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Abstract

We consider the nonlinear Klein Gordon Maxwell system derived from the Lagrangian
R `
− 1

4
FµνF µν +

1
2
〈(∂ − ieA)µφ, (∂ − ieA)µφ〉 − V(φ) − eAµJB

µ

´
on four dimensional Minkowski space-time, where φ is a

complex scalar field and Fµν = ∂µAν − ∂νAµ is the electromagnetic field. For appropriate nonlinear
potentials V, the system admits soliton solutions which are gauge invariant generalizations of the non-
topological solitons introduced and studied by T.D. Lee and collaborators for pure complex scalar fields.
In this article we develop a rigorous dynamical perturbation theory for these solitons in the small e limit,
where e is the electromagnetic coupling constant. The main theorems assert the long time stability of the
solitons with respect to perturbation by an external electromagnetic field produced by the background
current JB , and compute their effective dynamics to O(e). The effective dynamical equation is the
equation of motion for a relativistic particle acted on by the Lorentz force law familiar from classical
electrodynamics. The theorems are valid in a scaling regime in which the external electromagnetic fields
are O(1), but vary slowly over space-time scales of O( 1

δ
), and δ = e1−k for k ∈

`
0, 1

2

´
as e → 0. We work

entirely in the energy norm, and the approximation is controlled in this norm for times of O( 1
e
).
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1 Statement of results

1.1 Introduction

In this article, we are interested in the effective dynamics of a class of solitary wave, or soliton, solutions
to the nonlinear Klein-Gordon-Maxwell (nl-KGM) equations, in the presence of an external electromagnetic
field. In this introduction we start by writing down the equations and giving a heuristic statement of, and
motivation for, our results in §1.1.3 and §1.1.4. Then, in §1.2 and §1.3, we provide the necessary background
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for a precise formulation of the main results - theorems 10 and 12 - which appear in §1.4. These theorems
are proved in the subsequent sections; a list of notation appears in §1.1.5 to facilitate reading of the article.

1.1.1 The equations

We study the following system of equations, called the nonlinear Klein-Gordon-Maxwell system, or (nl-KGM)
system, which describe the interaction of a complex scalar field φ with an electromagnetic field Fµν in the
presence of an external space-time current JB :

∂µFµν = e〈iφ,Dνφ〉+ eJB
ν

DµDµφ+ V ′(φ) = 0.
(1)

Here φ is a complex function on Minkowski space-time R1+3, and Dµ = ∂µ− ieAµ is the covariant derivative
associated to an electromagnetic potential Aµdx

µ = A0dt + Ajdx
j with associated field Fµν = ∂µAν −

∂νAµ. (The operator D determines an S1 connection over R1+3 whose curvature is −iF .) We use standard
relativistic notation in which {xµ}µ=3

µ=0 are co-ordinates, with greek indices running over {0, 1, 2, 3}, x0 = t

is the time co-ordinate, and {xj}3j=1 are space co-ordinates with latin indices running over {1, 2, 3}; the
Minkowski metric is

ηµνdx
µdxν = dt2 − (dx1)2 − (dx2)2 − (dx3)2,

and is used to raise/lower indices in the usual way. When the spatial part of a space time vector or 1-form
is considered separately bold face will often be used e.g. x = (x1, x2, x3) for clarity. We refer to e as the
(electromagnetic) coupling constant: for the purposes of this article it is a small positive parameter. The
current four-vector is of the form

JB = JB,ν∂ν = ρB∂t + jk
B∂k

and is conserved, i.e.
∂tρB + div jB = 0.

The quantity ρB is called the (background) charge density, while jB is referred to as the (background spatial)
current density. Throughout the paper we make the following hypotheses on the nonlinear potential function
V:

(H1) Phase invariance: there exists G : R → R such that V(φ) = G(|φ|).

(H2) Positive mass: V(φ) = m2

2 |φ|
2 + V1(φ) where m > 0 and V1(φ) = −U(|φ|) is smooth with U(0) =

U ′(0) = U ′′(0) = 0.

(H3) Sub-criticality: the third derivative D(3)V1 = V ′′′

1 satisfies a growth condition |V ′′′

1 (φ)| ≤ c(1 + |φ|p−3),
for some p ∈ (3, 6). The significance of 6 is that it is the critical Sobolev exponent for the embedding
H1(R3) ↪→ Lp(R3).

The function V is subject to a number of additional more specialized hypotheses, which we detail in
§1.3.2, in particular to ensure existence and uniqueness of solitons solutions with the properties described in
§1.3.

1.1.2 Solitons

The research in this paper is built upon the existence results for solitons in semi-linear wave equations given
in [3],[4] and [22]. These solitons are time-periodic solutions of the nonlinear Klein-Gordon equation

∂µ∂
µφ+ V ′(φ) = 0,

which is obtained by putting e = 0 in (1) (i.e. when there is no electromagnetic coupling), and are of the
form

φ(t,x) = eiωtfω(x).
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T.D. Lee emphasized that solutions of this type, which he called non-topological solitons, provide a way of
circumventing the Derrick-Pohozaev non-existence results on static solitons in scalar field theories; see [15,
Chapter 7] for a discussion of their properties from the physical point of view.

It is proved in the references [3],[4] and [22] that, for certain potentials V, solutions of this form exist with
fω positive and radial. Also under further conditions these solutions are known to be essentially unique ( [18])
and dynamically stable ( [10, 24]); see §1.3 and the appendices for further details. For non-zero values of the
coupling constant e solutions to (1) of this type have been constructed in [2, 1] directly, using a spherically
symmetric ansatz, and perturbatively in [16, 17] for small e using the e = 0 case as a starting point. For
small e it is possible to use the information on stability for e = 0 from [24] to prove modulational stability
of the solitons and their Lorentz boosts, see §1.3.4 and [17] for details. Much of the same information for
the e = 0 case will also be used in the present article to study the stability of the solitons when subjected to
external (background) electromagnetic fields.

1.1.3 Informal statement of results on interaction of solitons with electromagnetic field

Our main concern in this article is to understand the interaction of the solitons just described, with an
external electromagnetic field produced by the space-time current JB . In order to be able prove theorems
giving precise information on the effect of this field on the soliton, we study (1) in a regime determined by
two small parameters:

• The electromagnetic coupling constant e = o(1).

• The external electric and magnetic fields, Eδ
ext and Bδ

ext, vary over scales which are O( 1
δ ), where

δ = o(1). Thus the small parameter δ is the ratio of the size of the soliton to the length scale over
which the external field varies.

The following is an informal version of our main theorems:

The system (1) has solutions which are close, in energy norm, to solitons of the type described
above and which, in an appropriate scaling regime, move according to the Lorentz force equation:

d

dt
(γMSu) = eQS

(
Eδ

ext + u×Bδ
ext

)
, (2)

where the effective mass MS and charge QS of the soliton are as in (60) and (61). The scaling
δ = e1−k for k ∈

(
0, 1

2

)
ensures that this holds for time intervals of length T0

e as e→ 0.

The precise formulation is in the two theorems stated in §1.4.

1.1.4 Motivation and related work

Our interest in this problem stems from the classical, but ongoing, controversy surrounding the classical
equation of motion for a point charge in an external electromagnetic field. The difficulty arises in attempts
to account for the “back reaction” of the charge’s own field on itself. Attempts to derive an equation of
motion lead to modifications of the Lorentz force law (2) , most notably the Lorentz-Dirac equation ([21,
Equation 9.1]). This equation is third order in time, and is difficult to interpret consistently without some
further constraint on the type of solution allowed, due to the occurence of runaway solutions and violations
of causality, (see [6] and [7, Chapter 28]). Recent discussions of this problem have been given in [9] and the
books [21, 28]. One natural and well established approach to the problem of making sense of the back reaction
is to start with a well-posed system of equations in which the point charge is explicitly replaced by a smooth
bounded charge distribution, the Abraham model, or one of its generalizations like the Lorentz model, for
example. One can then derive an equation of motion for the charge as an expansion, valid when the size of
the charge distribution is small (compared with typical length scales set by the external fields), and show
that this agrees with the Lorentz-Dirac equation at a certain order of approximation - see [14]. In this setting
it turns out, however, that at the same order the Lorentz-Dirac equation can be approximated by a more
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conventional equation of motion which seems to be free of interpretational difficulties, (see [21, Equation
9.10], where the name Landau-Lifshitz equation is suggested for this effective equation of motion. The
Landau-Lifshitz equation, which is second order in time, can be obtained formally from the Lorentz-Dirac
equation by substituting for the third derivatives the expression obtained by differentiating the ordinary
Lorentz force law (2) once in time.)

Our aim in studying soliton motion in the (nl-KGM) system is to attempt a similar analysis using a
solitonic model for the particle (in place of the Abraham or Lorentz model). Our model has the virtue
of being, in a very natural way, a Lorentz invariant system which is well posed (and so free of causality
problems). Unfortunately the calculations required even just to derive the equation of motion for the soliton
to O(e) (i.e. the Lorentz force equation (2)) are long, and further work will be required to calculate additional
corrections which may be compared with the Lorentz-Dirac equation in appropriate regimes. To achieve this,
the starting point would be the equation of motion (116) for the soliton parameters derived from modulation
theory. In §4 this equation is computed to highest order (i.e. to O(e)), and shown to give the Lorentz
force law. A computation to the next order should give the Landau-Lifshitz equation ([21, Equation 9.10]).
However it seems that some renormalization of the soliton mass and charge will have to be taken into account
in this computation, and it is possible a refinement of the ansatz (62) will be needed to achieve this. It is to
be hoped that at least in some simple cases such as one dimensional motion of the soliton in an electric field
Eδ

ext = (0, 0, E(δt, δx)) of fixed direction it will be possible to carry this through, and make a comparison
with the corresponding specialization of the Landau-Lifshitz equation ([21, Equation 9.11]).

A corresponding theorem to our main result was proved for solitons in interaction with gravitational
fields in the articles [25, 26]. The system treated there (Einstein’s equation coupled to a nonlinear klein-
Gordon equation) is in many ways more difficult than the one studied here (for example it is quasi-linear).
Correspondingly, it is possible to carry out a more general analysis for the Klein-Gordon-Maxwell system
under consideration here: in particular we emphasize that in the present article we are able to work entirely
with the energy norm throughout (whereas for the Einstein system it was necessary to work with much
stronger norms). There have also been theorems proved on effective dynamics for solitons moving under a
potential in the nonlinear Schroedinger equation, see [12, 5, 27].

1.1.5 Notation

The following is a list of notations for important objects, with the section in which they are first introduced,
for reference.

• Lp(R3) is the Lebesgue space of (equivalence classes of) measurable functions with norm ‖f‖Lp =∫
R3 |f |p dx < ∞, and Hk(R3) is the Sobolev space of (equivalence classes of) measurable functions

with norm ‖f‖Hk =
∑k
|α|=0 ‖∂αf‖L2 <∞, where ∂α means the weak partial derivative determined by

the multi-index α. We say f ∈ Hk
loc if χf ∈ Hk for every smooth, compactly supported χ, and

Ḣ1 =
{
f ∈ H1

loc ∩ L6 : ‖∇f‖L2 = ‖f‖Ḣ1 <∞
}

. (3)

Further we define Hk
r to be the intersection of Hk and the space of radial functions, i.e. functions of

|x|, and similarly define Lp
r and Ḣ1

r .

• Electromagnetic potential Aµdx
µ = A0dt + Ajdx

j , electromagnetic field Fµν = ∂µAν − ∂νAµ, and
covariant derivative Dµ = ∂µ − ieAµ: §1.1.1.

• Complex scalar (soliton) field φ and its self-interaction potential V(φ) = G(|φ|) subject to hypotheses
(H1)-(H3): §1.1.1. Additional hypotheses (SOL), (KER) and (POS): §1.3.2 and §1.3.4.

• (nl-KGM) is the nonlinear Klein-Gordon-Maxwell system: (1) and §1.4.

• Ψ = (φ, ψ,Ai,Ei) is the dependent variable in the Hamiltonian formulation: §1.4 (and §1.3.1 for zero
external current case).
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• e electromagnetic coupling constant, δ external field scaling parameter are both small: §1.1.3 and §1.2.2.

• Scaled external electromagnetic potentials aδ
µ, and electric and magnetic fields Eδ

ext and Bδ
ext induced

by external current (ρδ
B , j

δ
B) : §1.2.2.

• Ψδ
ext = (0, 0,aδ,Eδ

ext) represents the external field in the Hamiltonian formulation, and Ψδ,χ
ext =

(0, 0,aδ,χ,Eδ
ext), its gauge transform by χ: §1.4 and §2.1.

• fω, fω,e are the soliton profile functions in (respectively) the e = 0 case and for non-zero e, while αω,e

is the A0 component of the electromagnetic potential for soliton solutions: §1.3.

• ΨS,e is the set of Lorentz transformed soliton solutions in Hamiltonian formalism, or ΨSC,e in Coulomb
gauge: §1.1.2 and §1.3. Gauge transformation to Coulomb gauge generated by ζ: §1.3.4.

• λ = (λ−1, λ0, λ1, . . . , λ6) = (ω, θ, ξ,u) are parameters for Lorentz transformed solitons: §1.3.

• γ, Pu, Qu,Θ,Θc,Z, V0(λ), Nλ, Ξ̃ and ζ: §1.3.4.

• Õstab ∈ R8 is the stable region of soliton parameter space, where Grillakis-Shatah-Strauss stability
condition (39) holds and Ξ̃ is positive on the symplectic normal subspace Nλ: §1.3.4.

• (H0,Ω0), (H,Ω) and ‖Ψ‖H and ‖Ψ‖2Hs
are the symplectic phase spaces and norms:§1.3.1 and §1.2.1.

• W, K and Ξ are quadratic forms used in stability analysis: §2.3.

• W̃ quantity like W but inluding certain nonlinear interaction H̃ parts of the Hamiltonian: §5.

• Tloc, T0, T1: §1.2.1,§1.4.1 and §2.2, respectively.

• ∂̃λ: §2.2.

1.2 The External Electromagnetic Field and Scaling

The external electromagnetic field F ext
µν is induced by the space-time current JB = ρB∂t + jkB∂k according

to Maxwell’s equations, i.e. the first equation of (1) with φ set equal to zero. Introducing an external
electromagnetic potential, written in lower case symbols, aµdx

µ = a0dt+ajdx
j , such that F ext

µν = ∂µaν−∂νaµ,
and imposing the Coulomb condition ∇ · a = 0, these equations can be written:

−4a0 =eρB ,
�a =∇∂ta0 − ejB .

(4)

Here ρB is the background charge density, jB is the background current density. The associated electric
field, Eext, and magnetic field, Bext, are given by

Eext =
∂a
∂t

−∇a0, (5)

Bext = ∇× a. (6)

We shall make the following assumptions on the external field:

(BG) The external electromagnetic potentials are smooth and satisfy:

max
|α|=j

µ=0,1,2,3

∥∥∇α
t,xaµ

∥∥
L∞(R1+3)

= Lj <∞, (7)

(using multi-index notation ∇α
t,x for arbitrary partial derivatives of order |α|.)
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It might appear that these assumptions are restrictive: in particular, the assumption that ‖a‖L∞(R3×R+) <
∞ precludes the consideration of a constant magnetic field. However, since we shall scale so that the external
electric and magnetic fields do not change appreciably over the spread of the soliton, which is exponentially
localized, these conditions could probably be relaxed with some further work. A more important restriction
in our study appears to arise in the consideration of the scaling of the the external field, which we discuss
below, after presenting results on local well-posedness for the (nl-KGM) system in the presence of an external
field.

