LECTURE NOTES FOR IIB PARTIAL DIFFERENTIAL

1.

1.1.
1.2.
1.3.
2.

2.1.
2.2.
2.3.
2.4.
2.5.
2.6.
2.7.
2.8.
2.9.

EQUATIONS

M. S. JOSHI AND A. J. WASSERMANN

CONTENTS

Introduction
The Basic Constant Coefficient Linear PDEs
Symbols and Definitions
Examples of Non-linear PDEs

Existence and Uniqueness of Solutions for ODEs
The Method of Successive Approximations
Dependence of ODEs on Initial Conditions
Vector Fields, Integral Curves and Flows.
Time-independent Vector Fields.
Perturbations of Linear ODEs
Smoothness Properties of Flows
Critical Points
First Order Semi-Linear PDEs
First Order Quasi-Linear PDEs

2.10. Formal Power Series Solutions of Holomorphic ODEs

3.

3.1.
3.2.
3.3.
3.4.
3.5.

(optional)
The Fourier Transform and PDEs with Constant Coefficients
The Fourier Transform on Schwartz Functions
Properties of the Fourier Transform
The Paley-Wiener Theorem (optional)
Smooth Partitions of Unity (optional)

The Schur Test(optional)
1

co 00 =~ Ot Ot

10
11
11
12
13
14
14
16

18
23
23
27
27
30
31



4.

4.1.
4.2.
4.3.
4.4.

d.

5.1
2.2
2.3.
5.4
2.5.
2.6.

2.7.
2.8.
2.9.

6.

6.1.
6.2.
6.3.
6.4.
6.5.
6.6.
6.7.

7.

7.1.
7.2.
7.3.
7.4.
7.5.

M. S. JOSHI AND A. J. WASSERMANN

Definitions of Test Functions and Distributions

Test Functions

Linear Operations on Distributions

The Fourier Transform and Tempered Distributions

More Operations on Distributions including Convolution
The Laplacian

Finding the Fundamental Solution

Identities and Estimates

The Dirichlet and Dual Dirichlet Problems

The Dual Dirichlet Problem for the Unit Ball

Deduction of the Poisson formula for the Dirichlet problem

The Dirichlet Problem for the Unit Ball with non-smooth
data

Harnack’s Convergence Theorem

Solution of the Dirichlet Problem by Perron’s Method

Remarks on the two dimensional Dirichlet Problem.
The Wave Operator

The Problems

Finding the Fundamental Solution

The Method of Descent

Solving the forcing problem

The Cauchy Problem

Domains of Dependence

Energy Estimates
The Heat Equation

Symmetries

The Fundamental Solution

Maximum Principles

Group Law

Arrow of time

32
32
34
35
41
49
49
52
35
26

60
62
62

68
68
68
72
72
73
77
78
78
78
79
82
84
84



PARTIAL DIFFERENTIAL EQUATIONS

7.6. Brownian Motion

7.7. Finite Difference Methods
8. Appendix

8.1. Integration

8.2. Taylor’s Theorem

References

84
84
86
86
87
88



4 M. S. JOSHI AND A. J. WASSERMANN

IMPORTANT NOTE

These notes are being used with the consent of the authors for the
1999 course. The e-mail of the lecturer for the course is twk@dpmms
but anyone wishing to get in touch with the authors should contact
Dr Wassermann.

1. INTRODUCTION

Partial differential equations (PDEs) play a central role in most
branches of applied maths, theoretical physics as well as geometry,
analysis, probability theory and topology. In fact most analysis was
developed to solve the problems posed by differential equations. For
example the theory of Hilbert spaces and the spectral theorem for self-
adjoint operators was invented to solve the classical Sturm-Liouville
problem(see Hilbert Space course). The purpose of this course is to
give a taste of many of the techniques invented to solve and analyse
PDEs.

A PDE of order k is roughly an expression
* F(xz,u,0uu,...,00u,...,0%u) =0 (x € Q C R" open)

relating u(z), (x € R") and its derivatives of order < k. We shall
sometimes say that u is a classical solution of (x), this is to distinguish
from the notion of a weak or distributional solution which we shall
introduce later.

alal

R e u where

For a multi-index o = (aq,...,q,) set 0% =
la] = 3 ;. (Sometimes we write %u for 0%u)

A linear PDE is one that can be written in the form

Pu=f (1.1)
P=>" an(z)0" (1.2)

where a, and f are functions of x. The order of the equation is then
k. Most of this course is devoted to studying the case where all the a,,
are constant - this is called a constant coefficient linear PDE. We shall
see that these can be pretty complicated but also that they are now
well understood.

A quasi-linear equation is one where a, and f may also depend not
only on z but also 0%u for |a| < k.
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There are also non-linear equations Navier Stokes, Euler’s equa-
tions for geodesics, K-dV, minimal surface equations  which require
special methods of solution beyond this course.

Hadamard introduced the concept of a well-posed problem into PDEs
- this is a problem which satisfies three basic criteria - existence, unique-
ness and continuous dependence of solution on data given. Note that
in a problem coming from physics one would expect all these three to
be satisfied - the first two because something will happen and only one
thing will happen. The third because data can never be measured ex-
actly and so if two solutions coming from data close together are not
similar then one can not make a useful prediction.

So in PDEs the problems we study are variants of the following.

Existence Prove that there is u satisfying (x) possibly with prescribed con-
ditions in a neighbourhood of a point or in 2. We also want a
constructive proof - i.e. one that tells us what w is!

Uniqueness Prove that u is unique. If v is not unique, what boundary condi-
tions can be imposed to make u unique?

Continuity How does u depend on the boundary conditions and on f in the
linear case?

Smoothness How many times differentiable is u? Does u have points of sin-
gularity? How long is the solution valid for? Often in non-linear
problems the solution will blow-up (ie tend to infinity) after some
finite time.

1.1. The Basic Constant Coefficient Linear PDEs. The most
important differential operator in mathematics is the Laplacian which
is equal to

n 82
A= —
; dx?
and acts on functions on R". It can also be defined on manifolds and

then becomes a variable coefficient operator. The other linear differen-
tial operators we will consider are

2 A ( heat operator )
0= % — A ( wave operator)

More generally, we’ll study PDEs with constant coefficients using the
Fourier transform as a key tool.

1.2. Symbols and Definitions. Associated to any linear, partial dif-
ferential operator is a polynomial called the total symbol obtained by
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replacing % by i§; :

o(P) =p(x,§) = Z o (x = e Pt P =) a,(2)0
The important point is that if @ is the Fourier transform of u then
1 n/2 - X
P Dyu= () [ pr.ea()de.

Proposition 1. If P is a differential operator of order k and @) s a
differential operator of order | then

lal

o (PQ)(w.&) = ¥ 0 320 (P) 2.2 0(Q) (.

where o! =[] a;!.

