
is stable, i.e. holds for solution sequences whose initial data converge rapidly

o (2.31).

Proof. The Euler-Lagrange equation (2.2) can be written more explicitly as

Y+ U®W) +uV () =0. (2.33)

By the local existence theorem, this equation has, for every u and initial data
(2.31), a local smooth solution ¥, defined on some time interval (— T}, T,) which
satisfies the energy conservation law E(7)= H(¥ ,(7),¥,(7)) = E(0), where

1y, ) = 5 WP + V) + wv() (2.34)

The initial data (2.31) are such that the energy E(0)=ZFE, is finite and
independent of u. Since U is bounded, by say L, and V>0, it follows that for
u>0 the velocities v, =¥, are uniformly bounded as in (2.14). Now note that
there exists 7,>0, independent of u, such that all solutions ¥, (7) remain inside a
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fixed compact subset N’ C O containing ¥, so that restricting to |7| <7, we can
make use of the properties (G1)—(G3). Also, since the U, Gy, ..., G, are smooth,
we may assume that all their derivatives are bounded (by constants depending
on N). Therefore, the solution can be continued, and subsequentially the ¥,
converge to a limit ¥ € C([-7,,7,]; RY), uniformly on closed bounded intervals.
(This convergence will be improved to C' below.) The energy identity (2.34)
implies G(¥ (7)) =0 so that in fact ¥ € C([—7,,7.]; S))-

To prove C* convergence via lemma 2.1, it is sufficient to prove that the
accelerations 9, =W, are bounded independent of w. We now derive these
estimates, temporarily writing ¥, v in place of ¥, for clarity. As in the model
problem, the ‘normal’ and ‘tangential’ components are estimated separately.
However, an additional complication here is that there are two different
orthogonal decompositions into normal and tangential components, provided by
(G2) and (G3), respectively, namely

o =P, (0) +Qu(4) and
o =Py (1) + Qy (D).

(In the model problem considered above, these decompositions coincide). It turns
out that it is sufficient (and most convenient) to estimate P, (¢) and Qu(?) in
order to bound v itself.

To estimate the first of these, observe that if Y solves (2.33), then

1Py (o)) = [[Pyiry (U WD) (V). (2.35)

For the estimation of the normal velocity, consider first the differentiated
equation satisfied by v=1y, i.e.

b+ Kyv+uLyv =0, (2.36)

where K, bears the same relation to U as L, does to V, i.e.
(v, Kyw) = D*U(y)(v, w). Now introduce w= Qy(v); given (2.35), this quantity is
sufficient to bound 9.

Claim. If y/(7) lies in a compact set N which is sufficiently close to Sy, then
there exists a constant ¢= c¢(FEy, L, N') such that ||9|| < c(1+ ||w]]).

To prove this claim, observe that the projection operators Q, and @¢ are
continuous functions of ¥ which coincide on S,, and hence making A close to
So we may assume that ||(Qy, —Qy)?|| < (1/2)[|9]|. From this, we deduce

~ ~ ~ 1
19 < 1Pyl + [|@yall < [[Py o] + [|@y ] + 5 [[9]] (2.37)
so that [|0]| < 2(||Pyo|| + ||Qy0||). Now differentiation gives w= Qy () + [d,, Qy]v
and one can check (e.g. using the Riesz contour integral formula for Q,; Riesz &
Sz.-Nagy 1990) that |[[d,, Qy]|| < c[|v||; here we write ||-|| for the operator norm.
Using the bound (2.14) and substituting back into (2.37) gives the claim.
Thus it remains to estimate w. Applying Q,, to (2.36) gives

i + Kyw + pLyw = [07,Qylv + [K,, Qy)v, (2.38)

Proc. R. Soc. A (2007)



2772 D. M. A. Stuart

since [@y, Ly] =0 (because spectral resolution projectors always commute with
the original operator). This suggests the introduction of the quantity

_1
2
since by (G3) and w € @, (R") we have

EY = o (o] + (w, (Ky + pLy)w)), (2.39)

1 x
B 22 ([ + £ [lull?), (2.40)
2 2
for sufficiently large u. Together with the claim above, this implies