1.2.1 The Cauchy problem for (nl-KGM) in an external field

Throughout this article we make use of local well-posedness of the (nl-KGM) system in the energy norm. In
the case that there is no external field and V ≡ 0 this was proved in [13]. In this section we give conditions
under which this is true in the more general situation of (1) considered here. Since our assumptions on the
external field do not require finite energy it is convenient to subtract off the external field. Thus assume
given an external electromagnetic potential a0dt+ajdx

j as above, in Coulomb gauge ∇·a = 0, which solves
the inhomogeneous Maxwell equations (4) and verifies (7). Write the electromagnetic potential appearing in
(1) as Aµ = aµ + Aµ. Then, requiring the Coulomb gauge condition ∇ ·A = 0, as is always possible, (1) is
equivalent to the following system:

φ̇ =ψ + ie(a0 +A0)φ,

ψ̇ =∆φ− 2ie(A + a) · ∇φ− e2 |A + a|2 φ− V ′(φ) + ie(a0 +A0)ψ,

�A = 〈ieφ, (∇− ieA)φ〉+∇
.

A0 − e2 |φ|2 a,
−4A0 =〈ieφ, ψ〉,

(8)

where A = (A1, A2, A3) is the spatial part of A = A − a. We solve this system in the energy space
H ≡ H1 × L2 × Ḣ1 × L2, which is endowed with the energy norm ‖Ψ‖H = ‖(φ, ψ,A,E)‖H1×L2×Ḣ1×L2 ; see
§1.1.5 for notation on standard norms. We also define corresponding higher energy norms indexed by s ∈ N
by

‖(φ, ψ,A,E)‖2Hs
≡

s−1∑
|α|=0

‖∇α
x(φ, ψ,A,E)‖2H, (9)

with corresponding space denoted Hs. We say that the Cauchy problem for (8) is locally well posed in H if
the following two conditions hold:

(WP1) given initial data
(
φ(0), ψ(0),A(0),

.

A(0)
)
∈ H in Coulomb gauge (i.e. divA(0) = 0, div

.

A(0) = 0),
satisfying ∥∥∥(

φ(0), ψ(0),A(0),
.

A(0)
)∥∥∥
H
≤ k0 (10)

there exists Tloc = Tloc(k0) > 0 and a unique solution
(
(φ(t), ψ(t),A(t),

.

A(t)
)

such that(
φ(t), ψ(t),A(t),

.

A(t)
)
∈ C([0, Tloc);H),∫ Tloc

0

(‖�A‖L2 + ‖�φ‖L2) dt <∞.

(WP2) the solution is continuous with respect to the initial data in that, for another set of initial data(
φ1(0), ψ1(0),A1(0),

.

A1(0)
)
, which are close in H, and also satisfy (10), and the Coulomb gauge

conditions, the following holds on the common domain of definition [0, Tloc], for some constant c > 0:

max
[0,Tloc]

∥∥∥(
φ− φ1, ψ − ψ1,A−A1,

.

A−
.

A1

)∥∥∥
H
≤

c
∥∥∥(
φ(0)− φ1(0), ψ(0)− ψ1(0),A(0)−A1(0),

.

A(0)−
.

A1(0)
)∥∥∥
H
.
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As remarked above, in the absence of the external field, and with V ≡ 0 the validity of (WP1)-(WP2)
was proved in [13]. The general case was addressed in the thesis [17] where it was shown, using in addition
Strichartz inequalities from [11, 23], that (WP1)-(WP2) hold if V is a smooth sub-critical nonlinearity:

Proposition 1 Suppose V is smooth and that there exists a positive number κ ∈ (0, 4) such that, for all
φ, ϕ,

|V ′(φ)− V ′(ϕ)| ≤ C |φ− ϕ|
(
1 + |φ|4−κ + |ϕ|4−κ

)
(11)

and that V ′(0) = 0. Assume that the external potential is smooth and verifies (7) for every non-negative
integer j. Then the Cauchy problem for (8) is well-posed in the sense of (WP1) and (WP2). Further, if the
initial data lie in Hs for some s ≥ 2 then the solution exists for all time, and remains in Hs, and is smooth
if the initial data are smooth.

Remark 2 The Coulomb condition leaves a residual gauge invariance by functions χ(t,x) which are har-
monic in x. (These are either constant or unbounded.) In particular the system (8) is invariant under the
transformation aµ 7→ aµ + ∂µχ, (φ, ψ) 7→ eieχ(φ, ψ) if χ = α0(t) + αj(t)xj is linear in x and smooth in
t. In this case the map (φ, ψ) 7→ eiχ(φ, ψ) = (φ̃, ψ̃) is Lipschitz on H1 × L2. It follows that proposition
1 remains valid if the external potential is obtained from one satisfying (7) by gauge transformation by
χ = α0(t) + αj(t)xj .

Remark 3 Notice that when the nonlinearity is determined by a smooth function V whose third derivative
satisfies: ∣∣∣D(3)V(φ)

∣∣∣ ≤ c(1 + |φ|3−κ), for all φ (12)

for some c > 0, 0 < κ < 3 the conditions of proposition 1 hold, and the Cauchy problem is well-posed. This
assumption is also sufficient to estimate the nonlinear terms in the perturbation theory developed in §2,§3
and §5 of this article. Introduce F(φ) = V ′(φ)−m2φ = V ′1(φ) = β(|φ|)φ as the nonlinear part of V ′(φ), with
V as in the introduction. Then (12) implies the inequality

|F ′(f + v)−F ′(f)| ≤ c(1 + |f |3)(|v|+ |v|4) where c is a positive constant, (13)

which is convenient for our use. In fact, for our purposes it would be sufficient to make the following slightly
more general assumption on F :

For all f > 0 and for any v, |F ′(f + v)−F ′(f)| ≤ c(fr−1 + f3)(|v|+ |v|4), (14)

where r, c are positive constants, see [16]. Of course given a smooth potential V satisfying (12), let F be as
just defined, then (14) will also hold with r = 1.

1.2.2 Scaling the external fields

As already mentioned, we require that the external electric and magnetic fields are approximately constant
over the soliton. To ensure this, we introduce a scaled version of the external fields. Thus, we have

aδ
0(t,x) =

1
δ
a0(δt, δx), aδ(t,x) =

1
δ
a(δt, δx), (15)

with the scaled external electric and magnetic fields given by:

Eδ
ext = Eext(δt, δx), Bδ

ext = Bext(δt, δx). (16)

Clearly these fields correspond to the following rescaled charge and current densities:

ρδ
B(t, x) = δρB(δt, δx), jδB(t, x) = δjδB(δt, δx). (17)

Henceforth, we shall almost always refer exclusively to the scaled fields. It remains to choose the length
scale, 1

δ , over which the external fields change: this is determined by the analysis in §5 which bounds the
deviation of the solution from the modulated soliton. This analysis seems to require two main conditions on
the scaling of δ and e:
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• From lemma 21, it seems that we need
lim
e→0

e

δ
= 0, (18)

to bound the effect of the scaled external electromagnetic potential.

• Treatment of the last term in (137), seems to suggest that we need

lim
e→0

δ2

e
= 0. (19)

This condition is used to ensure the deviation from the Lorentz force law is small for times of order 1
e .

We will consider the limit e→ 0 with
δ = e1−k (20)

for some constant k ∈
(
0, 1

2

)
, so that both of these conditions hold. It remains to be seen what are the

optimal conditions for scaling e, δ under which the results of this paper hold.

1.3 Non-Topological Solitons

We now discuss existence and stability properties of non-topological solitons as solutions of (nl-KGM) in the
absence of external fields. This means we are here concerned with the (nl-KGM) system with ρB = 0 = jB .
We first discuss the Hamiltonian formulation of (nl-KGM), since that gives the appropriate context in which
to introduce non-topological solitons.

1.3.1 Hamiltonian formalism

It is useful to present the Hamiltonian formalism for the (nl-KGM), not least because it will give us a
language which we shall use in proving the existence and long-time stability of the non-topological solutions.
Indeed, as we shall see, from the Hamiltonian point of view, non-topological solitons are relative equilibria,
and recognizing this fact leads to the identification of the appropriate quantities with which to work.

In order to define the phase space we recall the standard function spaces defined in §1.1.5.
To start with, consider the nonlinear wave equation in isolation

�φ+ V ′(φ) = 0. (21)

This can be written as a Hamiltonian system on the phase space H0 ≡ {(φ, ψ) ∈ H1 ×L2}, with symplectic
form Ω0((φ′, ψ′), (φ̇, ψ̇)) =

∫
〈φ′, ψ̇〉 − 〈ψ′, φ̇〉 dx, and Hamiltonian

H0(φ, ψ) =
1
2

∫
|∇φ|2 + 2V(φ). (22)

The corresponding Hamiltonian evolution equations, equivalent to (21), are :

∂t

(
φ
ψ

)
=

(
ψ

4φ− V ′(φ)

)
. (23)

Next, for (nl-KGM), introduce the phase space

H ≡ {Ψ = (φ, ψ,A,E) ∈ H1 × L2 × Ḣ1 × L2}, (24)

which is endowed with the norm ‖Ψ‖H = ‖(φ, ψ,A,E)‖H1×L2×Ḣ1×L2 and the (densely defined, weak)
symplectic form

Ω(Ψ′, Ψ̇) =
∫
〈φ′, ψ̇〉 − 〈ψ′, φ̇〉+ A′ · Ė−E′ · Ȧdx, (25)
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where Ψ′ = (φ′, ψ′,A′,E′) and similarly for Ψ̇. The (nl-KGM) equations with ρB = 0 = jB arise formally as
the Hamiltonian flow on H associated to the Hamiltonian

H(φ, ψ,A,E) =
1
2

∫ (
|E|2 + |∇ ×A|2 + |ψ|2 + |∇Aφ|2 + 2V(φ)

)
, (26)

and subject to the constraint:
C0 ≡ divE− 〈ieφ, ψ〉 = 0. (27)

Here ∇Aφ is the covariant derivative of φ given by ∇Aφ = ∇φ− ieAφ and A is the spatial part of the gauge
field. The equations of motion for the augmented Hamiltonian H1 = H −

∫
A0C0 are:

∂t


φ
ψ
Ai

Ei

 =


ψ + ieA0φ

4Aφ− V ′(φ) + ieA0ψ
Ei +∇iA0

4Ai −∇i(divA) + 〈ieφ,∇Aφ〉

 (28)

where the “Lagrange multiplier” A0 is identifiable with the temporal part of the gauge field, 4Aφ = 4φ−
2ieA · ∇φ− iedivAφ+ e2 |A|2 φ, i = 1...3, and we have not yet imposed any gauge condition.

1.3.2 Existence of non-topological solitons: the e = 0 case

The class of solitary wave solutions of interest is that of non-topological solitons discussed in [15, Chapter
7]. These are examples of a special type of solution to a Hamiltonian system with symmetry called relative
equilibrium: this means that the time evolution is given by an orbit of a one parameter subgroup of the
symmetry group. For (23) the Hamiltonian is invariant under the action of S1 by phase rotation, as long as
V(φ) = G(|φ|) is a function of |φ| only; the charge corresponding to this S1 action is

Q(φ, ψ) =
∫
〈iψ, φ〉 dx.

A relative equilibrium is then a solution of the form (φ, ψ) = eiωt(fω(x), iωfω), where fω is a real valued
function which satisfies an elliptic equation. These solutions are critical points of the functional H0 + ωQ,
often called the augmented Hamiltonian in this context. We consider G of the form

G(f) =
m2

2
f2 − U(f), with U(f) =

∫ |f |

0

tβ(t)dt.

then the equation satisfied by fω is −4fω + (m2 − ω2)fω = β(fω)fω. This equation typically has many
solutions (see [3] and references therein), but we are only interested in positive, radially symmetric solutions
because it is these which are dynamically stable: these are sometimes called the ground state solitons. Thus,
crucial to our analysis is the following hypothesis on existence and uniqueness of the e = 0 ground state
soliton:

(SOL) For ω2 < m2, there exists a unique positive radial function fω ∈ H4(R3) which solves(
−4+m2 − ω2

)
fω = β(fω)fω.

Theorem 4 The existence part of (SOL) holds under the following conditions:

U ′(f) = −U ′(−f) and U ′ ∈ C1(R) ∩ C2((0,∞)), (29)

U ′(0) = U ′′(0) = 0 and ∃s ∈ (0, 1) : lim
f→0

fsU ′′′(f) = 0, (30)
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∃ζ > 0 : U(ζ) >
m2 − ω2

2
ζ2, (31)

lim
f→∞

U ′(f)
f5

= 0. (32)

The uniqueness part of (SOL) holds under the additional conditions:

(U1) ∃l1 > 0 : 0 < f < l1 =⇒ U ′(f) < (m2 − ω2)f

and l1 < f <∞ =⇒ U ′(f) > (m2 − ω2)f

and U ′′(l1)− (m2 − ω2) > 0,

and that

(U2) For l2 > l1,∃λ = λ(l2) ∈ C[(l1,∞),R+]
such that 2(m2 − ω2)f + λfU ′(f)− (λ+ 2)U ′(f)
is non-negative on (0, l2) and non-positive on (l2,∞).

Proof The existence part of this hypothesis was proved in [3] under the given conditions on the nonlinearity.
It was shown in several articles (see for example, [18], where further references are given), that these solutions
are unique under the given additional conditions. �

The following two operators, L±(ω), which appear on linearizing (23) about the soliton solution, are
crucial to an understanding of the stability and dynamical properties of the e = 0 soliton:

L+(ω) = −4+m2 − ω2 − β(fω)− β′(fω)fω,

L−(ω) = −4+m2 − ω2 − β(fω).
(33)

We make the following hypothesis on L+(ω):

(KER) The kernel of L+(ω) is empty in H2
r (R3).

(Recall that Hs
r was defined as the space of radial Sobolev Hs functions, immediately following (3).)

Theorem 5 The hypothesis (KER) is valid under the conditions (U1)-(U2).

Proof See [18]: establishing (KER) is a crucial step in proving uniqueness of the positive function fω. �
The operators L± also determine stability properties of the soliton. For proving stability the following

spectral assumption is used:

(S1) The subspace in which L+ is strictly negative is one dimensional,

This assumption is valid for the ground state solitons fω obtained by the constrained minimisation
technique of [3], because they are minimizers subject to a single constraint, see [24] (where a direct proof in
the pure power case is also given).
Some additional more technical results on the solitons can be found in appendix A.1.

1.3.3 Existence of non-topological solitons: the general case

We now show that for small values of the coupling constant e the ground state solitons just discussed can be
continued (via the implicit function theorem) to give soliton solutions of (28). The properties of the e = 0
soliton needed to achieve this were detailed already in §1.3.2. As shown in [1, 2] it is also possible to obtain
soliton solutions for systems like (28) by variational techniques applied within the class of radial functions,
but for present purposes we prefer to use the implicit function theorem so that we can carry over stability
information from the e = 0 case, which seems to be hard to obtain otherwise.
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Generalizing the class of non-topological solitons to the case of the gauge invariant system (28) leads us
to search for solutions to (28) of the form

φ
ψ
A
E

 =


Exp[iωt]fω,e

Exp[iωt]i(ω − eαω,e)fω,e

0
−∇αω,e

 , (34)

where we have emphasized the dependence on the parameters ω and e; we will assume the functions fω,e

and αω,e to be radially symmetric. It can easily be checked that this gives a solution to (28) with A0 = αω,e

as long as the functions fω,e and αω,e satisfy

−4αω,e + e2f2
ω,eαω,e − eωf2

ω,e = 0, (35)

−4fω,e − U ′(fω,e) + (m2 − (ω + eαω,e)
2)fω,e = 0. (36)

The first of these equations implies C0 = 0. It can readily be checked that if a gauge transformation is
made to put the solution thus obtained into temporal gauge, A0 = 0, then its time dependence amounts to
the action of the one parameter group of gauge transformations ei(ω−eαω,e)t, so that it is indeed a relative
equilibrium solution as defined above.