The principal symbol is the top order part of the symbol:

ox(P)(x,§) = D aa(@)(i)".

la|=k

The principal symbol is particularly useful because

0k (PQ) = 0k (P)oy(Q).

When the principal symbol is never zero or only ever vanishes to first
order - the operator is said to be of principal type and the lower order
terms have little effect on the qualitative behaviour of the PDE. We
define the characteristic set to be the points where the principal symbol
vanishes -

char(P) = {(x, )|ox(P)(x,§) = 0}.

The operator P is elliptic (of order k) at x if only if oy (P)(x, &) # 0
for £ # 0 and elliptic if this is true for all x.

A hypersurface S is said to be characteristic for P at x if the normal
vector is a characteristic vector for P. S is called non-characteristic if
it isn’t characteristic at any point.

Example 1. The operator P = a% + ia%, on R? (or C) has principal
symbol

o1 (P)(x,y;§,m) = i§ — 1)
and so s elliptic. The Laplacian has principal symbol — i 532 and thus
7j=1

18 elliptic.
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However the wave and heat operators are not.
char(0) = {77 — & = OC]sz1 X jol
char(9, — A) = {¢ = 0CR ' x R¢H

It is traditional to classify second order operator into three main types
corresponding to the three main operators. This comes from the geom-
etry of the level sets of the principal symbols. (one has to consider the
principal symbol of the heat operator to be 7 — £2, rather than it — &2
or the actual value £2.)

Elliptic Laplace
Parabolic  — Heat
Hyperbolic — Wave

These of course correspond to the non-degenerate conic sections -
this insight is not however particularly useful.

1.3. Examples of Non-linear PDEs. These will not be treated in
this course but you should be aware they are out there.

(1) The Navier-Stokes Equation in Fluid Dynamics
ou
ot

f(t,x), u(t,z) € R*, x € R*, t € R (see Constantine and Foias).

(2) The Euler Equations for Geodesics in an “Ideal Fluid”
Typically (Yang-Mills Instantons) differential equations arise through
a minimisation or variational problem. Let G = GL(n,R) C
M, (R) be the group of invertible matrices and let (a,b) be an
inner product on M, (R). If g : [0,1] — G is a differentiable path
(C"), its length e(g) = [ |l¢'(t)||dt where ¢'(t) = g ' and its
energy F(g) = [ ||¢'(t)||?dt. A curve g is called a geodesic if it
is a critical point for the energy subject to the end points being
fixed. It turns out that a C? curve is a geodesic if and only if g
satisfies the Euler equation

(&
dt’
Locally geodesics also minimise length. (see Arnold).

(3) Beltrami’s Equation and conformal structures (linear PDE)
Let

Au+u-Ju = f — \yp, v-u=0

X) =, lg, X]) (X € M,(R)).

ds* = Edx? 4+ 2Fdxdy + Gdy?



8 M. S. JOSHI AND A. J. WASSERMANN

be a Riemannian metric on a piece of R? (or a 2-D manifold).
Setting z = = + 1y, we can write
ds® = N|dz + pdz|?

where A > 0 and |u| < 1 is complex. Coordinates (u,v) are called
isothermal for ds? if ds? = p(du®+dv?) with p > 0. Let w = u+iv;

then
ws
plduwl? = plw, |dz + 7]
w,
SO ’fi—%” = /L’Z—f. This is Beltrami’s equation it can always

be solved. The complex structure w is called the conformal
structure induced by the the metrics ds? (see Ahlfors)

(4) The Korteweg-de Vries equation and solutions u; — 6uu, +
Uger = 0 was first discovered in connection with solitary water
waves. It is an example of a completely integrable system
and its solutions form an infinite dimensional subspace (indexed
by an infinite-dimensional Grassmannian, ie special subspaces of
an infinite-dimensional Hilbert space). (see Drazin, Kac)

(5) Minimal Surface z = u(z, y) satisfies (1 + ) )tzs — 2uaytyy +
(14 uz)uy, = 0.

2. EXISTENCE AND UNIQUENESS OF SOLUTIONS FOR ODES

2.1. The Method of Successive Approximations.

Theorem 1. (The Contraction Mapping Theorem) Let (X,d) be a
complete, non-empty, metric space and T : X — X a map such that
d(Tyy, Tys) < kd(yy,ys) with k € (0,1). Then T has a unique fized
point i X ; in fact if yg € X, then T™yo — fized point as m — oc.

Proof. Using the geometric progression
1
R Z k™,
1—k 750

we check that Ty, forms a Cauchy sequence in X. So by completeness
of X, T™y, — y some y. But then 7™ 1y, — Ty, so Ty = y and y is
a fixed point. Clearly

Tyi=y; (i=1,2) = d(y1,92) < kd(y1,y2)
so d(y1,y2) = 0 and y; = yy, Thus T has a unique fixed point. O

Corollary 1. Suppose that T" is a contraction mapping for some n.
Then the same conclusions hold.
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Proof. By Theorem 1, T™ has a unique fixed point, y. We also have
that

T"(Ty) = T" 'y = T(T™y) = Ty.
So T'y is also a fixed point of T and fixed points are unique so Ty = y.
Also

Ty — y T lyg — g, o, Ty 5y (m — 00).

Putting these together, we see T™yy — y. O

Note that this result not only says there is a fixed point but also
gives a method for finding it.

Let f(t,x) be a vector-valued continuous function |t — | < a, ||z —
xo|| < b where x € R". Suppose f also satisfies the Lipschitz condition

[F (1) = F(E wa)l] < cllar — o]

Note that a Lipschitz function is automatically continuous. It follows
from the Mean Value Theorem that a differentiable is at least locally
Lipschitz. Let M = sup|f(¢,2)| and set h = min(a, 2).

Theorem 2. The differential equation

dz
i flt,x), x(ty) = ¢ (2.1)

has a unique solution for |t — to| < h.

Proof. (Picard-Lindelof)

We will prove this by using the contraction mapping theorem - to do
so we need a suitable metric space and a contraction mapping on it. As
differential operators make things less smooth and integral operators
make things more smooth, we work with an equivalent problem defined
in terms of integrals.

Let
(Tz)(t) = xo + tf(s,x(s))ds. (2.2)

Clearly x solves (2.1) if only if Tx = z. (just integrate or differentiate).
Now let
X ={zeC([to—h,to+hl,R*) | [|z(t) — 0| < M-hVt}.
This is a complete metric space for

d(z1,22) = sup ||z1(t) — z2(2)]],
[t—to|<h
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(this follows from the fact that a uniform limit of continuous functions
is continuous.) As Mh < b Tz is well-defined z € X, and Tz is also in
X. We claim

k
C
| T* (1) — Thas(t)| < yﬁ — tol* d(z1, 32).