[|9]] < e(1 + V EYN). (2.41)
The energy identity gives

d 1

EEN = <w7 [aza @tl/]v + [Ktl/’ @\//]U> + 5 <w’ [a‘ra K\// + :LLLW]w>

As noted above, ||[0,, @,]|| < c||v||, and similarly [|[02, @,]|| < c(||v||* + ||#]]), so
that there exists ¢= c¢(Ey, L, N') such that

d -
’gEN < @l (1ol + 1) + (L + )|l (2.42)

And so, since these estimates apply to the solutions ¥,, (2.41) and a simple
application of the Gronwall inequality give the following bound for v, =¥, along
the subsequence:

19, (7)]| < C1e®7, (2.43)

for |7| < 7,, with both constants depending only on Ey, L, N (and independent of w).
It then follows from lemma 2.1 that, along the subsequence, the ¥, converge in
C'([-r,,7.);RY) to some limit ¥ € C'([-7,,7,];S)). The remainder of the
argument can be completed as in the model problem. [ ]

(iii) A direct constructive approach

An alternative approach to the problem of adiabatic motion and strongly
constrained systems is to ask whether, given a solution to the limit (constrained)
system, it is possible to construct a nearby solution to the original system (for
large values of the constraining parameter u)? We sketch a proof of a theorem
which answers this question affirmatively in the context of the natural
Lagrangian systems discussed in theorem 2.6 in §2a(ii). Theorem 1.4 from
Stuart (1994b) is also based on this type of direct constructive approach,
although the compactness approach, discussed in §2af(ii), could equally well be
used for the problems in that article and Stuart (1994a).

Assume given, as a starting point, a solution to the constrained system (2.30)
which can be written 3

lII(T) = lp(UO(T)v O)a (244')
with initial conditions as in (2.9). Here, we are using the same notation as in
§2a(ii) so that ¥(0,0) € Sy, Vo € O by (G2). We search for a solution of (2.33)
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in the form
W, (1) =W (o(r),0) +¢, (2.45)
with o(7) determined by the requirement that
Po(r(&(7)) =0, (2.46)

where P,y = Plp(g(f)’o) is the projection onto the tangent space to Sy. (The
condition (2.46) would hold if ¥ (o (7),0) were the nearest point on Sy to ¥ ,(7).)

Theorem 2.8. For every solution to (2.30) in the form (2.44), there exists
7,> 0 and a solution to (2.33) which can be written in the form (2.45) and (2.46)
on the time interval [—71,,7,], where

sup [ul[S(7)II* + w*[[KD)II° + Villlo(r) = oo (1) + l6(r) = do(T) D] < e, (2.47)

T|I<7,
with ¢ independent of u.

The idea of the proof is to rewrite (2.33) as an equivalent coupled system of
equations for {(7) and o(7) by requiring that (2.45) and (2.46) hold for each .
A careful treatment of the energy identity then yields (2.47). Substitution gives
the following equation for :

{+ul,l =—(6-Dy +6®6- D)W —uj,(0) — U'(W +7), (2.48)
where, abusing notation slightly, we write L, = Ly, ;) and J(O=V'W+7) — L.
Differentiate (2.46) twice and use the fact that P, L, = 0 to deduce

P,[—(6Dy + 6@+ D)W —uj, () — U'(W +¢)] +[02,P,J¢ =0,  (2.49)

which, for large u, is a small perturbation of (2.30) when (2.47) holds. This means that
(2.48) and (2.49) potentially provide a scheme in which (2.47) can be proved to hold
on a finite time interval for appropriate initial data. To carry out this, choose, for
simplicity, initial data {=0= ¢ and a(0) = 0(0), d(0) = 6(0), so that for each u
there exists 71(u)>0 such that (2.47) holds for some ¢>0 on [—7(u), 7;(u)]
(by continuity). This information is then used to show that in fact 7 (u) may be taken
tobe >7,>0, with 7, independent of u for large u. The estimates for (2.48) necessary
to achieve this can be obtained by consideration of the quantity

BY = Z(RIP + (2, (K, + 1L,)2), (2.50)

with K, = Ky, ), as defined immediately following (2.36). The crucial estimate,
from which theorem 2.8 follows quickly, is | EV| < ¢/u. To obtain this, differentiate
(2.50) to get

d S Ny = . =

B = (GG Dy +6@6+ D)W —jo () = (U' (¥ +8) = K,0))

1

The idea is to write EV(T)= EV(0)+ fOT E’NdT7 estimate E" and apply the
Gronwall inequality. The terms on the right-hand side, which are at least

quadratic in , {, can be estimated in the obvious way. Some care is needed with
the terms in the first line of (2.51), which are only linear in ¢, since if estimated
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naively they contribute O(1), whereas it is necessary to bound them as O(1/u) to
establish (2.47); this can be done by means of a single integration by parts
in time.