Theorem 6 ([17]) Assume that the hypotheses (SOL) and (KER) hold for ω0 with ω0
2 < m2. Then, there

exists a neighbourhood U of ω0 such that for ω ∈ U , there is a number e(ω) > 0 such that for ω ∈ U, |e| < e(ω),
there exists fω,e ∈ H2

r (R3) such that

−4fω,e +m2fω,e − (ω − eαω,e)
2
fω,e = β(fω,e)fω,e, (37)

where αω,e ∈ Ḣ1
r (R3) is a non-local function of fω,e uniquely determined by

−4αω,e + e2f2
ω,eαω,e = ωef2

ω,e. (38)

In addition the map ω 7→ fω,e is C2 from U to H2
r .

1.3.4 Stability in the absence of an external field

The stability of the solutions to (23) of the form eiωtfω(x) was first considered in [20, 10] where it was proved
that the positive radial solution was stable, with respect to radially symmetric perturbations of the initial
data, as long as

∂ω

(
ω ‖fω‖2L2

)
< 0. (39)

It was also shown that the solutions are unstable when this quantity is positive. In [24] an alternative, modu-
lational, approach to stability was adopted along the lines of [27], with the aim, both of generalizing previous
stability results to prove stability of uniformly moving solutions with respect to arbitrary (non-symmetric)
perturbations, and also of providing techniques which could provide useful information in dynamically non-
trivial settings. The presence of external fields is an example of the latter circumstance, and so the analysis
in this article is based on that in [24], which we will now summarize. It turns out that the condition (39)
implies the strict positivity of the Hessian of the augmented Hamiltonian on the symplectic normal space to
the space of solitons. To explain this properly in the generality needed it is necessary to consider the action
of the Poincare (or inhomogeneous Lorentz) group

Action of the Poincare group on the solitons. The equations (28) are Poincare covariant. The action of the
Poincare group on the radial soliton (34) gives a family of functions depending smoothly on eight parameters
{λA}6A=−1, with

λ = (λ−1, λ0, λ1, . . . , λ6) = (ω, θ, ξ,u) (40)
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determining (respectively) the frequency, the phase, the centre and the velocity of the soliton. Explicitly:

ΨS,e(x;λ) =


Exp[iΘ](fω,e(Z))

Exp[iΘ](iγ(ω − eαω,e(Z))fω,e(Z)− γu · ∇Zfω,e(Z))
−γuαω,e(Z)

−( 1
γPu + γQu)∇Zαω,e(Z)

 . (41)

Here the projection operators Pu : R3 → R3 and Qu : R3 → R3 are defined by (Pu)ij = uiuj

|u|2 and Qu = 1−Pu,
and

Z(x, λ) = γPu(x− ξ) +Qu(x− ξ), (42)

Θ(x, λ) = θ − ωu · Z, (43)

with γ(u) = 1√
1−|u|2

. The parameters are required to lie in the set Õ ⊂ R8 defined by

Õ ≡ {(ω, θ, ξ,u) ⊂ R8 : |u| < 1 and ω2 < m2}. (44)

The parameter range corresponding to stable solitons is

Õstab ≡ {(ω, θ, ξ,u) ⊂ Õ : condition (39) holds}. (45)

The Poincare covariance of the equations of motion (28) implies that the solitons given by (41) form an eight
parameter family of solutions t 7→ ΨS,e(x;λ(t)) of (28) as long as d

dtλ = V0(λ), where V0 is the vector field
on Õ defined by

V0(λ) ≡
(
0,
ω

γ
,u, 0

)
, (46)

for λ = (ω, θ, ξ,u).
The case of the nonlinear wave equation (23) can be obtained by putting e = 0 in the first two components

of the formulae just given. Simplifying to this case we obtain an eight parameter family of functions,(
φS,0, ψS,0)(x;λ

)
≡ eiΘ

(
fω(Z), (iγωfω(Z)− γu · ∇Zfω(Z))

)
(47)

such that
t 7→ (φS,0, ψS,0)(x;λ(t)),

solves (23), as long as d
dtλ = V0(λ), with V0 as above.

Stability for e = 0 (nonlinear Klein-Gordon). The starting point for stability analysis is the observation that
(φS,0, ψS,0) is a critical point of the augmented Hamiltonian

F0(φ, ψ;λ) = H0(φ, ψ) + uiΠi(φ, ψ) +
ω

γ
Q(φ, ψ) (48)

where H0, Q are the functionals defined above, and Πi are the momenta Πi(φ, ψ) =
∫
〈ψ, ∂iφ〉 dx. The

Hessian of F0 at (φS,0, ψS,0) is a quadratic form depending upon λ:

Ξ̃(φ̃, ψ̃;λ) ≡ D2F0(φS,0, ψS,0;λ)((φ̃, ψ̃), (φ̃, ψ̃)).

Introduce the subspace

Nλ ≡ {(φ̃, ψ̃) ∈ H1 × L2 : Ω0

(
(φ̃, ψ̃), ∂λ(φS,0, ψS,0)(λ)

)
= 0} (49)

then the following hypothesis is crucial for stability:

(POS) For each compact K ⊂ Õstab ∃τ∗ = τ∗(K) > 0 such that

Ξ̃(φ̃, ψ̃;λ) ≥ τ∗‖(φ̃, ψ̃)‖2H1×L2 for all (φ̃, ψ̃) ∈ Nλ.
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Remark 7 Õstab is the set of parameter values corresponding to stable solitons, which are obtained as
Poincare transforms of solitons eiωtfω with ω such that (39) holds.

Theorem 8 ([24]) If the nonlinearity satisfies the conditions given in §1.3.2 then (POS) is true. Further-
more, solitons of (23) corresponding to frequencies ω such that (39) holds are modulationally stable with
respect to small, arbitrary perturbation in energy norm. To be precise, consider the initial value problem for
(23) with initial data close to a soliton

(
φS,0, ψS,0)(·;λ(0)

)
with λ(0) ∈ Õstab, in the sense that

ε =
∥∥(
φ(0, ·), ψ(0, ·)

)
−

(
φS,0, ψS,0)(·;λ(0)

)∥∥
H0

is sufficiently small. Then there exists a global solution which satisfies:

sup
t∈R

∥∥(
φ(t, ·), ψ(t, ·)

)
−

(
φS,0, ψS,0)(·;λ(t)

)∥∥
H0

≤ cε, (50)

for some C1 curve t 7→ λ(t) ∈ Õstab.

Stability for small e (nonlinear Klein-Gordon-Maxwell). It was shown in [17], that stability holds also for
solitons in (28) under the condition (39), for sufficiently small values of the electromagnetic coupling constant
e. This was proved using the Coulomb condition, so we first write down the soliton solutions (41) in Coulomb
gauge. (The Coulomb condition is not invariant under Lorentz boosts, therefore, it is necessary to perform a
gauge transformation to move the Lorentz boosted solitons into the Coulomb gauge). The Lorentz boosted
solitons ΨSC,e in the Coulomb gauge have the form

φSC,e(x)
ψSC,e(x)
ASC,e(x)
ESC,e(x)

 =


Exp[iΘC ](fω,e(Z))

Exp[iΘC ](iγ(ω − eαω,e(Z))fω,e(Z)− γu.∇Zfω,e(Z))
−γuαω,e(Z) +∇ζ

−( 1
γPu + γQu)∇Zαω,e(Z)

 (51)

where ΘC = Θ + ieζ, and ζ(x;λ) is a solution of

−4ζ = −γu · ∇αω,e(Z). (52)

It is a smooth function of x and also depends smoothly on λ; requiring that ∇ζ ∈ Lp, p > 3 fixes it up to a
constant. Some estimates for ζ are given in appendix A.1.2. The temporal part of the gauge field is given
by

(ASC,e)0 = γαω,e(Z) +
.

ζ = γαω,e(Z) + V0(λ) · ∂λζ.

Theorem 9 ([17]) In the situation of the previous theorem the solitons (51) of (28) corresponding to fre-
quencies ω such that (39) holds are, for sufficiently small |e|, modulationally stable in Coulomb gauge with
respect to small, arbitrary perturbation of the initial data in energy norm ‖ ·‖H defined in (24). The stability
is in the same sense as in the previous theorem, see [17] for full details.

1.4 The main theorems

We now explain and state our main results on the interaction of the solitons of §1.3 with the scaled external
electromagnetic field of §1.2. We write the total electromagnetic potential as A = Aµdx

µ (as described
in §1.1.1) with corresponding electric field Ej = ∂tAj − ∂jA0. The potential A will be formed from three
constituents:

1. the external field, produced by a background charge ρδ
B and current jδB , and scaled as described in

§1.2,

2. the soliton contribution, as described in §1.3 but with parameters λ(t) varying in a dynamically deter-
mined way,
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3. an additional component produced by interaction of the initial data with the two previous components.
This component is not explicitly given, and must be estimated.

Similarly, the solitonic field will be made up of a component which is the moving soliton, and a remainder
produced by interactions, which must be estimated.

It is convenient to write the (nl-KGM) equations in first order form. Including the scaled background
current density, the equations read:

∂t


φ
ψ
Ai

Ei

 =


ψ + ieA0φ

4Aφ− V ′(φ) + ieA0ψ
Ei +∇iA0

4Ai + 〈ieφ,∇Aφ〉 − ejδB

 , (53)

with the Coulomb gauge condition imposed. These equations are to be solved with the Gauss law

div E− 〈ieφ, ψ〉 = ρδ
B , (54)

as a constraint. We shall abbreviate a general solution by making use of the following definition:

Ψ = (φ, ψ,Ai,Ei) , (55)

with i ∈ {1, 2, 3}.
Using this Hamiltonian formulation with Ψ as dynamical variable we write the external field

Ψδ
ext = (0, 0,aδ,Eδ

ext).

It will be convenient also to have the freedom of applying a gauge transformation χ(t, x) to this:

Ψδ,χ
ext = (0, 0,aδ,χ,Eδ

ext),

with aδ,χ = aδ + dχ. The aim is now to construct a solution Ψ to (53) consisting of Ψδ,χ
ext with a soliton

ΨSC,e(λ) superimposed. We choose the gauge transformation χ so that the transformed external electro-
magnetic potentials vanish along the world-line of the soliton x = ξ(t); in particular, at t = 0 we will
choose

χ(0,x) = χ0(x) = −(x− ξ(0)) · aδ(0, ξ(0))

so that aδ,χ0(0,x) = aδ(0,x)− aδ(0, ξ(0)).

1.4.1 Stability in the presence of an external field

The following theorem asserts the long time stability, under the influence of an external field, of stable
solitons to (53). Recall that the stable solitons are those parametrised by λ ∈ Õstab, so that (39) and hence
(POS) hold, and they are stable by theorems 8 and 9 in the absence of an external field.

Theorem 10 Assume that the nonlinearity satisfies the hypotheses (H1)-(H3), and also is such that the
hypotheses (SOL), (KER) and (POS) in §1.3.2 hold. In addition, assume that the external field satisfies the
assumptions in §1.2. Suppose further that the scaling parameters satisfy δ2 = o(e), e = o(1) and e = o(δ).

(i) Consider initial data of the form

Ψ(0) = (φSC,e(λ(0)), ψSC,e(λ(0)),Ai(0),Ei(0))

where λ(0) ∈ Õstab corresponds to a stable soliton (which verifies (POS)). It follows that, if e is sufficiently
small and ∥∥Ψ(0)−Ψδ,χ0

ext (0)−ΨSC,e(λ(0))
∥∥2

H = o(e), (56)

there exists
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• a positive number T0 > 0, independent of e,

• a C1 gauge transformation χ(t,x) defined in (63), linear in x at each time t, satisfying χ(0,x) = χ0(x)

• a curve λ(t) ∈ C1([0, T0
|e| ], Õstab), and

• a distributional solution Ψ(t) of (53),

such that
Ψ(t)−Ψδ,χ

ext(t) ∈ C([0,
T0

|e|
];H)

and
sup

t∈[0,
T0
|e| ]

∥∥Ψ(t)−Ψδ,χ
ext(t)−ΨSC,e(λ(t))

∥∥2

H = o(e), (57)

Furthermore, λ(t) satisfies a system of ordinary differential equations given by (116) with |∂tλ − V0(λ)| =
O(e). The time component of the potential A0 is determined by the Coulomb condition and the Gauss law,
(71), and has properties detailed in §2.

(ii) More generally, the same conclusions hold for initial data sufficiently close to a stable soliton in an
appropriate sense: see §2.4.3 for a precise statement.

This theorem is proved in §2.

Remark 11 As explained in 1.3.2, if the nonlinear potential satisfies (29)-(32), U(1), U(2), S(1) above in
addition to (H1)-(H3) then the conditions (SOL), (KER) and (POS) all hold.

1.4.2 Motion in the presence of an external field: the Lorentz force

The previous theorem provides ordinary differential equations (116) which determine the evolution of the
soliton parameters. A detailed investigation of these equations allows us to deduce an equation of motion
for the soliton, which is expected to be the Lorentz force law for a moving charge, at least to highest order
in e. As remarked earlier, if the analysis were carried out explicitly to higher order in e, corrections would
be expected to appear, in particular due to the back reaction of the soliton’s electromagnetic field on itself.
However, these are not expected to appear in the O(e) force law, and the following theorem validates this:

Theorem 12 Assume the hypotheses and conclusions of theorem 10 hold, and let λ = (ω, θ, ξ,u) be the
parameters of the soliton ΨSC,e(λ). Then, on the interval [0, T0

|e| ], the centre and velocity of the soliton evolve
according to the equations:

d

dt
ξ = u + o(e) (58)

d

dt
(MSγ(u)u) = eQS

(
Eδ

ext(t, ξ) + u×Bδ
ext(t, ξ)

)
+ o(e), (59)

where the mass of the soliton, MS, is given by

MS =
1
3
‖∇fω‖2L2 + ω2 ‖fω‖2L2 , (60)

and the charge of the soliton is given by

QS =
∫

(ω − eα) f2
ω,e. (61)

This theorem is proved in §4.

Remark 13 Observe that, since we have scaled the external field so that Eδ
ext and Bδ

ext are independent of
e, the soliton undergoes O(1) motion on the time interval [0, T0

|e| ] according to the Lorentz force law.
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2 Stability: proof of theorem 10

In this section we explain the proof of theorem 10, making use of results which are proved separately in
§3 and §5. Throughout this section the hypotheses of theorem 10 are understood to hold without explicit
mention. Also we may assume, without loss of generality, that the solution is smooth in the course of the
following calculations: since finite energy solutions can be approximated by smooth ones by (WP2) in §1.2.1,
and all the bounds we use depend only on the energy norm, this implies the result for finite energy initial
data as in theorem 10.

2.1 Beginning of proof of theorem 10

2.1.1 Ansatz for the solution

We make an ansatz for a solution Ψ(t) = Ψδ,χ
ext(t) + ΨSC,e(λ(t)) + Perturbation, which is close to a soliton

with time varying (modulating) parameters λ(t), in the background external field Ψδ,χ
ext(t). Explicitly the

ansatz reads: 
φ(t,x)
ψ(t,x)
Aµ(t,x)
Ej(t,x)

 =


φSC,e (λ(t)) + Exp[iΘC ]v
ψSC,e (λ(t)) + Exp[iΘC ]w
(ASC,e)µ (λ(t)) + aδ,χ

µ + Ãµ

(ESC,e)j (λ(t)) +
(
Eδ

ext

)
j
+ Ẽj

 . (62)

Notice that we have included here an ansatz for the temporal part of the potential A0. Since we have imposed
the Coulomb gauge throughout, it follows that div Ã = 0. The choice of the gauge transformation χ is:

χ(t,x) = −(x− ξ) · aδ(t, ξ)−
∫ t

0

aδ
0(s, ξ(s)) +

.

ξ(s) · aδ(s, ξ)ds. (63)

This is chosen so that the gauge transformed external potentials vanish along the world line of the soliton:

aδ,χ
µ = aδ

µ + ∂µχ,

aδ,χ
µ

(
t, ξ(t)

)
= 0.