For k = 0, this is obvious, and in general it follows by induction since

TRy () = TEa ()] < S 1 (5, T i (5)) — (s, T aa(s)) || ds
¢ Jy |75 a1 (s) = T% g (s) || ds

k
Gy Juo 15 = tol* ! ds d(w1, w2)

St — tolkd(x1, 7).

But then 7™ is a contraction mapping for n sufficiently big and the
result follows ]

INININIA

NB why, in the above proof, is the solution x is differentiable?

2.2. Dependence of ODEs on Initial Conditions.

Theorem 3. The solution of (2.1) depends continuously on the initial
data xq.

Proof. The idea in this proof is to solve for all possible initial data
simultaneously, thus obtaining a continuous function both of ¢ and the
initial data.

Pick h; < h and take § > 0 such that Mh; + 6 < b.

Let
Y ={y € C([to—h1,to+hi]|xB(zy,8),R") : [|y(t,x)—z| < M-h,y(ty,x) = x}.
Again Y is complete for the supremum metric

(Y1, y2) = sup [y (t, 2) — yat, ).

Let - ;
(Ty)(t.2) = o+ [ Fls.y(s,2)ds

Since Mhy +9 < b, T maps Y into Y and as before we can check by
induction that

k
C
T (8 ) = Thya(t, 2)l| < 1t = to[* d(w1, 1)

So T™ is a contraction mapping for n sufficiently large and 7" has a
unique fixed point y which satisfies

% - f(tay)
y(tO’x) =
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Now v is a continuous function of both ¢ and = and if we fix x = 1z
then y(t, o) solves the initial value problem (2.1) so the solution of
(2.1) depends continuously on zy which is what we wanted to prove.

Note this works for any h; < h so we have continuity everywhere on
the open interval. ]

2.3. Vector Fields, Integral Curves and Flows. Let U be an open
subset of R". A time-dependent vector field on U is a map f(¢,x)

fi(—€¢) xU = R",

so to each time ¢ and point x we have associated a vector. We can take
f to be continuous, C* (continuous derivatives of all orders < k) or
smooth (derivatives of all orders.)

Let zg € U. An integral curve for f with initial condition (or starting
point) zy is a map

p:(-0,0) > U
such that

)

so the tangent vectors to ¢ are just the values of the vector field at
that point and time.

A local flow for f at xy is a map
a:(=06,0) xUy— U,
where x € U, open C U, such that

dalbo)  — ¢t ot z))
a(0,z) = x

Thus ¢, (t) = a(t, ) is an integral curve for f with initial condition z.

2.4. Time-independent Vector Fields. Suppose f does not depend
on t, it is just a map f : U — R" assigning a vector to each point of U.

Let a(t,z) = ay(x) be the flow determined by f. It exists for ¢ small
enough and is as smooth as f is.(see below) The chain rule shows that

t— alt, aty,z)), (2.3)
t— at+t,x) (2.4)
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are integral curves of f with the same initial condition ay,(x) at t = 0.
But integral curves are unique so they must coincide. Hence oy, =
ay © (uy,, thus

Qs = QO O Ol
whenever this make sense. This means that we have a local bit of an

action of R on U which may only be partially defined. It is called a
local 1-parameter group or dynamical system.

2.5. Perturbations of Linear ODEs.

Theorem 4. Let A(t,z), B(t,x) be continuous matriz-valued func-
tions of t and x and let

M > sup || B]|.
t,r
The solutions of the ODFEs
ji%z; = A(t,x)(t,z), &(to,x) = a(x) (vector-valued)
dt7 = B(tar)n(tﬁr)a n(tO’r) = b(l‘)

Mit—tg|l _q

satisfy sup [€(1,2) = n(t,2)]| < CJlA - B| 2

where C 1s a constant depending only on A and a.

+ lla = pljeti

Proof. By the method of successive approximations, we know that the
sequences defined by

& = a+ ftz Alpads, S =a

Me = bt fy Bikads,  mo =0
will be such that &, — &, np — n. Let gx(t) = sup ||& (¢, x) — nk(t, 2)||
and C = sup ||&]|. Note that

7$7t

1€kl

is bounded as & is convergent which implies that ||| is also.

Then we check that

t
9u(t) < lla b + ClIA = Bl|(t — o)l + M | g.-1(s)ds s
0 2.5

Define f,, by fo(t) = ||a — b|| and then inductively by defining

Fult) = lla— bl + LA~ B[t~ t0)| + M [ fus(s)ds.
fo (2.6)
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Comparing (2.5) and (2.6), we see that
fn 2 Gn-

As we have a contraction mapping, f, — f where f is a solution of
t
F(®) = lla—bll + CllA = Bt 1) + M | f(s)ds
0

Solving the corresponding differential equation we get

Mlt—to| __ 1

t) = la— bl 4+ C||A - B||
f(t) = lla—blle +C =

As gn(t) < fult),
sup 1€n(t, 2) = ma(t,2)|| < fult).

The theorem now follows by passing to the limit as n — oo. O

2.6. Smoothness Properties of Flows. The smoother the vector
field f is, the smoother we would expect the associated flow a to be.

Theorem 5. If f is C* and

d
aa(t, ZU) = f(t, a(t, g‘;))7 CY(O, ZE) —

then o is also C*,1 < k < 0.

Proof. This proof is not examinable. The hardest case is £k = 1, the
others follow almost trivially by induction.

So we assume f is C!, ie ‘Z)—{, % exist and are continuous. We
1

must show that a is also C'. Note that formally, if we set A(¢,z) =

(%) = D,a (an n x n matrix). We expect A to satisfy the linear

ODE
dA

Let A be the continuous solution of (1). We show D,a exists and equals
A. Let F(s) = f(t,a+ s(b—a)). Then
dF

= Duf(tats(b—a) (b a)

so f(t,0) — f(t,a) = [} Dyf(t,a+s(b—a))- (b— a)ds. But then
%(a(tvx + y) - a(tvx»

= f(ta a(tax + y)) - f(ta a(t,x))
= [y Dof(t,a(t,2)) + s(alt,z +y) — a(t,2) - (alt,r +y) — at,z))ds
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Let A(t,z) = D, f(t, a(t, ), £(t,2) = Mt 2)y. By(t,z) = [y Dof(t,alt, z)+
s(a(t,x +vy) — alt,x)))ds, n,(t,z) = a(t,r+y) — oz(t,.r). The pertur-

bation theorem for ODEs applies (E = AE, 3l 91 — Bp) and implies that

sup [A(E 2)y —{alt,z+y) — oz )}|| = o([lyll)

So Dyav = ); since 9 = f(¢, ), this means a is C'. Now 42 = A\,
Suppose f is C* and « is known to be C?. Then A is C?, so \ is C?
(by induction). So D, is CP. Also % = f(t,a) is CP. Hence « is

Cr+l = Ok, 0

2.7. Critical Points. Let f : U — R"” be a vector field. A critical
point of f is a point xy such that f(zq) = 0.

Observation (1) If ¢ is an integral curve of f passing through a
critical point xg, then ¢ is constant.