(b) The sine-Gordon equation

We will now prove theorem 1.1, showing that in the low-energy adiabatic limit
the sine-Gordon equation (1.1) can be approximated by uniform motion along the
moduli space Mg of all solitons. The proof of this theorem will be carried out
using the rescaling (1.22), so that we are interested in solutions, for large u, of

020
) +wV'(6) =0, (2.52)
.
where V()= V(0)—8=(1/2)[ (0, —2sin (4/2))*dz is the potential energy
discussed in §1b(iv), shifted to have minimum 0. We consider smooth initial
data obtained by rescaling (1.20) via (1.22), and using u=¢ > as parameter in
place of e,

0(0,7) = 0 (2) + Oy (z; ), 0,0(0, ) = —uyly(x) + 0y(z; 1) and

ull0ol 2 + /il Dol = O(1), asp— oo
Referring to the discussion in §§1b,c, we see that equation (2.52) is a natural
Lagrangian system, an infinite-dimensional version of those studied in §2a(ii),
with U= 0, u= ¢ 2> 1 and with infinite-dimensional vector constraint function
G: A — L*(R), 0~ G(0) =0,—2sin (6/2), defined on the configuration space A,
defined in §1c. In the next three paragraphs we develop a framework for the
discussion similar to the properties (G1)—(G3) used in the finite-dimensional case.
Analogous to (G1), we have the following.

(2.53)

Lemma 2.9. G is a smooth submersion A; — L*(R) whose level sets G~ (g), for
g € G(A,), define a foliation with one-dimensional leaves, whose tangent spaces
at 0 are spanned by a positive function By € Ker DG(0) with ||B4||;2 = 1, and the
mapping 0 By is continuous from A; to H'.

Proof. Since sup,|0(z)| < ¢||0|| 1, the smoothness (and in fact real analyticity)
of G follows immediately from that of sin (6/2). To prove that it is a submersion,
it is sufficient to prove that the derivative

0
DG(0) : w— w, —cos 5 W

is surjective and has a one-dimensional kernel. That these statements are true
follows from the fact that if § € A; then cos(6(z)/2) =>F1 as z— * . This
means that w, —cos(#/2)w= 0 has a solution w(z) = w(0)exp( [y cos(f/2)), which
is square integrable and gives a one-dimensional kernel; normalizing it by
[18¢l| 2 = 1 and requiring it to be positive determines 8, uniquely. Surjectivity can
be proved similarly by construction of a fundamental solution for DG(6)

exp(— [/ cos(0/2)) if 0<y<u,
K(z, y) = { —exp(— [Ycos(8/2)) if z<y<0, (2.54)

0 otherwise.
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The fact that § € A; implies that cos(f/2) has limit F1 as z— =+ . Using this it
is straightforward to show from the generalized Young inequality that the
operator K : f [ K(x, y)f(y)dy is bounded L*— L?, and gives a solution to the
equation w, —cos(f/2)w= f. This equation in turn implies boundedness of K
from L? to H' so that DG(6) is surjective as claimed. The final assertion follows
from the implicit function theorem. [ ]

To further pursue the analogy with §2a(ii) we introduce projection operators
as in (G2),

”50(7”) = (w, By) By, @a(w) = w—ﬂi’ﬁ(w). (2.55)

Now By is tangent to the leaves of the foliation and as such is orthogonal to V' (),
a fact which can be checked directly,

(B0 (=04 s 0) 2 = | ((0.=25im D((61), —cos 36 + (25in §6s) o =0
(2.56)

This means that Py(V'(f))=0, which will be used below to estimate the
tangential component of 6.