(64)

These imply

aδ,χ
0 (t, x) = aδ

0(t, x)− aδ
0(t, ξ(t))− (x− ξ(t)) · ȧδ(t, ξ(t)),

aδ,χ(t, x) = aδ(t, x)− aδ(t, ξ(t)),
(65)

exhibiting the claimed vanishing of aδ,χ
µ along the soliton’s world line. This allows certain quantities to be

proved to be bounded in the course of the proof. Notice that χ is linear (and so harmonic) in x, and so
preserves the Coulomb condition (see remark 2).

There is clearly a redundancy in our ansatz, in that λ(t) is so far completely undetermined. The appro-
priate choice of λ(t) is dictated by the requirement that the solution be close to a soliton determined by the
parameters λ(t), i.e. by the requirement that we have good bounds for field perturbation (v, w, Ã, Ẽ). This
is carried out in §3, with the main results summarized next in §2.2. First we write explicitly the equations
for the (v, w, Ã, Ẽ), and give some bounds for the inhomogeneous terms in these equations.

2.1.2 Equations for the perturbations of the fields

∂tv + i (ωγ + h) v = w + 1, (66)

∂tw + i(ωγ + h)w = −Mλv + 2 +N , (67)

∂tÃ = Ẽ + 3, (68)
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∂tẼ = ∆Ã + 4, (69)

where the inhomogeneous terms h, 1, . . . , 4 and N are defined in §2.1.3, and Mλ is the operator

Mλv = (−4x +m2 + γ2ω2|u|2)v + 2iωγu · ∇xv − β(fω)v − fωβ
′(fω)<v. (70)

The last two terms have been chosen to depend on the e = 0 profile function fω, rather than fω,e, so that
it is possible to make direct use of the stability assumption (POS) in §1.3.4. (This choice is reflected in the
expression for the inhomogeneous term N in (76) and its corresponding estimate in (95)).

In addition to these evolution equations, the fields are constrained to satisfy the Gauss law (27), which
takes the form:

div Ẽ = −4Ã0 = e 〈iExp[−iΘC ]φSC,e, w〉+ e 〈iv, Exp[−iΘC ]ψSC,e + w〉 . (71)

Under finite energy assumptions this equation has a unique solution with Ã0 ∈ Ḣ1; this defines uniquely Ã0

as a nonlocal function of v, w, λ at each time. Estimates for Ã0 are given in lemma 39.

2.1.3 Inhomogeneous terms in the field perturbation equations (66)-(69)

The following quantity appears in both (66) and (67):

h = Θ̇c − ωγ − e(ASC,e)0 − eaδ,χ
0 − eÃ0. (72)

The inhomogeneous term in (66) is 1 = I1 + II
1 + 01, where

I1 = −(λ̇− V0(λ)) · e−iΘc∂λφSC,e (73)

II
1 = ieaδ,χ

0 fω,e (74)

01 = ieÃ0fω,e. (75)

The inhomogeneous terms in (67) are

N (fω,e, fω, v) = β(|fω,e + v|)(fω,e + v)− β(|fω,e|)fω,e (76)
−β(|fω|)v − fωβ

′(|fω|)<v,

and 2 = I2 + II
2 + III

2 + IV
2 + 02 where

I2 = −(λ̇− V0(λ)) · e−iΘc∂λψSC,e

II
2 = eRfω,e + ieaδ,χ

0 e−iΘcψSC,e, (77)
III
2 = eRv + Sv (78)
IV
2 = e−iΘc

[
∆A(eiΘcv) + (∆A −∆ASC,e

)φSC,e

]
− II

2 − III
2 (79)

02 = ieÃ0e
−iΘcψSC,e. (80)

Here, the operators R,S are given by

Rv = 2i
(
aδ,χ

)
.(iγ (ω − eαω,e)u−∇)v − e

∣∣aδ,χ
∣∣2 v, (81)

Sv = 2ieαω,eγu · ∇v + ieγ (u · ∇αω,e) v + 2eγ2|u|2ωαω,ev − e2 (γαω,e|u|)2 v.

(In verifying these formulas, it is helpful to note that by the exact solutions in §1.3.4

e−iΘc(∇− ieASC,e − ieaδ,χ)eiΘcv = ∇v − i(γ(ω − eαω,e)u + eaδ,χ)v,

and a similar formula for the second derivatives.)
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The inhomogeneous term in (68) is 3 = I3 + 03 where

I3 = −(λ̇− V0(λ)) · ∂λASC,e,

03 = ∇Ã0.
(82)

and in (69) we have 4 = I4 + II
4 + III

4 + IV
4 + 04, with 04 = 0 and

I4 = −(λ̇− V0(λ)) · ∂λESC,e, (83)
II
4 = −e2|fω,e|2aδ,χ (84)

III
4 = e〈ieiΘcv,∇A(φSC,e + eiΘcv)〉 − e2|fω,e|2Ã, (85)
IV
4 = e〈iφSC,e,∇A(eiΘcv)〉. (86)

To clarify the structure of these terms it is helpful to insert the ansatz (62) into the Hamiltonian (26)
and write H −

∫
V =

∑4
n=0 Ĥ

(n), where Ĥ(n) has homogeneity n in (v, Ã). (The terms of degree larger than
two arise solely from 1

2

∫
|∇Aφ|2.) Then the pieces of 2, (resp. 4), which are of degree n ∈ {1, 2, 3} in (v, Ã)

arise, respectively, as the Frechet derivatives −DvĤ
(n+1), (resp. −DÃĤ

(n+1)). The nonlinear potential V
only appears through Mλv and N in (67). With this understood we now introduce notation for the various
terms arising in (67) and (69), organized according to their homogeneity. Let Ĥ =

∑4
n=2 Ĥ

(n), then in (67)
the corresponding terms are

−DvĤ = −M0
λv + III

2 + IV
2 ,

where
M0

λv = (−4x + γ2ω2|u|2)v + 2iωγu · ∇xv = −e−iΘ4
(
eiΘv

)
(87)

with Θ the soliton phase factor in (43). Notice that the operator M0
λ consists of those terms in (70), which

do not arise from the V term in the energy, because we have so far excluded this term in our expansion
(which is of H −

∫
V). However, it is convenient to put back in the quadratic parts of the Taylor expansion

of V, but expanded around fω (the e = 0 soliton), so as to obtain the Mλ operator which appears in (67).
Thus we let

H̃ = Ĥ +
1
2
D2V(fω)(v, v) = Ĥ +

1
2

[
m2|v|2 − β(fω)|v|2 − fωβ

′(fω)(<v)2
]
,

so that, using the same notation for the homogeneous components of H̃ as for Ĥ, we have H̃(n) = Ĥ(n) for
n > 2 and H̃(2) − Ĥ(2) = 1

2D
V(fω)(v, v). In (69) the corresponding terms are

−DÃH̃ = ∆Ã + III
4 + IV

4 .

To write these terms explicitly we introduce a multilinear notation as follows.

(−DvH̃,−DÃH̃) = B(1)(v, Ã) + B(2)(v, Ã) + B(3)(v, Ã), (88)

where B(n)(v, Ã) is a homogeneous degree n function of (v, Ã), as indicated by the superscript. We will
define B(1) : H1(R3; C) ⊕ Ḣ1(R3; R3) 7→ H−1(R3; C) ⊕ Ḣ−1(R3; R3), where by H−1 (resp. Ḣ−1) we mean
the dual space of H1 (resp. Ḣ1.) Explicitly:

B(1)(v, Ã) = (B11v + B12Ã,B21v + B22Ã), (89)

where
B11v = −Mλv + eRv + Sv, (90)

and the operators R and S are as just defined. Next

B12Ã = −2efω,e

(
γ (ω − eαω,e)u + eaδ,χ

)
· Ã− 2ieÃ · ∇fω,e,

B21 v = −2efω,e

(
γ (ω − eαω,e)u + eaδ,χ

)
<v + 〈iev,∇fω,e〉+ 〈iefω,e,∇v〉,
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and finally, B22Ã = 4Ã− e2fω,eÃ. Since div Ã = 0 integration by parts yields 〈Ã,B21 v〉L2 = 〈v,B12 Ã〉L2 ,
and

H̃(2) = −1
2

〈
(v, Ã),B(1)(v, Ã)

〉
L2
, (91)

=
1
2

∫ [
|∇Ã|2 + e2|fω,eÃ|2 + |∇v − i(γ (ω − eαω,e)u + eaδ,χ)v|2

+
1
2
(
m2|v|2 − β(fω)|v|2 − fωβ

′(fω)(<v)2
)

− 2〈ieÃfω,e,∇v − i(γ (ω − eαω,e)u + eaδ,χ)v〉

− 2〈ieÃv,∇fω,e − i(γ (ω − eαω,e)u + eaδ,χ)fω,e〉
]
dx.

Next, the quadratic terms in the equations can be expressed in terms of a rank three symmetric tensor

B(2) :
(
H1

(
R3; C

)
⊕ Ḣ1

(
R3; R3

))2

7→ H−1
(
R3; C

)
⊕ Ḣ−1

(
R3; R3

)
which is given explicitly by

B(2)(v, Ã) =
(

B111[v, v] + B112[v, Ã] + B121[Ã, v] + B122[Ã, Ã],
B211[v, v] + B212[v, Ã] + B221[Ã, v] + B222[Ã, Ã]

)
,

where B111 = B222 = 0, and

B112[v, Ã] = −ev
(
γ (ω − eαω,e)u + e(aδ,χ)

)
· Ã− ie∇v · Ã,

B121[Ã, v] = −ev
(
γ (ω − eαω,e)u + e(aδ,χ)

)
· Ã− ie∇v · Ã,

B122[Ã, Ã] = −e2fω,e|Ã|2,

and
B211[v, v] = −e

(
γ (ω − eαω,e)u + e(aδ,χ)

)
|v|2 + 〈iev,∇v〉 ,

along with
B221[Ã, v] = B212[v, Ã] = −e2 〈fω,e, v〉 Ã.

These terms are obtained by differentiation of the cubic part of the expanded Hamiltonian, which is

H̃(3) = −1
2

〈
(v, Ã),B(2)(v, Ã)

〉
L2

= 〈∇v − iγu(ω − eαω,e)v − ieaδ,χv,−ieÃv〉L2 + e2〈Ãfω,e, Ãv〉L2 .

Finally the cubic terms in the equations arise by differentiation of the quartic part of the Hamiltonian

H̃(4) = −1
2

〈
(v, Ã),B(3)(v, Ã)

〉
L2

=
e2

2

∫
|Ã|2|v|2,

and are determined by a rank four tensor,

B(3) :
(
H1

(
R3; C

)
⊕ Ḣ1

(
R3; R3

))3

7→ H−1
(
R3; C

)
⊕ Ḣ−1

(
R3; R3

)
which, using an identical notation to the rank three case, has as its only non-zero entries

B1122 =
−e2

3
(92)

and the other entries obtained by permuting the indices.
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2.1.4 Some bounds for the inhomogeneous terms

We record here some simple bounds for the quantities defined above:

• ‖II
1 ‖Lp + ‖II

2 ‖Lp = O(e) and ‖II
4 ‖Lp = O(e2) for every p ∈ [1,∞] by (187),(188),

• ‖hfω,e‖Lp = O(e + |λ̇ − V0| + e|Ã0|Lq ), for any q > 3, which can be read off from (72), using results
from appendices A.1.2 A.2.2 and A.2.1, and the assumptions on the applied fields. Ã0 can be bounded
in Lq, q > 3 by appendix A.2.2.

• It is possible to write h = h1−eÃ0 with ‖∇h1‖L∞ = O(e+|λ̇−V0|) and∇Ã0 bounded in Lp, p ∈ (3/2, 3],
by appendix A.2.2.

Finally, consider N : by lemma 35 we can write

N (fω,e, fω, v) = β(|fω,e + v|)(fω,e + v)− β(|fω,e|)fω,e

−β(|fω,e|)v − fω,eβ
′(|fω,e|)<v +O(e2|v|)

= N (fω,e, fω,e, v) +O(e2|v|) (93)

Using the condition (12), or more generally (13), and the fundamental theorem of calculus, we can estimate

|N (f, f, v)| ≤ c
(
1 + |f |3

) (
|v|2 + |v|5

)
, (94)

for any f . Therefore, choosing f = fω,e, which is bounded, and using (93) we have

|N (fω,e, fω, v)| ≤ c1
(
|v|2 + |v|5

)
+ c2e

2|v|. (95)

2.2 Results from modulation theory

The assumptions on the nonlinearity under which we are working ensure that the Cauchy problem for (53)
is locally well-posed in the sense of (WP1) and (WP2), see §1.2.1. Since so far χ is unknown (since λ(t)
and hence ξ(t) are not yet determined) we cannot solve directly for Ψ = (φ, ψ,Aj ,Ej) in the background
potential aδ,χ

µ . Instead we exploit gauge invariance and solve for

Ψ̂ =
(
φ̂, ψ̂, Âj ,Ej

)
≡

(
e−ieχφ, e−ieχψ,Aj − ∂jχ,Ej

)
= e−ieχ ·Ψ (96)

in the potential aδ
µ, which is known. (Since χ(t,x) is harmonic in x this gauge transformation preserves

both the equations (53) and the Coulomb gauge condition (see remark 2)). By proposition 1 on local
well-posedness, there exists a time Tloc > 0 and unique solution to (28)) with(

Ψ̂−Ψδ
ext

)
∈ C([0, Tloc];H), (97)

with initial data
Ψ̂(0) =

(
e−ieχ0φ(0), e−ieχ0ψ(0),Aj(0)− ∂jχ0,Ej(0)

)
. (98)

Once λ(t) = (ω(t), θ(t), ξ(t),u(t)), and hence χ(t), is determined, then Ψ(t) is obtained from Ψ̂(t) by the
above relation. As remarked previously, by proposition 1 these solutions can be approximated in energy
norm by smooth solutions evolving in any of the spaces Hs of (9) (after subtracting off the background
field). Thus, although the statement and proof of theorem 10 involve only the energy norm, it is permissible
to assume smoothness of the solutions throughout the proof.

We now state a theorem which asserts that it is possible to choose the soliton parameters λ(t) in such
a way that the quantity W defined in (103) is equivalent to the energy norm. This is achieved by choosing
λ(t) in such a way that the pair (v, w) satisfies some conditions which are equivalent to those in (49) (after
adjusting the phase).
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Theorem 14 (a) Let Ψ̂ be a solution to the Cauchy problem for (53) satisfying (97) with initial data
(98) with Ψ(0) as described in theorem 10. Then, for sufficiently small e, there exists T1 > 0 and λ ∈
C1([0, T1]; Õstab) with the following properties. On the interval [0, T1] define Ψ(t) = (φ(t), ψ(t),Aj(t),Ej(t))
by (63) and (96). Then it is possible to write Ψ in the form (62) where v, w are constrained to satisfy

Ω0

(
(v, w), ∂̃λ(φS,0, ψS,0)

)
= 0, (99)

where we define
∂̃λφS,0 = Exp[−i (Θ)]∂λφS,0, (100)

and likewise for ∂̃λψS,0. Furthermore, the function t 7→ λ(t) solves a system of differential equations (116).
The condition (99) is equivalent to requiring

(
φ− φSC,e, ψ − ψSC,e) ∈ Nλ.

(b) If e and ‖(v, w, Ã, Ẽ)‖H are sufficiently small, then

|λ̇− V0(λ)| = O
(
e+ ‖(v, w, Ã, Ẽ)‖2H

)
, (101)

so that, in particular, if ‖(v, w, Ã, Ẽ)‖2H = O(e) then

|λ̇− V0(λ)| = O (e) . (102)

Proof This is a consequence of the lemmas in §3. �

2.3 The main growth estimate

As discussed in §1.3.4, the natural quantity for stability and perturbation analyses of the solitons (51) is the
Hessian of the augmented Hamiltonian. Here we modify this quantity to take account of the phase shifts in
(62), and discard terms which are formally O(e), leading us to the introduction of the following quadratic
form:

W (v, w, Ã, Ẽ;λ) = K + Ξ, (103)

where
K(Ã, Ẽ;λ) =

1
2

(
‖Ẽ‖2L2 + ‖∇ × Ã‖2L2 + 2〈Ẽ, (u · ∇) Ã〉L2

)
, (104)

and
Ξ(v, w;λ) =

1
2

(
‖w − iγωv‖2L2 +

〈
v,Mλ − γ2ω2)v

〉
L2 + 2 〈w,u · ∇v〉L2

)
, (105)

where Mλ is as defined in (70).