Proof. By uniqueness, since p(t) = zp is an integral curve.
Observation (2) If Jim ¢(t) = x, then z is a critical point of f.
Proof. By definition

oltr) ~ plte) = [ Flp(s))ds.

to
Write
fe(s)) = fla1) +g(s).
Then g(s) — 0 as(s — 00.) So estimating the integral, we have
IF Gl —tol < le(h) = e(to)ll + [t = o] sup |g(s)].

Set tg = R, t; = 2R and let R — oc. We get f(z) =

2.8. First Order Semi-Linear PDEs. Consider the semi-linear first
order PDE

u= i 8r] = f(z,u) (2.7)

where a;, b are real C' functions of z € R* and f is C'! but possibly
complex-valued. We want to solve this with the value of u on some
hypersurface, S, given - this is called a Cauchy problem. Let A(x) be
the vector field (a;(z),. .., a,(x)). Let v be an integral curve of A then

00 = Sa 00760 (28)

J
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So differentiating along integral curves of A is equivalent to applying
the operator Y a;(x)52-. This means that solving (2.7) is equivalent to
5 J

j
solving the ODE

d
2 w(r(®)) = f(3(8), u(7(1)))
along each integral curve . So a method of solution is now clear. We

need to specify data on a hypersurface intersecting each integral curve
once and then solve along each integral curve.

We therefore assume the data is given on a non-characteristic hy-
persurface, S, this means that the normal to S, call it &, does not

satisfy
> a;& =0
that is that A is never tangent to S.

Theorem 6. Locally, there is a unique solution of (2.7) which takes
given data on a non-characteristic hypersurface S.

We shall not complete the details of the proof of this theorem, as
we can deduce it (when f is real) from a more general theorem about
solutions of quasi-linear equations which is proved using a similar tech-
nique.

Example 2. Solve the PDE

42— = y? 0.9) =
on T g, = u(0,y) = f(y)
First we find the integral curves of the vector field (1,2z). So we have
dx dy
— =1,—2 = 2.
at ~ dt

We solve this to obtain
w(t) =t +cp,yt) = t* + 21t + co.

We want the integral curve vy, to start at (0,yo). So then ¢; = 0 and
co = 1yo. We now have to solve

d
T (w0 ,) (1) = (o) (1)° (w0 7,)(0) = (o).
This has the solution,

1

(10 yy,)(t) = EESIOE
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If f(yo) = 0 the solution is identically zero. We express u as a function
of (x,y) instead of (yo,t). We have x =t,y = 2* + yo so0

_ fly—a?)
ule,y) = af(y—a?) -1

(Note this will solve regardless of whether f(y — x*) is zero.)

Note that the correspondence given here between first order partial
differential operators and vector fields is quite an important fact and
indeed in the study of differential geometry it is customary to identify
the two.

2.9. First Order Quasi-Linear PDEs. These are a bit more general
than semi-linear equations as we allow the coefficients of the derivatives
to vary with the solution. If S is a hypersurface we study the problem

j=1 g

where all the functions are real. The solution technique for this relies
on regarding u as a variable on the same basis as x. Suppose S is
parametrised by a function g that is

S={z=g(s):s e R* '}
We work with the vector field
(a1,as,...,a,,b) on R**!

and solve for the integral curves

dx
i a(z,y) (2.10)
dy
i b(x,y) (2.11)
z(0) = g(s) (2.12)
y(0) = ¢(s). (2.13)

Our solution is then basically y(s,?) but we want it as a function of x
not (s,t). The map

(s,t) — z(s,1t)

will have invertible derivative at t = 0 provided the vector

(a1(9(5); 6(5)), - - anlg(s), b(5)))
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is not tangent to S - so we assume this is true - this is our non-
characteristic condition. It then follows from the inverse function the-
orem that the map has an inverse locally. We then define

u(z) = y(s(z), t(z))
and this is our solution. It clearly satisfies the initial conditions on
S we need only check that the differential equation is satisfied. We
compute
ou dsy O ou ot
Za]’aTZ = Z%(Z@;’“ai alttax )

= Zaskz ]3Sk+5‘“21

_ 0, E)I o E)t E)z

- Zé)sk aik 5t uzé)zja_t]

_ Z Ou Jsy, + @ﬁ
- Osy Ot ot ot

= 0+ 0b(z,u).
So we have proven the existence half of

Theorem 7. The equation (2.9) has a unique solution near S provided

the vector field (ai(x(s), d(s)), az(x(s), (s)),. .., an(x(s), p(s))) is not

tangent to S anywhere.

The uniqueness comes from the fact that the system used in the
existence part has a unique solution and that any u solving the equation
will give a solution of the system.

Note if we have a semi-linear equation with real coefficients we can
use the technique for quasi-linear equations if we wish but if it has a
complex right hand side, we must use the first technique.

The proof was also a technique so we can use it to find the solutions.

Example 3. Solve u% + % 1 withu=s/2 onx=y=s..

The characteristic condition is satisfied provided s # 2. We first find
integral curves

d d d
S A

dt ot dt
with initial data (x(s,0),y(s,0),u(s,0)) = (s,s,s/2). This has solution

u=t+s/2, y=t+s, x=1t/2+st/2 +s.

After eliminating s and t, we obtain
4y — 2x —y?
2(2 - y)
Note the singularity is precisely at y = 2 where the non-characteristic
condition fails.

u =
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The rest of section two is optional and not examinable.

2.10. Formal Power Series Solutions of Holomorphic ODEs
(optional). Consider the complex ODE

dXxX
- = A(2)X(2), X(0) =Xy (2.14)
z
where A(z) = > A,,2™ is a holomorphic matrix valued function de-

m>0
fined for |z| < r. We look for a formal power series solution of (2.14)
of the form

X(z) =) X,.2".

m>0
We get the recurrence relation
i+j=m—1

which can we use to compute all the X,,. Our problem is to show that
the series for X (z) will converge. ;From (2.15), we have the inequality

ml Xl < 3 TANIXG] (2.16)
i+j=m—1
Let a; = || 4;|| and define z,, by zq = || Xo||,
MTym = Y. 4. (2.17)
it+j=m—1

Clearly || X;|]| < z;. so the radius of convergence of X(z) will be less

than that of

Now if we set a(z) = Y a;2", then from (2.17), z(z) is a formal solution

of ;
E = a(z)x(2)

and x(0) = z. By construction a(z) is holomorphic for |z| < r and
this scalar ODE can be explicitly integrated:

z(z) = xgexp /OZ a(w)dw.