To introduce the decomposition in (G3), consider the operator L, = —3% + cos 6
which satisfies [wLywdz= D?*V(0)(w,w). When 6(-)=0x(- — X;) is one of
the soliton solutions, we write Ly, for this operator; it has precisely one L?
eigenvector, 8, corresponding to the eigenvalue 0, which arises due to translation
invariance. The remaining spectrum is continuous spectrum filling the interval
[1, ©). For €A, sufficiently close to O (- — Xj), i.e. if || — 0x(-Xo)||;n is
sufficiently small, Ly is a compact perturbation of Ly . Therefore, by Weyl’s
theorem, its spectrum has the same set of limit points as Ly, and, by results in ch. 7
of Kato (1980), has an isolated simple eigenvalue 44 close to 0; there may also be
eigenvalues close to the bottom of the continuous spectrum. There exists a number
0,>0 such that if ||0 — O (- — Xp)||;n <9, for some X, then [Ag<(1/4)| and the
remainder of the spectrum is > (3/4). Let {4 be the positive, normalized eigenvector
with eigenvalue 4. The functions 6 — A, (respectively, {y) are smooth from A; to R
(respectively, H 2). Introduce corresponding spectral projection operators on L?,

Py(w) = (w, L)Ly, Qp(w) = w—Py(w). (2.57)
Since By, =Ly, = 0, it follows, from continuity, that

@ -a)l <3, (2.59)

in operator norm, as long as ||0 — 0 (- — Xo)||;n < d,, with 4, sufficiently small.
Another immediate consequence is that for small 6, there exists ¢,> 0 such that

Jngw da> cyl|wl| 3, (2.59)

for all w € Qy(H'(R)).
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A proof of theorem 1.1 will now be given. The basic strategy is the same as in
the finite-dimensional case, but a new compactness criterion is required on
account, of the infinite dimensionality of the problem. In place of the Arzela—
Ascoli theorem, the following version of the Lions—Aubin lemma (Majda &
Bertozzi 2001) will be used to deduce compactness.

Lemma 2.10. Given positive numbers [<s and a sequence of smooth functions
fu(t, ) satisfying

ln‘lgx (1 (D e + (D)) < C,

there exists {fn }]_1 which converges to a limit f € C([~7,,7.); H(R)), in the
sense that if p is smooth and compactly supported, then max|;<, ||p(+) X

(fa(r, ) =f(@ Dl = 0 for every r& (1, s).
Proof of theorem 1.1.

(i) The initial-value problem for (2.52) with smooth initial data has a unique
smooth global solution which satisfies energy conservation E(7)= E(0),
where

B(r) = % Jé(f)zdx b uV(b(r)).

Furthermore, the solution #(7)=©,(7) with initial data (2.53) remains
close to the soliton moduli space for all time as p— + o there exists
X, (1) € R and ¢>0 such that, for every 1€R,

167, ) = 0k (- = Xu(0)l [ < cu ™2, (2.60)

These facts are proved by Henry et al. (1982); an alternative proof, more
similar to the methods being discussed here, follows as a simplification of
the work by Stuart (2001). Let u be sufficiently large that (2.58) and
(2.59) hold.

(ii) Let v= 6 and observe that it solves the equation

i+ uLyv = 0. (2.61)

Apply the tangential projection operator Py to (2.52) to deduce Py() = 0.
Therefore, 0= Qy(0), so that |[9]|12 < ||@g(0)]| 2 +[|Qg(0) — Qg (0)]] 2, and

ol > < 2[|Qy ()| 2, (2.62)
for sufficiently large u by (2.58) and (2.60). Define w= Q4(v), then
W+ puLyw = [(‘)Z, Qg v. (2.63)

Now, by the paragraph preceding (2.57), |Ag| + [|Zsl|2 < ¢/|6]| ;2 and hence
(2.62) implies ||0]|;2 < ¢(1+ ||w||2), with ¢ depending only on the energy,
and similarly ||| < e(1+ ||9]|2). Introduce E¥(7) = (1/2) [(w* + pwLy
w)dz as a measure of the normal oscillations. Then for initial data as in
(2.53), we claim that EY(0)= O(1) as u— + . To see this, first note that
(2.52) and (2.53) imply that ||926(0, -)|| ;2 = O(1) and hence ||w]|;> = O(1).
Next, write w= Q(0)= Qp(79) + (Qp— Qp,.)(—uefx) when t=0 (since
Qs, (0%) = 0). Then note that (2.53) implies that ||6(0, -) — || g2 = O(u™")
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so that ||y — &y, ||z = O(u™") also; therefore, since ||dy|| ;1 = O(u™"/?), we
deduce [|w(0, -)||;: = O(u~/?), and hence EY(0) = O(1) as claimed.