Theorem 15 (Equivalence of W and energy norm) Suppose that the nonlinearity is such that (H1)-
(H3) and (SOL), (KER) and (POS) hold. Suppose further that λ lies in a compact subset, K, of Õstab.
Then the quadratic form W just defined, is equivalent uniformly on K to ‖(v, w, Ã, Ẽ)‖2H provided that
(v, w) satisfy the constraints (99).

Proof This is essentially theorem 2.7 in [24]. Since there is no coupling in W between (v, w) and (Ã, Ẽ), it is
only necessary to show separately the equivalence of Ξ and K to the corresponding parts of ‖(v, w, Ã, Ẽ)‖2H.
For K this can be achieved by completing the square (since ‖∇×Ã‖L2 = ‖Ã‖Ḣ1 by the Coulomb condition),
while for Ξ it is an immediate consequence of (POS). �

Theorem 16 (Main growth estimate) Assume given a solution to the Cauchy problem for (28) for which
theorem 14 applies on an interval [0, T2

|e| ] for some fixed positive T2. Assume that λ(t) ∈ K, a compact subset

of Õstab, so that by theorem 15 there exists c1 > 0 such that,

1
c1
W ≤ ‖(v, w, Ã, Ẽ)‖2H ≤ c1W, (106)
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on [0, T2
|e| ]. Assume further that there exist c2 > 0, c3 > 0 such that that δ2 ≤ c2|e| and and W ≤ c3|e|, and

that e = o(δ). It follows that, for sufficiently small e, there exists c4 > 0 such that, on [0, T2
|e| ]

W (t) ≤ c4(W (0) + e2 + δ2) exp(c4|e|t). (107)

Proof See §5. �

2.4 Completion of the proof of theorem 10

2.4.1 Local solution verifying constraints

For simplicity of exposition we first prove part (i) of the theorem, i.e. we consider initial data Ψ(0) consisting
of an exact soliton as in (51) determined by parameters λ(0) = (θ(0), ω(0),u(0), ξ(0)) ∈ Õstab, with ω(0)
satisfying the stability condition. On account of the applied fields there will be a non-trivial evolution starting
from this initial value. Applying the local existence theorem 1, and theorem 14 as in §2.2, we deduce the
existence a positive time T1 > 0 such that on the interval [0, T1] there is a solution to the Cauchy problem
which can be written as in (62) where v(0) = 0 = w(0), and

(
v(t), w(t)

)
satisfy the constraints (109) (or

(99)), and t 7→ λ(t) solves (116). We may assume that λ(t) ∈ K, a fixed compact subset of Õstab, so that
(106) holds.

2.4.2 Growth of the energy norm

Since we have a local solution satisfying the constraints (99) we can assume that the conclusions of theorem
15 hold. Furthermore, by continuity we may assume (making T1 smaller if need be) that on this interval
W (t) ≤ c3|e|, and (106) holds. Now apply the growth estimate in theorem 16:

W (t) ≤ c4(W (0) + e2 + δ2) exp(c4|e|t),

to deduce by a standard continuation argument, since W (0) = 0 and δ2 = o(e), that there exists an interval
[0, T0

|e| ], with T0 > 0 fixed (independent of e, δ), on which

W (t) ≤ c5(e2 + δ2) = o(e)

which completes the proof of theorem 10 for the case of exact soliton initial data - part (i) of theorem 10.

2.4.3 General initial data

Part (ii) of theorem 10 says that the behaviour described in part (i) also holds for nearby initial data: for a
precise formulation it is necessary to consider the initial data for the gauge transform Ψ̂:

Theorem 17 Under the same assumptions as theorem 10, let Ψ̂ be a solution to the Cauchy problem for (53)
with (Ψ̂ − Ψδ

ext) ∈ C(R;H) and initial data Ψ̂(0) = (φ̂(0), ψ̂(0), Âj(0), Êj(0)) having the following property.
There exists λ̃ = (θ̃, ω̃, ũ, ξ̃) ∈ Õstab such that if we define χ̃(x) = −(x− ξ̃) · aδ(0, ξ̃), then

κ0 ≡
∥∥∥e−ieeχ · Ψ̂(0)−Ψδ,eχ

ext(0)−ΨSC,e(λ̃)
∥∥∥
H

= o(e
1
2 ). (108)

It follows that, if e is sufficiently small there exists T0 > 0, χ(t,x) and λ(t) ∈ C1([0, T0
|e| ], Õstab), all as in

theorem 10, such that if Ψ(t) is defined as in (96) it satisfies all the conclusions of part (i) of theorem 10.

Proof It is only necessary to argue, as in the proof of lemma 18, that under the stated conditions there
exists λ(0) ∈ Õstab with |λ(0) − λ̃| = o(e

1
2 ) such that Ψ(0) = (φ(0), ψ(0),Aj(0),Ej(0)) ≡ e−ieχ0 · Ψ̂(0) can

be written as
Ψ(0) =

(
φSC,e(λ(0)) + φ̃(0), ψSC,e(λ(0)) + ψ̃(0),Ai(0),Ei(0)

)
,
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with (
φ̃(0), ψ̃(0)

)
∈ Nλ(0)

where Nλ(0) is the symplectic normal subspace, of codimension eight, defined in (49). This is a simple
consequence of the implicit function theorem, as is lemma 18. There is only a slight modification required
in that φ(0) = e−ieχ0 φ̂(0) depends on λ(0), and so does ψ(0), unlike the case considered in that lemma.
However for small e this has no effect on the non-degeneracy condition required to apply the implicit function
theorem. (Also the fact that χ0 grows linearly in x can easily be handled using the exponential decay in x
of φSC,e, ψSC,e and their derivatives.)

Now using |λ(0)− λ̃| = o(e
1
2 ) we can deduce from (108) that W (0) = o(e). Indeed for the electromagnetic

components this is immediate since the gauge transformation leaves the electric field unchanged, and only
shifts Aj by ∂jχ0, and this shift is put onto the background potential (and so does not contribute to W (0)
since Ã is unchanged). The change of the electromagnetic components of the soliton induced by the change
of λ̃ to λ(0) are easily estimated in energy norm as O(|λ̃ − λ(0)|) by lemmas 33 and 34. For the other
components we just use phase invariance to estimate, e.g.

‖e−ieχ0 φ̂(0)− φSC,e(λ(0))‖L2 = ‖φ̂(0)− eieχ0φSC,e(λ(0))‖L2

≤ ‖φ̂(0)− eieeχφSC,e(λ̃)‖L2 + ‖eieeχφSC,e(λ̃)− eieχ0φSC,e(λ(0))‖L2

≤ κ0 +O(|λ(0)− λ̃|) = o(e
1
2 ).

From this point on, the argument can be completed as before: since
(
φ̃(0), ψ̃(0)

)
∈ Nλ(0) is equivalent

to the conditions (99), theorems 14 and 16 can be applied to produce a local solution satisfying the growth
estimate in §2.4.2.

3 Modulation theory

In this section we state and prove some theorems which imply theorem 14, which is needed in the proof
of the main results (theorems 10 and 12). The proofs are a direct application of the developments in [24],
and so the presentation will be brief and reference made to [24, 16] for some of the calculations. The
crucial point is that the conditions (99) are equivalent to a locally well-posed set of ordinary differential
equations. Recall from (47) that, for e = 0, the soliton solutions are of the form

(
φS,0, ψS,0)(x;λ

)
≡

eiΘ
(
fω(Z), (iγωfω(Z) − γu · ∇Zfω(Z))

)
with λ(t) an integral curve of the vector field V0. Explicitly, the

conditions (99) read 〈
v, ∂̃λψS,0(λ)

〉
L2
−

〈
w, ∂̃λA

φS,0(λ)
〉

L2
= 0 (109)

for A = −1, 0, ..., 6.
In the next two subsections we state two lemmas which prove that these constraints can be enforced

thoroughout a time interval:

• The first shows that by an appropriate choice of λ(0), they can be assumed to hold in an open
neighbourhood of the set of stable solitons in the phase space H. This shows that the class of initial
data considered in part (ii) of theorem 10 forms an open set containing the stable solitons.

• The second shows that an appropriate choice of ∂tλ implies that they are preserved for later times.

3.1 Preparation of the initial data

Lemma 18 Suppose that there exists λ̃ = (θ̃, ω̃, ũ, ξ̃) ∈ Õstab (so that (39) holds with ω = ω̃). Then, there
exists e(λ̃), κ(λ̃, e), such that, if |e| < e(λ̃) and

κ̃1 = ‖φ(0)− φSC,e(λ̃)‖H1 + ‖ψ(0)− ψSC,e(λ̃)‖L2 < κ, (110)
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there exists λ(0) ∈ Õstab depending differentiably upon (φ(0), ψ(0)) such that
(v(0), w(0)), determined by the first two equations of (62) at t = 0, satisfy the constraints (109) with
λ = λ(0). Furthermore there exists c1 > 0 such that

|λ(0)− λ̃|+ ‖φ(0)− φSC,e(λ(0))‖H1 + ‖ψ(0)− ψSC,e(λ(0))‖L2 < c1κ̃1. (111)

Proof The condition in (39) allows this to be deduced from the implicit function theorem, see [24, §2.3] or
[16] for details. �

3.2 Modulation equations and constraints

Lemma 19 Let λ(0) ∈ Õstab and (v(0), w(0)) be as given in the conclusions of lemma 18. Let Ψ̂ be a
solution to the Cauchy problem for (53) on the time interval [0, Tloc] with regularity as in (97), and such that

sup
[0,Tloc]

∥∥∥Ψ̂(t)−Ψδ
ext(t)

∥∥∥
H
< N0. (112)

Fix a compact subset K of the stable parameter set Õstab, which is the closure of an open neighbourhood
of λ(0). Then, there exists κ2 > 0 and T1 > 0 such that, if ‖(v(0), w(0))‖H1⊕L2 < κ2, there exists
λ(t)∈C1([0, T1];K) such that the constraints (109) are satisfied for 0 ≤ t ≤ T1, where v, w are as in (62)
with Ψ obtained from Ψ̂ via (63) and (96). The function t 7→ λ(t) is a solution of a system of ordinary
differential equations (116).

Proof The proof of this is essentially the same as [24, § 2.5]. For clarity it is divided into three stages.

3.2.1 Beginning of proof of lemma 19

Equations (66) and (67) define a linear operator M̃λ in an obvious way:

M̃λ(v, w) =
(
−∂tv − iωγv + w,−∂tw − iωγw −Mλv

)
. (113)

and let M̃∗
λ be the formal L2(dxdt) adjoint of this operator. Then, by [24, § 2.5], there exists an 8×8 matrix

DAB such that
M̃∗

λ(−∂̃λA
ψS,0, ∂̃λA

φS,0) =
∑
B

DAB(−∂̃λB
ψS,0, ∂̃λB

φS,0) + (Ĩ1
A, Ĩ

2
A). (114)

where the inhomogeneous terms Ĩj
A are proportional to λ̇− V0(λ):

Ĩj
A = Ĩj

AB(λ̇− V0(λ))B

with Ĩj
AB smooth functions of x, which are exponentially decreasing as |x| → ∞; the precise formulae,

which are unimportant here, can be found in [24, § 2.5]. A simple integration by parts then shows that the
constraints in (109) are satisfied on an interval containing the initial time, if they hold at that initial time
and if the following is true

〈−∂̃λA
ψS,0, j1〉L2 + 〈∂̃λA

φS,0, j2 +N〉L2 (115)

+〈Ĩ1
A − ih∂̃λA

ψS,0, v〉L2 + 〈Ĩ2
A + ih∂̃λA

φS,0, w〉L2 = 0,

for all A = −1, 0, . . . 6, and at each time in the interval. A calculation as in [24], which is reviewed in the
next stage of the proof in §3.2.2, shows that these latter conditions are equivalent to the following system of
differential equations (

M(e)AB + ,AB(vג w, λ)
)(
λ̇− V0(λ)

)
B

= FA(e,Ψδ
ext,Ψ, λ), (116)

where M(e)AB is defined in (117), ABג is defined in (118), FA is given by (122) and where the indices
A,B ∈ {−1, 0, 1, ..., 6}, and we sum over the repeated index B.
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3.2.2 Explicit computation of the modulational equation (116)

We write out explicitly the various terms in the conditions (115). The first thing to note is that the overall
expression is affine in (λ̇−V0(λ)) so we divide into the inertial terms, which are proportional to this quantity
(and give rise to the left hand side of (116)), and the remaining force terms, which give rise to the right
hand side of (116). The dominant contribution to the inertial terms arises from I1, 

I
2, while that to the force

terms arises from II
1 , 

II
2 .

To describe the inertial terms we need the following matrix, which, to highest order, describes the mass
of the soliton:

MAB(e) =
〈
∂̃λA

ψS,0, e
−iΘc∂λB

φSC,e

〉
L2
−

〈
∂̃λA

φS,0, e
−iΘc∂λB

ψSC,e

〉
L2

. (117)

Then the dominant inertial term is

〈−∂̃λA
ψS,0, 

I
1〉L2 + 〈∂̃λA

φS,0, 
I
2〉L2 = MAB(e)(∂tλ− V0(λ))B .

Next, we have the following matrices, which may be thought of as corrections - owing to the presence of the
perturbations v and w - to the “inertia” matrix above :

ABג =
〈
v,

(
Ĩ1
AB − i∂λB

Θc∂̃λA
ψS,0

)〉
L2
−

〈
w,

(
Ĩ2
AB + i∂λB

ΘC ∂̃λA
φS,0

)〉
L2
. (118)

We now present the abbreviations for the force terms appearing in the modulational equation. Firstly,
we have what is effectively the Lorentz force term.

FL
A = 〈∂̃λA

ψS,0, 
II
1 〉L2 − 〈∂̃λA

φS,0, 
II
2 〉L2

=
〈
∂̃λA

ψS,0, iea
δ,χ
0 fω,e

〉
L2

−
〈
∂̃λA

φS,0, iea
δ,χ
0 (iγ(ω − eαω,e)− u · ∇) fω,e + eRfω,e

〉
L2

.

(119)

We also have a force Fn
A + Fp

A due to the nonlinear interactions, where

Fn
A = −

〈
∂̃λA

φS,0,N
〉

L2
, (120)

Fp
A =

〈
∂̃λA

ψS,0, 
0
1 + ie

(
γαω,e + aδ,χ

0 + Ã0

)
v
〉

L2
(121)

−
〈
∂̃λA

φS,0, 
III
2 + IV

2 + 02 + ie
(
γαω,e + aδ,χ

0 + Ã0

)
w

〉
L2
.

We abbreviate the total force as follows:

FA = FL
A + Fn

A + Fp
A. (122)

Bound for the inertia matrix. It follows from the definition of ABג that

ABג| | = O
(
‖(v, w, Ã, Ẽ)‖H

)
. (123)

Bounds for the forces. Firstly, the main force term can be bounded as

FL
A = O(e), (124)

because of (187), (188) and (154). For some values of A there are better bounds:

FL
0 = O(e3). (125)

26



Referring to (119), and using lemmas A.1.3 and 34, we deduce that

FL
0 = O(e3)− 〈ifω, eRfω〉L2

+〈∂̃θψS,0, iea
δ,χ
0 fω〉L2 − 〈∂̃θφS,0, iea

δ,χ
0 (iωγfω − u · ∇fω)〉L2 .