Thus z(z) is analytic for |z| < r (since there is a unique formal solution
by (2.17).) Since ||X;|| < z;, X(z) is also analytic for |z| < r, as
required.

So to summarise
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Theorem 8. If A(z) is a holomorphic matriz-valued function defined
in |z| < r then there is a unique holomorphic function X (z) defined in
|z| < r solving
dX
WX A@X (). X(0) = X,
2

with Xy given.

Hans Lewy’s Counter example.

If we try to solve Lf = ¢ when L is a complex vector field, we
can split up into real and imaginary parts, giving Z simultaneous real
equations of the same form. The previous geometric arguments do not
therefore apply and there may be no solutions.

Theorem. Let Q = {(z,y,2) : 2 + y*> < R, |2| < R} and let f(z) be
continuous and real valued. If there is a C' function u on §) satisfying
ou Ou

.\ Ou
Lu= a—i_l@_y — zi(x—kzy)& = f(2)

then f must be real analytic on |z| < R.

Proof. Let v(r,0,2) = €\/ru(y/r cos,\/rsinf,z), a C' function on
0<r<R,60¢€]|0,2n], |z| < R with period 27 in 6.
By change of variables
v 1 0v ov
or * ro0 oz
Set V(r,2) =i ;" N(r,0,2)df, a C' function on 0 < r < R, |z| < R.
Now

( Check! )

Bl = (R s
= i Jy"Lf(2)do
= —7f(2)
Let F(z) = [y f(s)ds and set W (z,r) = V(r,z)+7f(z). Let 0 = z+ir,
a complex variable. So %—2“ = 0 and hence W is homomorphic on

|z] < R, 0o < r < R. Moreover W extends to a continuous function
on |z| < R, 0 <r < R with W(z,0) = nF(z) real valued (note that
V =0 if r = 0). By Schwartz’s reflection principle, the extension
W (&) = W(&) makes W holomorphic on |z| < R, |r] C R. So W is real

analytic on r = 0. Hence F(2) and f(z) are real analytic.

Thus if f is continuous but not real analytic, there is no solution.

The Cauchy-Kowalewski theorem for linear PDEs
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We start by showing that the Cauchy problem always has a solution
for 1st order linear PDEs with analytic coefficients. Then we reduce
the higher order case to this one. We use the method of majoring power
series.

Theorem The Cauchy problem

2 S AL+ B ()
Y(z,0) =0,
where Y and B are vector-valued functions and A+, ..., A, are matriz-

valued with A;, B analytic near (0,0), has a unique analytic solution
in a neighbourhood of (0,0).

Proof. Suppose A'(x,t) = Z Al (2)t™, B(x,t) = Z By, (x)t™ where

Al (2) and B,,(z) are power series in z. Let a’, b, a’_ b be the power
series obtained by replacing all coefficients (matrlces or vectors) by
their norms.

We look for a formal solution of (%), Y(z,t) = ¥ Y, (z)t™ starting

m2>1
from m =1 to satisfy the b.c.
This gives the recurrence relation for m > 1
Y,
Al (2)=2L + B,
=Y Y 4@+ Balo)

i ptg=m—1
which uniquely determines Y (z,t). Let y(z,t) = X ym(x)t™ be the

solution of

=> X aé(x)gzz Fbpa(z)  (m>1)

i ptg=m-—1

Then clearly each coefficient of y dominates the norm of the con.coefficient
of Y. So it suffices to show that y(z, ¢) is analytic at (0, 0), ie the formal
power series converges. But y(:r t) is a solution of

at _Z ( ) y(.’E,O):U

Note that if 3 a,z® is convergent for |z;] < r then a,r'® — 0 as
la] = oo. Hence ||ay|| < Kr~lol for some & > 0 and ¥ a,z® is ma-

jorised coefficient by coefficient
Ky (%)* = KTI(1 — 2)~". Since the coefficients in [J(1 — z;)"" are
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all one while those in (1 — 3 ;)" are greater than 1, we see that
[1(1 — 2)~" is majorised by (1 — %)*1.

Since a’, b are analytic at (0,0) they are majorised by CTJ(1 —
Zi)~1(1—4)~"and hence C = (1 - %)~ 1(1— %)*1 for some C, r > 0.

T

But then y will be majorised by the solution of

() % _ o1 - eri)l(l _ f)ﬂ(Z aa; +1), z(z,0) = 0.

t
But if w is the solution of 22 = C(1 — £)71(1 — 2) " 1(22 + 1),

w(s,0) = 0 then the solution of (#) is z(z,t) = w(} x;,t). But the
solution of (xx) is given by

w(s, t) =1r—s— \/(r —5)2+ zr2log(l —t/r) (check!)

which is analytic at (0,0) for s, ¢ sufficiently small. Hence z,y and Y
are analytic at (0,0).

Theorem The Cauchy problem

[ WY — % A ()20 Y 4 B(x,t)

otk 4 9z At
(1) © o als<k
[ %]Ty(xao):%(-f) (7=0,...,k—1) (Cauchy data)

where Y and B are vector valued functions, the A, ; are matriz valued

and B, A, ; are analytic near (0,0), has a unique analytic solution in
a neighbourhood of (0,0).

Proof. We reduce the problem to the 1st order case by introducing
derivatives as new variables.

_ olol g7

= a7 Y for j <k, |a[+j < k. Then the equations become

Set ya]
%ya,j = Ya,j+1 for la| +7 <k

%ymj = %yﬁ,j+1 if ol +j\\: k,j < k where 3, = a, except 3; = a; — 1
o) 0 olel g7 OB

ayo,k ol Z Aa,j(%ﬂmmy + ot

Jtla<k
i<k

(2)

with initial conditions

||
s, 0) = Bo(@)
al gi
yng(-T,O) = ZAa,ng%Y(TaO)-'_B(raO)

= Z Aa,jyaj(l‘a 0) + B(’E, 0)
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A moments reflection shows that system of equations (2) is equivalent
to the system (1). So the problem is reduced to one of the form

) ; oY

— = Al(zx,t)— + B(x,t Y(: = ¢(x).

o= X AT+ Bl (x,0) = o(a)
Setting Y (z,t) — ¢(z) in place of Y we reduce to the case ¢ = 0, for

which we have just proved the result.

Remark

(1) The C-K theorem is also true for quasi-linear equations, when the
A7 and B’s depend also analytically on Y. The proof is essentially
the same but more complicated to write down.