(iii) We need the identity (d/dr)EY = (w, [0, @] v) + (1/2)u{w, [9,, L] w) and
the lower bound (which follows immediately from (2.59))

()l + wllw()ll). (2.64)

Now, by the smoothness properties preceding (2 57), we have |j(,| <

(||0||L2 +(|6]|3.) and, using also (2.59), we deduce ||| 2 < ¢(|]| ;2 +]|0]|3-
+|10][3:) Therefore, using |||+ < c||f||1/2||f||Lé , there exists ¢>0, indepen-
dent of u>1, such that

EN(r)> o (

11107, Qgv|| 2 < (1 + V EN),

and hence
ENﬁ)SEN®)+cJ(1+EN@»d&
0

with ¢ depending on the energy and independent of u. As a consequence, on
any time interval [—7,,7,] the solutions (0,, v, = @) satisfy the following
(u independent) bounds:

max({|ou ()l + vy + Villwdlp) < (2.65)

where w, = Qg, (v,). Now let fu 6,—0,(0) so that fﬂ ' = 1,. From

these we can bound f = @ in I* f , in H' and hence fuin H' by a constant
independent of u, but dependlng upon 7. Given this, equation (2.52) implies
a bound for 920, = 8%(f, + ©,(0)), and hence

‘HELX(Hfu( m + 1Ollm) < ¢ (2.66)

with ¢ independent of u.
(iv) Now applyinglemma 2.10, we extract a subsequence {u;} along which there is

convergence to a limit f € C([-7,,7.]; H*(R)), for every r<2 in the
sense that if p= p(z) is smooth and compactly supported, then max; <,
lp(fy, () =f(T)[|z- = 0 and similarly fu converge to f &€ C([~7.,7.];
H'(R)) in a corresponding sense with r<1. Define

6 =06,0) +/,
then (0,0,0,0) € C(—1,,7.]; A, X H' X H"), and G(O)=

ie. 0,0 =2sin Q,
o 5
so that there exists Xy(7) such that ©(r, -) = 0 (- — X(7)) at each time 7. It
follows from the regularity just asserted for ®, and the positivity of #%, that

the function 7 — X (7) is in fact C". Furthermore comparing with (2.60), we
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see that X, (1) = X;(7) uniformly and
lim max [|(6,, (7, -) = O (- — Xo(7)))l[ 1 = 0. (2.67)

= |r|<r,

v) It follows from (2.56) that (B¢ ,320,) ;> — 0 as u— % along the subsequence.
0, w/ L g
This implies also that, along (u;),
Oc(- = X), 020,) =0,
since by lemma 2.9 and the previous item 8¢, — ¢ " (s — X,) strongly in H".
Note also that Y
<0K(' - XO)a 6T®}L>L2 -0,
since (0%, 0%)2=0 and 9,0, converges to —X 0% (- — X,) weakly in L?,
along the subsequence (u;). Now

(O — X)), ,0,(r) | =

[[ o = %o, 32,00

— Xo(0%(- —XO(T)) 9,0, 2d7.

Taking the limit as u;— %, we deduce that X,(8) = X(«) for all a, 8 so that
Xp is indeed the solutlon of Xo = (0 with the initial data X;,(0) = 0, X() (0) = g
as expected. Since the solution X;(7) = u,7 is unique, it follows that the @,
converge to the same limit along every convergent subsequence, and
hence there is convergence, without restriction to subsequences, completing
the proof. [ ]

3. Further developments and directions for future work

In this section, we briefly discuss various directions in which the previous work
either has been, or could be, pursued and strengthened.