By the reality of fω and the Coulomb condition the last three terms vanish, proving the bound (125). Also,
for A = 3 + j we have an improvement:

FL
3+j = O(e2 + eδ). (126)

To establish this, we first argue as above that

FL
3+j = O(e3)− 〈∂̃ujφS,0, eRfω〉L2

+〈∂̃ujψS,0, iea
δ,χ
0 fω〉L2 − 〈∂̃ujφS,0, iea

δ,χ
0 (iωγfω − u · ∇fω)〉L2 .

Now referring to the formulae in A.1.4 we see that ∂̃ujφS,0 = even+ iodd, while ∂̃ujψS,0 = odd+ ieven where
even (resp. odd) means a real valued function which is even (resp. odd ) as a function of Z. The bound
asserted then follows by inspection and use of lemma 37.

Next, (95) implies, by (150)), (151) , (154) and by the Hölder and Sobolev inequalities, that

|Fn
A| = O

(
e2‖(v, w, Ã, Ẽ)‖H

)
+O

(
‖(v, w, Ã, Ẽ)‖2H + ‖(v, w, Ã, Ẽ)‖5H

)
.

Finally
|Fp

A| = O
(
e‖(v, w, Ã, Ẽ)‖H + e‖(v, w, Ã, Ẽ)‖2H + e2‖(v, w, Ã, Ẽ)‖3H

)
. (127)

This is obtained directly from the formula above by means of the Sobolev and Hölder inequalities and using
the bounds in §A.2.1 and §A.2.2.

3.2.3 Completion of proof of lemma 19

The matrix M(e)AB is invertible for small e on account of the stability condition (39) and lemma (35). Also
the matrix ABג is small when (v, w) is small, so that in this case the system of evolution equations (116) can
be manipulated - as in the proof of theorem 2.6 in [24] - to form a system of equations of the form

λ̇ = V0(λ) + V1(e,Ψδ
ext, Ψ̂, λ).

This is almost a locally well-posed system of ordinary differential equations - there is a slight modification
of the standard proof from [24] required: Ψ̂ is known to exist already, but (v, w), determined as in the
statement, depend on λ(t) through the gauge transformation (63), which is nonlocal in the ξ component of
λ, and so V1 is similarly nonlocal. To allow for this it is necessary to augment λ by the nonlocal quantity
appearing in (63), which is in fact χ(t, ξ). Call Λ = (λ, χ(t, ξ(t))), then there is a locally well-posed system
of ordinary differential equations of the form Λ̇ = W (Λ), e,Ψδ

ext, Ψ̂), allowing the proof of lemma 19 to be
completed in the same way in [24]. �

3.3 A bound for λ̇

Lemma 20 In the situation of the previous lemma,

|λ̇− V0(λ)| = O
(
e+ ‖(v, w, Ã, Ẽ)‖2H + e‖(v, w, Ã, Ẽ)‖H

)
in the limit of e going to zero.

Proof The function λ(t) is obtained as a solution of the modulation equations (116). Referring to the
bounds for the inertial matrix and forces in §3.2.2, it is immediate that for e, ‖(v, w, Ã, Ẽ)‖H sufficiently
small the bound claimed holds. �
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4 The Lorentz force law: proof of theorem 12

The starting point is (116). Define

MAB(0) =
〈
∂̃λA

ψS,0, ∂̃λB
φS,0

〉
L2
−

〈
∂̃λA

φS,0, ∂̃λB
ψS,0

〉
L2

, (128)

and observe that by lemmas 35 and 34 MAB(e) − MAB(0) = O(e2). Using this, and referring to the
decomposition of FA in equation (122), and the associated bounds following it, we infer that(

M(0)AB +O
(
e2 + W̃

1
2
))(

λ̇− V0

)
B

= FL
A +O

(
eW̃

1
2 + W̃

)
, (129)

where FL
A is as in (119). Since the right hand side is known, up to the stated error term, it is now just

a matter of calculation to obtain explicit forms for the left hand side of these equations, and thence to
deduce theorem 12. The calculation is done in [24, §A.7], using a set of functions defined in §A.1.4 which
are convenient linear combinations of the ∂̃λA

(φS,0, ψS,0). We now record the conclusions.
Using (102), the A = 0 component of (129) reads:

∂ω(ω ‖fω‖2L2)
.
ω = FL

0 +O(e2) +O(W̃ ),

with a formula for FL
0 given in (119) which indicates that FL

0 = O(e3) (see §3.2.2), and all together:

∂ω(ω ‖fω‖2L2)
.
ω = O(e2) +O(W̃ ). (130)

Similarly, the bound (126) for FL
3+j implies the following equation for the centre of the soliton:

ξ̇ = u +O(e2) +O(W̃ ) +O(eδ). (131)

Next, using (130) and (102), the A = i ∈ {1, 2, 3} component of (129) reads

∂t

[(1
3
‖∇fω‖2L2 + ω2 ‖fω‖2L2

)
γui

]
= FL

i +O(W̃ ) +O(e2), (132)

again with FL
i given in (119) as:

FL
i =

〈
∂̃ξi
ψS,0, iea

δ,χ
0 fω,e

〉
L2

−
〈
∂̃ξi
φS,0, iea

δ,χ
0 (iγ(ω − eαω,e)− u · ∇) fω,e + eRfω,e

〉
L2

,
(133)

where the operator R is defined in (81). Here, on the left hand side, ‖fω‖2L2 =
∫
fω(Z)2d3Z and by the

Lorentz transformation (42) d3Z = γd3x. The inner products on the right hand side are in L2(d3x). It
remains to simplify this expression for FL

i : firstly,〈
∂̃ξi
ψS,0, iea

δ,χ
0 fω,e

〉
L2
−

〈
∂̃ξi
φS,0, iea

δ,χ
0

(
iγ(ω − eαω,e)− u · ∇

)
fω,e

〉
L2

=
〈
∂̃ξi
ψS,0, iea

δ,χ
0 fω

〉
L2
−

〈
∂̃ξi
φS,0, iea

δ,χ
0 (iγω − u · ∇)fω

〉
L2

+O(e3)

by lemma 35,

=
〈
(iγω − u · ∇)fω, ie∇aδ,χ

0 fω

〉
L2

+O(e3)

by integration by parts,

= eω‖fω‖2L2

[
∇ia

δ
0(t, ξ)− ȧδ(t, ξ)− u · ∇aδ(t, ξ)

]
+O(eδ + e3),

28



by (65) and lemma 38. (Again, ‖fω‖2L2 =
∫
fω(Z)2d3Z.) But also, referring to (81),

〈
−∂̃ξjφS,0, eRfω,e

〉
L2

= γωe

∫
f2

ω(Z)∇u · aδ(t,x)dx,

= ωe‖fω‖2L2ul∇j ·aδ
l (t, ξ) +O(eδ),

again using lemma 38. Adding together these contributions, we end up with

FL = eω‖fω‖2L2

(
∇aδ

0 − (∂taδ) + u×
(
∇× aδ

))
(t, ξ) +O(e3 + eδ),

which is the required form of the Lorentz force law, as given in theorem 12, once we note that
∫
ωf2

ω =∫
(ω − eα) f2

ω,e +O(e2). �

5 Proof of the main growth estimate

In this section we are concerned with the proof of theorem 16. In order to control W it is helpful to introduce
a quantity W̃ which allows us to take advantage of certain cancellations occuring in the energy identity to
handle some of the nonlinear interaction terms which would otherwise be difficult to estimate directly. The
direct nonlinear interactions between v and Ã arise from terms in the Hamiltonian obtained by expanding the
expression 1

2

∫
|(∇−ieA)φ|2 in terms of v, Ã by means of (62). (There are also indirect interactions mediated

by Ã0 via the Gauss law, but these are easier to estimate.) In §2.1.3 this expansion of 1
2

∫
|(∇ − ieA)φ|2

is carried out explicitly, and, including also the quadratic part of the Taylor expansion of the potential V,
leads to the introduction of the quantity:

H̃(v, Ã) =
4∑

n=2

H̃(n)

= −1
2

4∑
n=2

〈
(v, Ã),B(n−1)(v, Ã)

〉
L2
,

where the superscript n (resp. n − 1) indicates the homogeneity in v, Ã of the term H̃(n) in the expanded
Hamiltonian (resp. of the term B(n−1) in the expanded evolution equations (67),(69)); see §2.1.3 for explicit
expressions and explanations. Using these definitions we have an alternative form for the expanded evolution:
equations (66),(68) can be written in the form

∂t

(
v, Ã

)
=

(
w, Ẽ

)
−

(
i(γω + h)v, 0

)
−

(
∂tλ− V0(λ)

)
·
(
∂̃λφSC,e, ∂λASC,e

)
+

(
01, 

0
3

)
+

(
Φ11, 0

)
, (134)

with Φ11 = II
1 . The remaining two equations (67),(69) can be written:

∂t

(
w, Ẽ

)
=

(
−DvH̃,−DÃH̃

)
−

(
i(γω + h)w, 0

)
−

(
∂tλ− V0(λ)

)
·
(
∂̃λψSC,e, ∂λESC,e

)
+

(
02, 0

)
+

(
Φ21,Φ22

)
, (135)

where h is defined in (72), and Φ21 = II
2 +N , and Φ22 = II

4 are given in terms of the inhomogeneous terms
defined in §2.1.3; notice that the inhomogeneous terms III

2 , IV
2 , III

4 , IV
4 are included in the first term on

the right hand side of (135).
To study these equations it will turn out that the following quantity is useful:

W̃ =
1
2

∥∥w − iγωv
∥∥2

L2 −
1
2
γ2ω2

∥∥v∥∥2

L2 +
1
2

∥∥Ẽ∥∥2

L2 +
〈(
w, Ẽ

)
,u · ∇

(
v, Ã

)〉
L2

+ H̃(v, Ã).

We can think of W̃ as follows: it is formed by adding to the Hessian of the augmented Hamiltonian W
those terms arising in the expanded Hamiltonian (when we input the perturbed solution ansatz (62)) which

29



describe the interactions of the fields (v, Ã) with themselves and with the external electromagnetic field. An
important reason for introducing W̃ is that the following two lemmas imply a long time bound for W , and
hence a stability estimate in energy norm.

Lemma 21 In the situation of theorem 15, so that

• λ lies in a compact subset, K ⊂ Õstab,

• (v, w) satisfy the constraints (99), and

• W is equivalent (uniformly on K) to ‖(v, w, Ã, Ẽ)‖2H,

assume that W < 1, and that e = o(1) and e = o(δ). Then, there exists a constant c(K) > 0 such that, for
all λ ∈ K,

cW ≤ W̃ ≤ 1
c
W. (136)

Proof Referring to the formulae in §2.1.3 for the H̃(n) which occur in the definition of H̃, it is a straghtfor-
ward consequence of the Hölder inequality that

W = W̃ +O(
e

δ
W ) +O(

e2

δ2
W ) +O(

e2

δ
W

3
2 ) +O(e2W ) +O(eW

3
2 ) +O(e2W 2),

lemma 27 and the assumptions on the external field in §1.2. The lemma follows immediately. �

Notation 22 In the following we write, f = d
dt (O(A) + o(B)) if there exist C1 functions g, h such that

f = d
dt (g + h) and g = O(A) and h = o(B).

Lemma 23 Assume the hypotheses of theorem 16. It follows that,∣∣∣∣ ddtW̃
∣∣∣∣ =

d

dt

(
O

(
eW̃

1
2

)
+ o(W̃ )

)
+O

(
e4 + (e+

e2

δ
)W̃ + (e2 + eδ)W̃

1
2

)
, (137)

in the limit of e and W̃ going to zero.

Proof See §5.2. �

5.1 Proof of theorem 16, assuming lemma 23

Proof Integrating up equation (137), and using the Cauchy-Schwarz inequality, 2eδW̃ 1/2 ≤ +eδ2 + eW̃ , we
infer the existence of a constant c > 0 such that, for t ∈ [0, T2/e],∣∣∣W̃ (t)− W̃ (0)

∣∣∣ ≤ c

(
e2 + δ2 + |e|

∫ t

0

W̃ (s)ds
)

, (138)

as long as e = O(δ). By Gronwall’s inequality and lemma 23, for |e| sufficiently small there exists a constant
c > 0 such that, on [0, T2/e],

W̃ (t) ≤ c
(
W̃ (0) + e2 + δ2

)
exp[c|e|t]. (139)

By lemma 21, the result is proved. �
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5.2 Proof of lemma 23

5.2.1 Beginning of proof of lemma 23

By the assumptions of theorem 16 we have a solution of equations (134),(135) satisfying the conclusions of
theorems 14 and 15, so that the constraints (109) hold and W = O(e). Then, by lemma 21 and theorem 15,
there exists c > 0 such that

1
c
W̃ ≤ ‖(v, w, Ã, Ẽ)‖2H ≤ cW̃ .

Also since W = O(e) the bound (102) holds, and will be used in the course of the proof. The estimate for
W̃ will be obtained as a consequence of the energy identity for (134),(135), so the next stage is to write that
identity down and separate the terms out in a way that allows them to be usefully estimated.

5.2.2 The energy identity for (66)-(69)

d

dt
W̃ =

〈
∂t

(
w, Ẽ

)
,
(
w, Ẽ

)
+ u · ∇

(
v, Ã

)
− iγω

(
v, 0

)〉
L2

(140)

−
〈
∂t

(
v, Ã

)
,
(
−DvH̃,−DÃH̃

)
− u · ∇

(
w, Ẽ

)
+ iγω

(
w, 0

)〉
L2

+
∫
∂th̃(v, Ã)dx− ∂t

(
γω

)
〈iv, w〉L2 +

〈
∂tu · ∇

(
v, Ã

)
,
(
w, Ẽ

)〉
L2

.

Here we have introduced a notation h̃(v, Ã) for the integrand defining H̃, i.e.

H̃(v, Ã) =
∫
h̃(v, Ã) dx (141)

= −1
2

∫ 4∑
n=2

〈
(v, Ã),B(n−1)(v, Ã)

〉
dx.

Explicit expressions for the nonlinear operators B(n−1)(v, Ã) show that they depend on t, x, and the ∂th̃ in
the final line of (140) refers to differentiation with (v, Ã) held fixed; similar conventions will be understood
below.

Substituting for the time derivatives from (134) and (135), and noting the usual cancellations which occur
in the derivation of the energy identity, we obtain the following expression:

d

dt
W̃ = Q1 +Q2 +Q3 − 〈DvH̃, ihv〉L2 +

∫
(∂t + u · ∇)h̃(v, Ã) dx (142)

− 〈iv, (u · ∇h)w〉L2 − ∂t

(
γω

)
〈iv, w〉L2 +

〈
∂tu · ∇(v, Ã), (w, Ẽ)

〉
L2

,

where

Q1 =
〈(

Φ21,Φ22

)
,
(
w, Ẽ

)
+ u · ∇

(
v, Ã

)
− iγω

(
v, 0

)〉
L2

−
〈(

Φ11, 0
)
,
(
−DvH̃,−DÃH̃

)
+ u · ∇

(
w, Ẽ

)
− iγω

(
w, 0

)〉
L2
,

Q2 =
〈(
02, 0

)
,
(
w, Ẽ

)
+ u · ∇

(
v, Ã

)
− iγω

(
v, 0

)〉
L2

−
〈(
01, 

0
3

)
,
(
−DvH̃,−DÃH̃

)
− u · ∇

(
w, Ẽ

)
+ iγω

(
w, 0

)〉
L2

and Q3 = −
(
∂tλ− V0(λ)

)
· Q̃3, where

Q̃3 =
〈(
∂̃λψSC,e, ∂λESC,e

)
,
(
w, Ẽ

)
+ u · ∇

(
v, Ã

)
− iγω

(
v, 0

)〉
L2

−
〈(
∂̃λφSC,e, ∂λASC,e

)
,
(
−DvH̃,−DÃH̃

)
− u · ∇

(
w, Ẽ

)
+ iγω

(
w, 0

)〉
L2
.
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We control Q1, Q2, Q3 in the next three subsections before completing the proof of lemma 23. In the course
of estimating the various terms we will use bounds for N , h and the Φ′s (which may be read off from those
in §2.1.4), and the bounds for Ã0 in §A.2.2.