(2) Let L be an mth order differential operator with analytic coeffi-
cients and S an analytic hyper-surface non-characteristic for L.
Then the Cauchy problem

Lu = f

Dy = ¢ on s(la] <m)
has a unique analytic solution locally near S for any f, ¢ analytic.
In fact we make an analytic change of coordinate so that S is given
by t = 0 in R*™ = {(z,#)}. Since S is non-characteristic the

coefficient of (%)m must be invertible, so we are in the situation
of the C-K theorem.
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3. THE FOURIER TRANSFORM AND PDES wiTH CONSTANT
COEFFICIENTS

3.1. The Fourier Transform on Schwartz Functions. Let
S(R*) = {f € C¥(R") | sup |70 f ()| < o0, Ve, 5}

this is called the space of Schwartz functions. It is easy to see that

p(x)e’a“"z”2 lies in S(R™) for any polynomial p and « > 0.

We will be interested in maps on S(R") - for example the Fourier

transform - and we therefore want a notion of continuity. We therefore
define,

11la,5 = sup 270 f ()],

for f € S(R™). A linear map 7 on S is then continuous if for all «,
there exists &, 3 such that

1T fllasll < Cap 3° < Easllfllys-
18

Roughly this says we can control the size and decay of the derivatives
of T'f by those of f.

Any smooth function of compact support lies in S(R") - it is not
obvious that such functions exist. These can be constructed in the
following way.

Lemma 1. (Bump functions) There is a smooth function, f, on R
such that
f(t)=1for|t| <1, f(t) =0 for|t| > 1+ and 0 < f(t) <1 allt.

Proof. Let
—1
exp 122 s <]_
o(a) = { (=) =

0 |z| > 1.

We have a constructed a smooth function of compact support. Now let

ha) = [ gt/ [g.
Then h(z) = 0 for x < —1 and h(z) = 1 for x > 1. Moreover 0 <
h(z) <1 for all z. Taking
k(z) = h(ax + )

for suitable a and (3, we get a function such that k(x) = 0 for x <
—1—=90, k(z) =1forz > —1 and 0 < k(z) < 1. Now set

f(x) = k(z)k(—x).
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O

For f € L'(R"), (see appendix) define the Fourier transform f by
~ 1 )
_ —ix.£
f(©) = gy [ ¢ S @) (3.1
Clearly S(R") ¢ L'(R"), since
(1+ [|l=]*)™ € L'(R)
for example or

[t +27)" e LYR).

We set D; = —ia%j - this turns out to be very useful in studying the

Fourier transform. Clearly
z;: S(R") -S(R")

Lemma 2. The Fourier transform f +— f maps S into S and

Proof. 1f we differentiate (3.1), we get

~

Df(€) = [e ¢ (- a)" f(w)da

which is valid since ® f (z) is integrable. So f(€) is smooth and D*f =
(—x)f. Integrating,

[ et 1 (w)da
by parts we obtain the first statement.

So we get

&Df(€) = [ e DA (- a) f(2))dz = [ e g(a)da
with g Schwartz.
Hence
sup (€7D f(€)] < Csup [T(1 + |z:*)|g(x)

where C' = fmdr < 00. So f s f takes S(R") into S(R*). O
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These facts are useful as they show that the Fourier transform con-
verts constant coefficient linear operators into multiplication by a poly-
nomial and it is also the key to one method of inverting the Fourier
transform. Before proving the Fourier inversion theorem we introduce
a couple of lemmas.

o8

Lemma 3. If f € S(R") and f(0) = 0 then f(z) =

filx)x; with

=1

Proof. An n dimensional version of Taylor’s theorem says that

with F; smooth but not necessarily Schwartz. (Iterate the result of
Theorem 28 (ii).) On the other hand for x # 0

flz) = Z Gi(x)x; (3.5)

where G;(x) = f(z)z;/|z;||>. The functions G decay correctly but need
not be smooth at x = 0.

We construct our function by taking a mixture of these two; let ¢
be a bump function equal to 1 for ¢ small and 0 for ¢ > 1 and set

filw) = vl Fi(2) + (1 = o ([|2]*)Gi(2).

Both these summands lie in S(R™). As ¢ + (1 — ¢) = 1, the result
follows. L

Corollary 2. If f € S(R") and f(a) =0 then f(x) = > (x; — a;) fi(x)
Proof. By the lemma f(x + a) = Y. z;¢;(x) with g; € S. So

flx) = "(xi — ai)gi(z — a)
where f;(z) = gi(x —a) € S. O

Lemma 4. Let T : S(R*) — S(R") be a linear map commuting with
xj and D; for all j. Then

Tf=cf

for some ¢ € C.

Proof. If f(a) = 0 then from the corollary above we have that

Tf(x)= Z(Tz —a;)T f;
so Tf(a) =0.1
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So observing that f(z) — f(a)e 1”7~ is zero when z = a, we have
that T(f — f(a)e =-2")(a) = 0 and hence

T(f)(a) = f(@T (e ") (a) = c(a) f(a)
for some function ¢ which is independent of f.

Now take some particular g € S(R") with g > 0 (for example g(x) =
exp(—x?)). We observe that

c="Tg/g
is smooth. But then
cD;fTD;g = D;Tg = Dj(cg) = (Djc)g + ¢(D;9).
Hence (D;c)g =0, so D;c = 0 and hence ¢ is a constant function. O

Theorem 9. The Fourier transform
fe f
15 an 1somorphism of S onto itself with inverse given by
1 n/2 ] R
N ix-€ de.
fa) = (52)  [emei
Proof. Let F(f) = f. Then F? is a linear map on S and
F?z; = —x;F?, F?D; = —D,;F”.

Now let Rf(z) = f(—x). Then Rzx; = —z,;R, RD; = —D;R and
so T = RF? commutes with z; and D;. So, applying the lemma,
T = RF? = ¢ for some constant c.

We are thus reduced the problem to computing the constant c¢. Let
folx) = e 121772,

Then
(z;+1iD;)fo = 0.
Hence A
(—Dj; +1i&;) fo = 0.
So

fole) = exe a2
for some ¢; by the uniqueness of solutions to ODEs. Setting & = 0, we
get
o= #/enz?mdx 1
1 (2m)n/?
since [ e % /?dx = \/21. So F?fy = fo, so Tfy = fy and hence
c=1. U
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3.2. Properties of the Fourier Transform. For ¢, ¢ € S(R") de-
fine the convolution ¢ *x v of ¢ and 1 by

6% 0(e) = o [ 9l = V)

Clearly ¢ * 1) = 1 % ¢.
Theorem 10. For ¢,¢ € S(R")

Proof. (a) Both sides are given by W [ () (€)e ™ EdadeE.

(b) Set x = E Then X(&) = (2n) ™2 [ ¢ (x)etdx = () so result
follows from (a), replacing ¢ by x.
(c¢) Both sides are given by ﬁ [ p(x)(y)e @) Edady.

(d) The Fourier transform of ¢t is p(—x)y(—=z) while

ox1 =@ = p(—a)P(~a).
So the result follows from (c).