(a) Scattering theory

An immediate question raised by the formulation of, for example, theorem 1.4,
is whether there is a longer time scale on which the approximation is valid. This
is a natural question mathematically which is also of interest phenomenologi-
cally, e.g. for the description of soliton scattering. Scattering is a process in which
two, or more, solitons, initially well separated, move towards one another and
interact for a time before moving apart again (usually); the interaction is
generally hoped to have a negligible effect except over a finite time interval.

For the case of BPS monopoles (§1a(ii) in §1), there is a quite explicit description
of the scattering of two monopoles, at the level of the moduli space approximation,
which is given by Atiyah & Hitchin (1988). It is desirable to extend theorem 1.4 to
provide a rigorous description of monopole scattering on an infinite time interval:
this would be achieved by the construction of solutions to (1.4), which are close for
all time to the monopole scattering processes given by the geodesics given by
Atiyah & Hitchin (1988). This is open, as is a more basic problem, to prove
asymptotic stability of a single BPS monopole. Regarding this question, it has been
proved by Stuart (1999a) that the BPS monopoles are uniformly stable in a certain
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norm, similar to but weaker than the H' norm. For the case of a single monopole,
this implies that for initial data close to a monopole the solution at later times is
uniformly close to some translate and gauge transformation of that monopole. To
strengthen this assertion to prove asymptotic stability amounts to showing that
the solution actually converges to a monopole as t— o0 in some topology.

Once asymptotic stability of a single monopole is proved, it would be interesting
to understand the asymptotic behaviour as t— o when several monopoles are
present in some appropriate class of initial data: does the solution converge to an
approximate superposition of monopoles as t— o in some norm? Results of this
type are in principle known for certain integrable equations, although precise
statements are not easy to come by (see Eckhaus & Schuur 1983; Cheng et al. 1999).
Some progress has been made towards developing methods allowing a more general
treatment of such problems, starting with Soffer & Weinstein (1990), Buslaev &
Perelman (1993) and more recently Cuccagna (2003), Rodnianski et al. (2003),
Perelman (2004) and Buslaev et al. (2007).

(b) Bound states and time-periodic solutions

We now discuss questions related to the existence of periodic solutions
representing bound states of solitons. These arise if the adiabatic limit system
has periodic solutions representing such bound states. An approximation theorem
like theorem 1.4 would then imply that there is a corresponding solution of the full
system which is close to the bound state on some time interval. However, there is no
guarantee this would be close for all time, or even on a time interval long compared
to the period of the bound state, and it is clearly necessary to refine the analysis
carried out hitherto to seriously address the issues of existence, persistence and
stability of periodic and quasi-periodic motions. The existence of periodic orbits in
finite-dimensional adiabatic limit problems is treated by Uhlenbeck (1995) and
Malchiodi (2001). As a specific infinite-dimensional example, the Abelian Higgs
model is a system of hyperbolic nonlinear wave equations for which a moduli space
approximation has been proved to be valid (Stuart 1994a). At the moduli space
level there exist time-periodic solutions, which have been proved to persist in the
full system in certain cases (Stuart 1999b). The Chern-Simons—Schréodinger
system will also admit periodic solutions of a similar type. Work is currently
underway to apply Hamiltonian techniques associated with KAM theory and
Nekhoroshev estimates to understand the stability of such solutions, and then
extend this understanding to quasi-periodic solutions.

(¢) Singularities

In certain models, the limiting moduli space dynamics is singular (Speight
2003; Bizon et al. 2004) and it is natural to investigate to what extent this is a
reflection of singular behaviour of the original system. This circumstance arises
in particular for systems having a scale invariant static energy V, such as the
Yang-Mills equations on R* "% and the g-model (wave map) problem on R'*2, In
certain cases, the L*induced metric on the moduli space is incomplete, and there
exist geodesics which cease to exist after a finite time. These geodesics
correspond to a finite time collapse of the soliton by rescaling. However, the
very fact of this singular collapse means the question of validity of the moduli
space approximation is a subtle one. For the case of the equivariant g-model, it
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has recently been proved by Rodnianski & Sterbenz (2006) that soliton collapse
does occur in certain cases. However, as had been observed numerically by Bizon
et al. (2004), the asymptotics at the blow-up point is different (by a logarithmic
term) from the self-similar collapse suggested by naive application of the moduli
space approximation.
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