5.2.3 Estimation of Q1

The following proposition is the main result about Q1 needed for the basic growth estimate:

Proposition 24 In the situation of lemma 23

Q1 = ∂t

(
o(W̃ ) +O(eW̃

1
2 )

)
+O

(
e4 + eW̃ + e2W̃

1
2 + eδW̃

1
2

)
.

Proof Substituting from (134) and (135) we obtain:

Q1 = (∂tλ− V0) · 〈∂λASC,eΦ22〉L2 (143)

+(∂tλ− V0) ·
[〈

(∂̃λφSC,e,Φ21

〉
L2
−

〈
∂̃λψSC,e,Φ11,

〉
L2

]
+

〈
ieÃ0(iγ(ω − eαω,e)− u · ∇)fω,e,Φ11

〉
L2

−
〈
(ieÃ0fω,e,∇Ã0), (Φ21,Φ22)

〉
L2

+ 〈(∂t + u · ∇)v,Φ21〉L2 + 〈ihv,Φ21〉L2 − 〈ihw,Φ11〉L2

+
〈
(∂t + u · ∇)Ã,Φ22

〉
L2 −

〈
(∂t + u · ∇)w,Φ11

〉
L2

since Φ12 = 0.
Estimation of the first line in Q1 The first line of Q1 is easily seen to be small, since Φ22 = −e2aδ,χfω,e is
O(e2) in every Lp by the bounds in §2.1.4. Together with the fact that, ‖∂λASC,e‖Lp = O(e) for p > 3, by
(51) and the results of appendix A.1.2, this implies that 〈∂λASC,e,Φ22〉L2 = O(e3), and so by (102) the first
line is O(e4).
Estimation of the second line in Q1. The second line is smaller than appears due to a cancellation which is
a consequence of the modulation equations, (115) or (116). To see this, we refer to the decomposition of the
force on the right hand side of (116) given in §3.2.2, and using the definitions of the ΦIJ in (134),(135), we
see that 〈

∂̃λA
φSC,e,Φ21

〉
L2

−
〈
∂̃λA

ψSC,e,Φ11

〉
L2

= −FL
A − Fn

A + ErrA

= − (M(e)AB + (ABג
(
λ̇− V0

)
B

+ Fp
A + ErrA

where
ErrA =

〈
∂̃λA

φSC,e − ∂̃λA
φS,0,Φ21

〉
L2
−

〈
∂̃λA

ψSC,e − ∂̃λA
ψS,0,Φ11

〉
L2
.

Using lemma 35, the bound (95) for N , and the fact that from §2.1.4 Φ11 = II
1 and Φ21 − N = II

2 are
O(e), we deduce that |ErrA| ≤ ce2(e + W̃ + W̃ 5/2 + e2W̃ 1/2). Next notice that lemma 35 implies that
M(e)AB−M(0)AB = O(e2). Therefore since M(0)AB = −M(0)BA the largest term drops out and the second
line of Q1 can be rewritten as

(M(e)AB −M(0)AB + (ABג
(
λ̇− V0

)
A

(
λ̇− V0

)
B
− (Fp

A + ErrA)
(
λ̇− V0

)
A

which, by the above and (123),(127) is O(e4 + e2W̃ 1/2), for small e and W̃ .
Estimation of the third and fourth lines in Q1.Using lemma 39,(95), the bounds in §2.1.4 and the properties of
fω,e in appendix A.1.1, the third and fourth lines can be estimated immediately to be O

(
e3W̃ 1/2 + e2W̃ 3/2

)
.
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Estimation of the fifth and sixth line in Q1. This requires care because h is unbounded as a function of x.
This makes it essential to separate the nonlinear termN in Φ21 from the other terms (which are exponentially
decreasing in x and can thus absorb the unboundedness of h). Therefore we estimate first of all the quantity

〈ihv,Φ21 −N (fω,e, fω, v)〉L2 − 〈ihw,Φ11〉L2 = O
(
e2W̃

1
2

)
, (144)

by (102) and the bounds for h recorded in §2.1.4. Next, write the first term on line five, together with the
missing piece 〈ihv,N〉L2 from the previous estimation, as the sum of two quantities:

〈(∂t + ih+ u · ∇) v,N〉L2 +Rem,

where Rem = 〈(∂t + u · ∇) v,Φ21 −N〉L2 . It is shown in lemma 40 that the first of these quantities is
∂t(o(W̃ )) + O(eW̃ + e3W̃

1
2 ). To complete the proof of proposition 24 we need to estimate the sixth line

and the quantity Rem defined above. This is done by means of the integration by parts identity (195), and
taking advantage of the fact that

(∂t + u · ∇)fω,e = (λ̇− V0(λ)) · ∂λfω,e, (145)

is O(e) by (102). Together with (191), this implies that

‖(∂t + u · ∇)ΦIJ‖Lp = O
(
e(e+ δ)

)
(146)

for all p and all IJ except for IJ = 21; but in that case (146) holds instead for Φ21 − N = II
2 , (which is

what is actually needed to estimate Rem). Putting this information into (195), we infer that the sixth line
and Rem are ∂t(O(eW̃

1
2 )) +O(e(e+ δ)W̃

1
2 ), which is sufficient to complete the proof of the proposition. �

5.2.4 Estimation of Q2

The terms in Q2 arising from 01, 
0
2 can be estimated in a straightforward way by the Hölder and Sobolev

inequalities, because of the exponential decay of fω,e, and using lemma 39 to bound Ã0. For example,〈
w − iγωv + u · ∇v, ieÃ0 (iγ (ω − eαω,e)− u.∇) fω,e

〉
L2

= O
(
e2W̃

)
(147)

by Hölder’s inequality, since fω,e and ∇fω,e are bounded in every Lp norm and ‖Ã0‖Lp = O
(
eW̃

1
2

)
for

3 < p <∞. For the terms involving 03 = ∇Ã0 we can estimate,〈
u · ∇Ẽ,∇Ã0

〉
L2

=
〈
div Ẽ,u · ∇Ã0

〉
L2

= O
(
e2W̃

)
, (148)

since ‖div Ẽ‖L3/2 = O
(
eW̃

1
2

)
and ‖∇Ã0‖L3 = O

(
eW̃

1
2

)
. Consider next the terms

〈
03,−DÃH̃

〉
L2
. Refer-

ring to the explicit expressions for DÃH̃ given in §2.1.3, starting with (88), we see that the resulting terms
can all be estimated in a straightforward way (using the bounds for ∇Ã0 in appendix A.2.2) to be O(e2W̃ ),
except for one, namely:

〈4Ã,∇Ã0〉L2 ,

but this vanishes by the Coulomb condition, and so Q2 = O(e2W̃ ).

5.2.5 Estimation of Q3

The quantity Q̃3 is smaller than it appears due to the constraints. To see this first recall that, as used
above already, ‖∂λASC,e‖Lp = O(e) for p > 3, and ‖∂λESC,e‖Lp = O(e) for p > 3/2, by (51) and the
results of appendices A.1.2 and A.1.3 Referring to the expressions for DÃH̃ in §2.1.3, this means that the
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electromagnetic contributions to Q̃3 can be bounded as O(eW̃
1
2 ). But also, the expressions for DvH̃ in §2.1.3

imply that 〈
∂̃λφSC,e,−DvH̃ +Mλv

〉
L2

= O
(
eW̃

1
2

)
.

Therefore, up to O(eW̃
1
2 ), we deduce that Q̃3 is equal to〈

u · ∇w − iωγw −Mλv, ∂̃λφSC,e,
〉

L2
−

〈
u · ∇v − iωγv + w, ∂̃λψSC,e

〉
L2
.

Now the identities in appendix A.1.4 and the constraints (109) imply that this expression vanishes if
φSC,e, ψSC,e are replaced by φS,0, ψS,0. But by lemma 35 this can be done at the expense of an O

(
e2W̃

1
2

)
error. Therefore, since (λ̇− V0) = O(e) by (102), we deduce that Q3 = O

(
e2W̃

1
2

)
.

5.2.6 Completion of proof of lemma 23

The previous subsections have provided the requisite information on the Q′s, and so it now suffices to
control the remaining quantities in (142) appearing after the Q′s. The following two propositions treat the
two quantities on the first line of (142).

Proposition 25 Assume the hypotheses of lemma 23. It follows that,∫
(∂t + u · ∇)h̃(v, Ã) dx = −1

2

∫ 4∑
n=2

〈
(v, Ã), (∂t + u · ∇)B(n−1)(v, Ã)

〉
dx

= O

(
eW̃ +

e2

δ
W̃

)
.

Proof Observe

• the fact that aδ,χ is pointwise O( 1
δ ), but its derivatives are O(1), in particular ‖(∂t + u · ∇)aδ,χ‖L∞ ≤

2(‖ .
a‖L∞ + ‖∇a‖L∞).

• the identity
(∂t + u · ∇)fω,e = (

.

λ− V0) · ∂λfω,e,

which shows that the left hand side is O(e) in every Lp, by (102) and the exponential decay properties
in appendix A.1. Similarly, ‖(∂t + u · ∇)αω,e‖W 1,∞ is O(e2) by (102) and the bounds for αω,e in
appendix A.1.2.

To prove the proposition now, just use these observations to estimate with Hölder’s inequality each of the
terms arising from differentiation of the expressions for B(n) in §2.1.3. �

Proposition 26 Assume the hypotheses of lemma 23. It follows that

〈DvH̃, ihv〉L2 = O

(
eW̃ +

e2

δ
W̃

)
.

Proof Using the notation in (88) for the Frechet derivative DvH̃, we have

|〈DvH̃, ihv〉L2 | = |〈B(v, Ã), (ihv, 0)〉L2 | (149)

and we can estimate term by term, but some care is needed since h is unbounded as a function of x, see
(72). In addition to the first point in the proof of the previous proposition, we use the bounds for h recorded
in §2.1.4. Those terms in (149) arising from B(3) vanish identically, while of those arising from B(2) the
only non-zero ones are proportional to e〈hv,∇vÃ〉L2 . By the Coulomb condition and the bound for ∇h
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from §2.1.4, this term is O(e2W̃ 3/2). It remains to bound those terms arising from B(1). Of these, it is
straightforward to bound those arising from B12 as O(eW̃ ) by the second fact just mentioned, and the same
goes for those arising from Mλ in B11 = −Mλ + eR + S. However, there is a single non-zero term arising
from eRv which is proportional to

〈hv,aδ,χ · ∇v〉

which, with an integration by parts, can be bounded as O( e2

δ W̃ ), but, again, only after taking into account
the Coulomb condition ∇ · aδ,χ = 0. Finally for the terms arising from S we see from (81) that

〈ihv,Sv〉L2 = eγ

∫
[2αω,e〈vu · ∇v〉+ u · ∇αω,e|v|2] dx = 0,

so that 〈ihv,Sv〉L2 = 0, and the proof of the proposition is completed. �
The remaining terms on the second line of formula (142) are easily estimated as O(eW̃ ) by (102), and

the proof of lemma 23 is completed.

A Appendices

A.1 Further properties of the solitons

A.1.1 Exponential decay properties of the solitons

The e = 0 solitons in the nonlinear Klein-Gordon equation (23) are exponentially localized: to be precise we
have the following estimates for the profiles functions fω, gω:

lim
|x|→∞

sup
∑
|α|≤3

∇αfωExp[|x|
(√

m2 − ω2 − ε
)
] <∞ ∀ε ∈ (0,

√
m2 − ω2), (150)

together with

lim
|x|→∞

sup
∑
|α|≤3

∇αgωExp[|x|
(√

m2 − ω2 − ε
)
] <∞ ∀ε ∈ (0,

√
m2 − ω2), (151)

and

lim
|x|→∞

f ′ω
fω

= −
√
m2 − ω2, (152)

while ∀ε > 0, there exists c(ε) > 0 such that

fω(|x|) > c(ε)Exp[−|x|
(√

m2 − ω2 + ε
)
]. (153)

(See theorem 1.4 in [24]). Exponential decay also holds for the solitons coupled to electromagnetism for
small e:

Lemma 27 Suppose that |e| < e1, for some e1 > 0. Under conditions (29-32) on U ,

|Dαfω,e(x)| ≤ CExp[−κ|x|] (154)

for positive constants C and κ, and where α is any multi-index with |α| ≤ 2. Furthermore, the constants C
and κ are independent of the coupling constant e.

Proof See [17]. �
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A.1.2 Some estimates of the soliton electromagnetic potential α

Lemma 28 For each f ∈ H2
r (R3), there exists a unique α ∈

.

H
1

r(R3) such that

−4α+ e2f2α = ωef2. (155)

Furthermore, the map A : H2(R3) −→
.

H
1
(R3) defined by A(f) = α is continuously Frechet-differentiable.

Proof This follows from standard arguments. �

Lemma 29 Suppose that f ∈ H1(R3). Suppose further that α solves

−4α+ e2f2α = eωf2. (156)

It follows that ∇α,∇i∇jα ∈ L2(R3) for any i, j ∈ (1, 2, 3). Furthermore,
∥∥∇i∇jα

∥∥
L2 , ‖∇α‖L2 , ‖α‖L∞ =

O(e)

Proof ∫
|∇α|2 + e2f2α2 = eω

∫
f2α (157)

from which it easily follows via Sobolev’s inequality that

‖∇α‖L2 ≤ ce ‖f‖L2 ‖f‖L3 . (158)

Next, since −4α = e (ω − eα) f2, we have

‖4α‖L2 ≤ e
(
ω ‖f‖2L4 + e ‖αω,e‖L6 ‖f‖2L6

)
. (159)

By the Calderon-Zygmund inequality, we have that for any i, j ∈ (1, 2, 3),∥∥∇i∇jα
∥∥

L2 = O(e). (160)

By Sobolev’s inequality, we have thus shown that α ∈W 1,6 and hence by Morrey’s inequality, ‖α‖L∞ = O(e).
�

Corollary 30 Suppose that fω,e ∈ H2(R3) solves

−4fω,e +m2fω,e − (ω − eαω,e)
2
fω,e = β(fω,e)fω,e, (161)

where αω,e ∈
.

H
1

r(R3) is a non-local function of fω,e uniquely determined by

−4αω,e + e2f2
ω,eαω,e = ωef2

ω,e. (162)

Then, fω,e ∈ H4(R3).

Proof Differentiate the equation for fω,e and apply the Calderon-Zygmund inequality. �
This leads naturally to the following lemma.

Lemma 31 Suppose that f ∈ H4(R3) and that α solves

−4α+ e2f2α = eωf2. (163)

It follows that ∇α ∈W 3,p(R3) for any p ∈
(

3
2 ,∞

)
.

Proof Differentiate (163), and apply the Calderon-Zygmund inequality (using the Hölder and Sobolev
inequalities if necessary) to get the result. �
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Lemma 32 Suppose that f ∈ H2(R3) and that α solves

−4α+ e2f2α = eωf2. (164)

It follows that
0 ≤ sgn

(ω
e

)
α ≤

∣∣∣ω
e

∣∣∣ ,
where sgn(x) = x/|x| for x 6= 0 and sgn(0) = 0.