O

3.3. The Paley-Wiener Theorem (optional). In general, the Fourier
transform exchanges growth at infinity with smoothness properties.
The Paley-Wiener says that if a function is of compact support then
its Fourier transform is analytic and vice-versa. One can provide more
general statements that relate the boundedness of the support in cer-
tain directions with analyticity in certain sectors. The idea is to realise
that f extends to the whole of C" in this case, the same idea will be
used to prove that any non-zero differential operator p(D) with con-
stant coefficients has a fundamental solution.

Theorem 11. If f € C3°(R") has support in B(0,r) = {x : ||z|| < r}
and if

i) = ﬁ [ e = (e 1)

then f 18 entire and there are constants Cy s.t.

F(2)] < Cn(1 + |2]) NerltmG (N=0,1,2,...) (2)
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Conversely every entire function satisfying (2) is the Fourier-Laplace
transform of a smooth function in C$°(R™).

Proof. We start by recalling that g(z) is entire if g : C* — C is contin-
uous and separately holomorphic in each coordinate.

If g vanishes on R” then g is identically zero; to see this let aq,... ,a,
be real variables. Then g(ay,...,a,) = 0Va;. So g(ai,... ,a, 1,2,) =
0 by the one dimensional result. Continuing in this way we get g = 0.

Note that if ||z|| < r, then |e %] < ¢"™) So f exists and is con-
tinuous in z, since the integration need only be performed over B(0,r).

By Morera’s theorem applied to each coordinate of z separately, f is
holomorphic so entire. Moreover

~ 1 .
#1(2) = oy / (Df)(x)e 2 d
Hence |22||f(z)] < |[|[D*f|1e"!™? which immediately gives (2).

Now suppose that ¢g(z) is an entire function on C" satisfying (2) for

all V. Set .
f(z) = n) /g(f)ewgdf

Since (1+ |£))Vg(€) is in L' for all N, f is C*° with
@ 1 o! i
D°f(w) = (g | €7 0(€)e e

Next we claim that for any n € R”

@) = oy [ o€+ e de (3

It clearly suffices to check this when n = (0,...,0,A,0,...,0) in
which case it follows from Cauchy’s theorem in one variable by taking
a rectangular contour and noting that |g| — 0 on the vertical part of
the contour. Set n = ax with a > 0 for x # 0. Then

‘g(5+m)em-(£+in)‘ <Cy(+ )N eallzll(r=llzl))

and hence

|f($)| < (25;/2 e"‘”IH(T*HzH) /(1 + ‘f‘)iNdf (4)

where N is chosen large enough for the latter integral to converge. Now
suppose ||z]| > r. Let a — oo in (4); we get f(x) = 0.
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(1) follows now from the inversion formula since g(z) and f agree on
R™ and hence C", since they’re both entire. O

Corollary 3. If f € C°(R") then P(D)u = f has a solution u in

C(R™) if and only if f(£)/P(€) is entire. The solution is then uniquely
determined and if f is supported in B(0,r) then u is also.

Proof. Taking Fourier-Laplace transforms gives P(z)i(z) = f(z) so
f(2)/P(z) is the entire function u(z). To prove the converse we need
the following 1 variable result.

Lemma 5. Let h(z) be holomorphic and p(z) a polynomial with leading
coefficient a (z € C). Then

lah(0)| < max |h(z)p(z)].

lz|=1

Proof. Set q(z) = 2™p% where m = degp. Then ¢(0) = @ and |ah(0)| =
[(0)A(0)] < max|q(z)h(2)] = max[p(z)h(z]| a

2| |z]=1

;=

Lemma 6. Let p(z) = Y aq.z® be a polynomial of degree m. Then
la|<m

there is a real orthogonal change of coordinates such that the coefficient

of 21" is non-zero.

Proof. We may assume P(z) = Y a,2z% is homogeneous of degree
|a|=m
m and proceed by induction on the number of coordinates. Write
p(z) = 3 2Mpa(ze,...,2,). Make an orthogonal change of coordinates
a<k

in z9,...,2, s.t. the coefficients by of 25" * in p; is non-zero. Now
replace z; by cz; — szo and zo by sz; + czo where ¢ = cosfl, s = sinf.
The coefficient of 2{" is then clearly

bosmfaca + blcaflsmftH»l 4.
with b; € C, by # 0. This is essentially a polynomial in 2 so is non-zero

for all but finitely many values of # as required. O

Remark 1. This also follows from the fact that O, acts irreducibly on
homogeneous polynomials of degree m.

End of Proof of Corollary After an orthogonal change of coordinates,
we may assume that the coefficient of 2" in P is non-zero. Suppose
g(z) = f(2)/p(z) is entire. Note that the coordinate change doesn’t
affect the bounds on f since |z| and |Im z| are not altered. Set p(§) =
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p(E+21,...,2,) and h(z) = g(§ + 21, .. , 2n). By Lemma 1 |ah(0)| <
sup [h(§)p(€)], so

€[=1
9 < ysn €tz )
< C"—f‘v sup (1 + |z + (£,0,...,0)]) Nerltm=+8)l
€l=1

Now |z| <1+ |z +&]| since [€] =1s0 (14 |z]) < 2(1+ |z +&]). Hence

C
l9(2)] < ﬁTN(l + o) Merlimeler
a
So g is the Fourier transform of a C* function supported in ||z|| <
T. U

3.4. Smooth Partitions of Unity (optional). Partitions of unity
are an important idea - they allow us to localise. We divide a com-
pact set up into lots of small balls where we can prove our result and
then glue together with a partition of unity. It is important to realize
this is not possible in the analytic theory where local and global are
irrevocably intertwined.

Theorem 12. (Smooth Partitions of Unity) Let K be a compact subset
of R" and Uy, ... ,U, open sets in R" such that K C UU;. Then we can
find f; € CE(R™) with 0 < fi(x) < 1, supp fi C U; with Y fi(z) =1
on K and Y fi(z) <1 all x.

Proof. Recall that on any open ball in R", we can find a bump function
g € C(R™) with 0 < g < 1 and g > Oprecisely on the given open open
ball. We shall use these functions in stead of the distance functions.

Since K is compact, we can cover K by open balls By,..., B, with
each B; contained wholly in some U;. Then UB; is a bounded set in
R" so contained in some closed ball B(0, R). Then B(0,R)\ U B; is
compact and disjoint from K so can be covered by finitely many open
balls C1, ..., C, all disjoint from K.

For each ball B; pick a bump function ¢; and each ball C; pick a
bump function h;. Finally for the ball ||z|| > R “at oo” pick a C*
function k& > 0 with supp k = this ball, e.g. k(z) = (=5 R) where ¢

llz]

is a bump function for ||z|| < 1.