Proof Assume that f in C∞c (R3). Define α+ = max(α, 0) and α− = max(−α, 0). Suppose ωe > 0, then
by a weak maximum principle (theorem 8.1 in [8]), α > 0. Now, A0 = α− ω

e solves −4A0 + e2 |f |2A0 = 0,
therefore A0 ≤ 0 by the same weak maximum principle. Hence, 0 ≤ α ≤ ω

e . Similarly, if −ωe > 0, then
0 ≥ α ≥ −ω

e so that ‖α‖L∞ ≤
∣∣ω

e

∣∣. The lemma follows by approximation. �

Lemma 33 Suppose that fω,e and αω,e are as given in theorem 6. Then,∥∥∥∥∇i∇j dαω,e

dλ

∥∥∥∥
Lp

= O(e) (165)

for p ∈ (1,∞), and i, j = 1, 2, 3. In addition,
∥∥∥∇dαω,e

dλ

∥∥∥
W 2,p

= O(e) for any p ∈
(

3
2 ,∞

)
.

Proof From lemma 28 and theorem 6, dαω,e

dλ is a well-defined object. We note that

4dαω,e

dλA
+ e2f2

ω,e

dαω,e

dλA
= ef2

ω,eδ−1 A + 2efω,e(ω − eαω,e)
dfω,e

dλA
(166)

from which
∥∥∥4dαω,e

dλA

∥∥∥
Lp

= O(e) for p ∈ (1,∞) follows immediately. The lemma follows trivially from
repeated differentiation, the Calderon-Zygmund inequality and the Hölder and Sobolev inequalities. �

Let ζ(x;λ) be the unique solution in Ḣ1 of (52), −4ζ = −γu · ∇αω,e(Z), which takes the Lorentz
transformed solitons into Coulomb gauge. Then

Lemma 34 ∥∥∇i∇jζ
∥∥

Lp = O(e), (167)∥∥∇i∇j∂λζ
∥∥

Lp = O(e),

for p ∈ ( 3
2 ,∞) and i, j = 1, 2, 3.

Proof By (52), and its derivative: and

−4 d

dλA
ζ = −γu · ∇ d

dλA
αω,e −

(
d

dλA
γu

)
· ∇αω,e.

the result follows by means of lemmas 29 and 33. �

A.1.3 Differentiability

Lemma 35 Let fω,e ∈ H2 be given by theorem 6. Then it is a differentiable function of ω and satisfies, for
small e:

‖fω,e − fω‖H2 + ‖∂ωfω,e − ∂ωfω‖H2 = O(e2). (168)

Proof See [17]. �
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Lemma 36 Let h̃ω = hω − ωqω, where hω = H(ΦS,e(0, ω, 0, 0)) while qω = Q(ΦS,e(0, ω, 0, 0)). Then

d

dω
h̃ω = −qω. (169)

Proof Following the argument given in [10], we note that

d

dω
h̃ω = −qω +

〈
H ′(ΦS,e(λ0))− ωQ′(ΦS,e(λ0)),

d

dω
ΦS,e(λ0)

〉
L2

, (170)

where λ0 = (ω, 0, 0, 0). The result follows from the fact that H ′(ΦS,e(λ0))− ωQ′(ΦS,e(λ0)) = 0. �

A.1.4 Some identities involving
(
∂̃λφS,0, ∂̃λψS,0

)
The explicit calculation of the modulation equations can be carried out by making use of the following
functions (aA(Z(x, λ);λ), bA(Z(x, λ);λ) from [24]:

b−1(Z;λ) = gω − iu.Zfω, (171)
b0(Z;λ) = ifω, (172)
bi(Z;λ) = ∇i

Zfω(Z), (173)
b3+i(Z;λ) = ζji∇j

Zfω(Z)− iωγ((γPu +Qu)Z)ifω(Z), (174)

while

a−1(Z;λ) = −γ−1b0 + (γu.∇Z − iγω) b−1, (175)
a0(Z;λ) = (γu.∇Z − iγω) b0 (176)
ai(Z;λ) = (γu.∇Z − iγω) bi, (177)

a3+i(Z;λ) = (γPu +Qu)Z)ijbj + (γu.∇Z − iγω) b3+i, (178)

where i, j = 1, 2, 3, gω = d
dωfω, and

ζji = γ2(u · Z)(Pu)ji +
γ − 1
γ|u|2

(u · Z)(Qu)ji +
γ − 1
|u|2

(QuZ)iuj .

These are convenient for computation of the modulation equations because the linear span of the ∂̃λA
(φS,0, ψS,0)

is the same as the linear span of the (bA,−aA).(To be precise: except for A = j ∈ {1, 2, 3}, we have
∂̃λA

(φS,0, ψS,0) = (bA,−aA), and for A = j we have ∂̃ξj (φS,0, ψS,0) = −(γPu+Qu)jk (bk,−ak)+ωγuj(b0, a0).)
The following identities are equivalent to lemma 2.2 in [24], and can be obtained by differentiating the

Euler-Lagrange equation F ′0 = 0, where F0 is the augmented Hamiltonian (48):

(iγω − u · ∇) ∂̃λ0φS,0 − ∂̃λ0ψS,0 = 0, (179)

(iγω − u · ∇) ∂̃λ0ψS,0 −Mλ∂̃λ0φS,0 = 0, (180)

(iγω − u · ∇) ∂̃λjφS,0 − ∂̃λjψS,0 = 0, (181)

(iγω − u · ∇) ∂̃λj
ψS,0 −Mλ∂̃λj

φS,0 = 0, (182)

(iγω − u · ∇) ∂̃λ−1φS,0 − ∂̃λ−1ψS,0 = − 1
γ
∂̃λ0φS,0, (183)

(iγω − u · ∇) ∂̃λ−1ψS,0 −Mλ∂̃λ−1φS,0 = − 1
γ
∂̃λ0ψS,0, (184)

(iγω − u · ∇) ∂̃λ3+j
φS,0 − ∂̃λ3+j

ψS,0 = −∂̃λj
φS,0 − γωuj ∂̃λ0φS,0, (185)

(iγω − u · ∇) ∂̃λ3+j
ψS,0 −Mλ∂̃λ3+j

φS,0 = −∂̃λj
ψS,0 − γωuj ∂̃λ0ψS,0 (186)

where the index j runs from 1 to 3.
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A.2 Some estimates

A.2.1 Estimates related to the external field

Lemma 37 Let f be a measurable function with (1 + |x|)f ∈ L1. Then if aδ,χ is as in (64)∥∥∥eaδ,χ
0 f

∥∥∥
Lp
≤ ceL1 ‖(1 + |x− ξ|)f‖Lp , (187)

and ∥∥eaδ,χf
∥∥

Lp ≤ ceL1 ‖(1 + |x− ξ|)f‖Lp (188)

for p ∈ [1,∞]. If in addition feven is an even function of (x− ξ) and (1 + |x|)2feven ∈ L1 then∣∣∣∣∫ aδ,χ
µ fevend

3x

∣∣∣∣ ≤ cL2δ
∥∥(1 + |x− ξ|)2feven

∥∥
L1 (189)

with L1, L2 as in (7).

Proof Recall (64) and (65). Writing

aδ
0(t, x)− aδ

0(t, ξ) = (x− ξ) ·
∫
∇aδ

0(t, ξ + s(x− ξ))ds (190)

etc, by the fundamental theorem of calculus, the result then follows, using the fact that the gradients of
aδ
0,a

δ are bounded independent of δ by assumption (see §1.2). For the proof of (189), it suffices to use
the identity for ∇aδ

µ corresponding to (190), and then substitute this back into (190) and use the fact that∫
(x− ξ)feven = 0. �

Similarly, we have the following bounds:

Lemma 38 ∥∥(1 + |x− ξ|)−1(∂t + u · ∇)aδ,χ
µ

∥∥
L∞

≤ C1(|δ|+ |e|) (191)∫
R3
f(x)

∣∣∇t,xa
δ
µ(t,x)− (∇t,xa

δ
µ)(t, ξ)

∣∣dx ≤ C2|δ|, (192)

where we use (102), (7), and C1 = C1(L1, L2) and C2 = C2(L2, ‖(1 + |x|)f‖L1).

A.2.2 Estimates for the time component of the electromagnetic potential

Lemma 39 Given (v, w) ∈ H1 × L2 and λ ∈ Õ there exists a unique Ã0 ∈ Ḣ1 solving (71) such that∥∥∥∇Ã0

∥∥∥
Lp

= O
(
e‖(v, w, Ã, Ẽ)‖H + e‖(v, w, Ã, Ẽ)‖2H

)
, (193)

for p ∈ ( 3
2 , 3]. Consequently

∥∥∥Ã0

∥∥∥
Lq

satisfies the same bound for 3 < q <∞ by Sobolev’s inequality.

Proof From Gauss’s law (71), we have explicitly

−4Ã0 = e 〈ifω,e, w〉+ e 〈iv, (iγ(ω − eαω,e)− u.∇) fω,e + w〉 . (194)

By Sobolev’s and Hölder’s respective inequalities,∥∥∥4Ã0

∥∥∥
Lq

= O
(
e‖(v, w, Ã, Ẽ)‖H + e‖(v, w, Ã, Ẽ)‖2H

)
.

for q ∈ [1, 3
2 ]. The lemma follows from the Sobolev inequality and from the Calderon-Zygmund inequality,

[8, section 9.4]. �
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A.2.3 Integration by parts and simple averaging

First we recall the phenomenon of averaging in the context of ordinary differential equations, in the simplest
possible case of the perturbed harmonic oscillator. Let g be a C1 function of t ∈ R, with |g| ≤ M and
|ġ| ≤ N . For 0 < ε << 1 let yε be the solution of ÿ+y = εg(εt) with initial data yε(0) = y0, ẏ

ε(0) = y1 (fixed
independent of ε). Then yε − y0 is O(ε) in C1([−T, T ]) norm for times of T = O( 1

ε ). One way to prove this
is to define f = ε−1(yε − y0), which solves f̈ + f = g(εt) with zero initial data. Let E(t) = (f2 + ḟ2)/2 be
the energy; it satisfies E(0) = 0 and Ė(t) = ḟ(t)g(εt). Now an integration by parts gives

|
∫ T

0

ḟ(t)g(εt)dt| ≤ M |f(T )|+ εN

∫ T

0

|f(t)|dt

≤ M |f(T )|+ εTN2

2
+ ε

∫ T

0

|f(t)|2

2
dt,

which, by Gronwall’s inequality, implies E(t) = O(1) for t = O( 1
ε ) as claimed. To conclude, this simple fact

- that a small slowly varying inhomogeneous εg(εt) term only influences a simple harmonic oscillator to O(ε)
on time scales of O( 1

ε ) - expresses a weak averaging effect, and can be proved by integration by parts. Of
course, this argument can be modified to give information about perturbed oscillators on longer times scales
of O( 1

εa ), a < 2, and many different generalizations are possible.
A simple generalization, which is usful for the study of slow motion of solitons, can be obtained by

integrating the identity

〈(∂t + u · ∇)F,G〉L2 = ∂t〈F,G〉L2 − 〈F, (∂t + u · ∇)G〉L2 (195)

where F,G are sufficiently regular functions of t, x but u = u(t) depends on t only and the inner product is
L2(dx). This is often useful because in perturbation theory for solitons functions often arise with (∂t+u·∇)G
small - see (146).

The following result, used in the proof of proposition 24, is a more complicated version of this idea:

Proposition 40 In the situation of lemma 23,

〈(∂t + ih+ u · ∇) v,N (fω,e, fω, v)〉L2 = ∂t

(
o
(
W̃

))
+O

(
eW̃ + e3W̃

1
2

)
,

where a function f satisfies f = d/dt
(
o
(
W̃

))
if there exists a C1 function g = o

(
W̃

)
and f = d

dtg.

Proof We work mostly with the potential V1(φ) = −U(|φ|) which determines N : recall that V ′1(φ) =
−β(|φ|)φ, and (being slightly cavalier with notation) (76) can be rewritten

N (fω,e, fω, v) = −V
′

1(fω,e + v) + V
′

1(fω,e) + V
′′

1 (fω)(v)

Define

Θ =
∫ t

0

hds, (196)

f∗ω,e = Exp[iΘ]fω (197)

and
v∗ = Exp[iΘ]v. (198)

Then, as with (93), and using the fact that ‖∂tv
∗‖L2 = O(e+ W̃

1
2 ) by (66), we have

〈∂tv + ihv,N (fω,e, fω, v)〉L2 =

−
〈
∂tv

∗,V ′1(f∗ω,e + v∗)− V ′1(f∗ω,e)− V ′′1 (f∗ω,e)[v
∗]

〉
L2 +O

(
e3W̃

1
2 + e2W̃

)
. (199)
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But,〈
∂tv

∗,V ′1(f∗ω,e + v∗)− V ′1(f∗ω,e)− V ′′1 (f∗ω,e)[v
∗]

〉
L2 =

∂t

∫ (
V1(f∗ω,e + v∗)− V1(f∗ω,e)− V ′1(f∗ω,e)[v

∗]− 1
2
V ′′1 (f∗ω,e)[v

∗]2
)
dx

−
〈
∂tf

∗
ω,e,V ′1(f∗ω,e + v∗)− V ′1(f∗ω,e)− V ′′1 (f∗ω,e)[v

∗]− 1
2
V(3)

1 (f∗ω,e)[v
∗]2

〉
L2

. (200)

Hence,〈
∂tv

∗,V ′1(f∗ω,e + v∗)− V ′1(f∗ω,e)− V ′′1 (f∗ω,e)[v
∗]

〉
L2 =

∂t

∫ (
V1(fω,e + v)− V1(fω,e)− V ′1(fω,e)[v]−

1
2
V ′′1 (fω,e)[v]2

)
dx

− 〈(∂t + ih) fω,e,V ′1(fω,e + v)− V ′1(fω,e)− V ′′1 (fω,e)[v]〉L2 −〈
(∂t + ih) fω,e,

1
2
V(3)

1 (fω,e)[v]2
〉

L2

. (201)

Now, 〈
ihfω,e,V(3)

1 (fω,e)[v]2
〉

L2
≤ c

∫
|fω,eh|

(
1 + |fω,e|3

)
|v|2dx, (202)

by condition (13). Additionally,

〈ihfω,e,V ′1(fω,e + v)− V ′1(fω,e)− V ′′1 (fω,e)[v]〉L2 (203)

=
∫ 1

0

(1− s) 〈ihfω,e, (V ′′1 (fω,e + sv)− V ′′1 (fω,e)) [v]〉L2 ,

≤ c

∫
|fω,eh|

(
1 + |fω,e|3

) (
|v|2 + |v|5

)
dx,

by condition (13). Therefore, by the exponential decay of fω,e and the fact that |fω,eh|Lp = O(e) by the
bounds of §2.1.4,〈

ihfω,e,V ′1(fω,e + v)− V ′1(fω,e)− V ′′1 (fω,e)[v]−
1
2
V(3)

1 (fω,e)[v]2
〉

L2

= O(eW̃ ).

Integration by parts and lemma 35 imply that

〈(u · ∇v,N (fω,e, fω,0, v)〉 = O(e2W̃ )+〈
u · ∇fω,e,V ′1(fω,e + v)− V ′1(fω,e)− V ′′1 (fω,e)[v]−

1
2
V(3)

1 (fω,e)[v]2
〉

.

Next notice that the quantity〈
(∂t + u · ∇)fω,e,V ′1(fω,e + v)− V ′1(fω,e)− V ′′1 (fω,e)[v]−

1
2
V(3)

1 (fω,e)[v]2
〉

can be estimated to be O(eW̃ ) in the same way as the bounds (202),(203) once we note that, for every
p ∈ [1,∞],

‖∂tfω,e + u · ∇fω,e‖Lp =
∥∥∥(λ̇− V0(λ)) · ∂λfω,e

∥∥∥
Lp

= O(e), (204)

by (102). The proof is now completed by noticing that Taylor’s theorem and (13) imply that the quantity∫ (
V1(f∗ω,e + v∗)− V1(f∗ω,e)− V ′1(f∗ω,e)[v

∗]− 1
2
V ′′1 (f∗ω,e)[v

∗]2
)
dx

is O(W̃ 3/2) +O(W̃ 3) = o(W̃ ), since W̃ is small by assumption. �
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