Thus > h; +> g; +k > 0on R". Now set F; =g;/ > hi +> ¢ + k.
So supp F; = B;j and Y Fj(x) < 1 on R" with equality on K (since
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hiok =0 on K). Finally match up the B,’s with U;’s in which they
wholly lie and set f;(z) = > Fj(z). O

B;CUj

3.5. The Schur Test(optional). If K is a locally integrable function
on R” x R" then one can define

= [ Kz, y)uly)dy

this will be a map from smooth functions of compact support to smooth
functions (not necessarily of compact support.) We call K the Schwarz
kernel of P ( it has nothing to do with the null space. ) There are
important connections between the properties of K and P.

Let K(z,y) be a continuous function in R" x R" such that
sup/ |K(x,y)|dr < C, sup/ |K(x,y)|dy < C.
Y T
Then the integral operator defined by the kernel K has norm < C'
in L2(R"), ie
(1] K@y )dyPde)2 < o([ 1 (@)Pdn)' .

Proof. By the Cauchy-Schwartz inequality

Kf(@)? = |[K(zy)f(y)dy
< JIK(z y)|f(y)|dy [ K (x,y)|dy
< CJIK(z, )| f(y)*dy

Hence [ |K f(x)*dx < C [ [ |K(z,y)||f(y)Pdydz < C? [ |f(y)?|dy. O
Corollary4 If f € LY, g € L% then ||f * gll2 < |Ifl]lgllz where
£l = Gy J | f (@) d.

Proof. X
f90) = oy [ 1= watw)dy

so K(z,y) = /1) 5o the conditions of the Schur test are satisfied

27r)n/2

with € = ||£]. O

Remark I | ], s the norm ||, = (/ | (#)[Pdz)"/» and L7(R") = {f |

| f]l, < oo}, then the Schur test is also true with L? replaced by L?. The

proof needs the Hélder inequality [ |f(2)g(z)|dx < (f |f(x)|Pdx)/?([ |g(x)|¢dx)"/
where % + % = 1. In particular this gives ||f % g/, < || fll1]|gll, (see Ex

sheet 2).
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4. DEFINITIONS OF TEST FUNCTIONS AND DISTRIBUTIONS

4.1. Test Functions. The space of test functions on R" is the space
C§°(R™), ie smooth functions of compact support, with the definition
that f, — f as test functions if f,, f are all supported in some fixed
ball B(0, R) and

sup |[D*(f, — f)] = 0 (n — o0) Yau.

Example 4. Let f € C{°(R"™) be non-zero. Let f, = 1/7" then f,

converges to zero in C§°(R™). But if we let g,(x) = f(x — n) then
gn does not converge to zero in C3°(R™) although it converges to zero
pointwise.

Distributions are motivated by the fact we have, provided one of f
and ¢ has compact support, that

[ e r@)g@)ds = (~1)°! [ f@)D2g(e)ds (%)

which we can write (D°f, g) = (—1)¢l(f, D*g). This means that the
derivative of a non-differentiable function can be defined in terms of
how it pairs with a smooth function of compact support. With this in
mind, we define a distribution, T' (a generalised function) to be a linear
map f — (T, f) from the space of test functions to C which satisfies
the continuity condition

fo—= f= (T, fu) = (T, f).

[t is traditional to denote this class D'(R") or C~°°(R"). The important
thing to note it that any locally integrable function, u, will define a
distribution by

<u, f>= /u(x)f(x)dx e .

Linearity is obvious but we need to check continuity. If f,, — f in C2°
then there exists K compact such that supp(f,) is contained in K for
all n. So we have

(u,fo = DI < [ @I = f)(@)lde

which will tend to zero as

sup | fn — f| = 0.

Note that we will generally regard locally integrable functions as a
subset of distributions. (a locally integrable function is a function
which is in L' when multiplied by the characteristic function of any
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compact ball) The most important distribution that is not a function
is the Dirac delta function

0a : (0a; ) = f(a).

We define D*T" by
(DT, f) = (=1)"KT, D*f)
s0 (D6, f) = (=1)*'D* f(a).

Example 5. The Heaviside function H(x) on R is zero on x < 0 and
one otherwise. As it is locally integrable it defines a distribution. So
DH 1is given by

(DH, f) = —(H,DF) = —/Df(.r)d.r

which by the fundamental theorem of calculus is just %f(O) So the
derivative of the Heaviside function is the delta function.

The main aim now is to extend as many operations as possible from
functions to distributions - convolution, Fourier Transform, change of
coordinates. We must be careful since, for example, it will not be pos-
sible to multiply distributions nor can one define the Fourier transform
even for all smooth functions.

A fundamental solution of p(D), where p(&,...,&,) is a polynomial

and p(D) = p(—ia%l, cee —i%), is a distributional solution, T, of

So the Heaviside function is a fundamental solution for % on R.
General fact: every constant coefficient operator P(D) has a funda-

mental solution. It is not necessarily unique as we can add any solution
of p(D)T = 0. We'll find fundamental solutions for

2 2
Z %( Laplacian), 5% F( heat operator )
Ly T
and
0? 0?
o~ 2o

(wave operator or D’Alembertian).
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The reason we are interested in fundamental solutions is that we can
use them to solve PDEs as they are effective inverses to differential
operators. Then to solve P(D)f = g, we set f =T % g, then

P(D)(T xg) = (P(D)T)xg
= (d)*xg=g

For the three operators above, T" will be given very explicitly so this
gives a complete solution to the problem. We do have to be careful
though about when do the convolutions exist and we have to under-
stand what convolution means for distributions.

4.2. Linear Operations on Distributions. Suppose A : C°(R") —
C(R™) is a linear map which is continuous, ie. f, — f implies
A(fn) = A(f). The dual or transpose of A, if it exists is a map

A" CP(R") = C°(RY)
which is linear and continuous with
(Af,g) = (., A'g) Vf,g € CX(RY).

If the transpose exists then we can then extend A to distributions u by
the formula

(Au, f) = (u, A'f) (f € CZ(R™)).

It is important to realize that transposes do not always exists as
C$°(R™) is not a Hilbert space with respect to the pairing

(f,9) = /f(r)g(r)dr

Examples

(a) Multiplication Af = ¢ f where 1p € C*°(R"). Clearly A" = A so
any distribution u can be multiplied by v
(Yu, f) = (u, 9 f).

NB multiplication by a distribution is another matter as it is not
a map on C>°(R") and in general is not possible.
(b) Differentiation Af = 0%f. Then A'f = (—1)1?19° f so we get

(0%u, f) = (=1)*u, 0 )
(¢) Reflection Af = f where f(z) = f(—x). Thus A’ = A. So we set

(@, ) = (u, f).
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(d) Translation T,f = f(z —a) then T, =T . So we define
(Tau, f) = (u, T_of).

Abusing notation T,u is often written u(z — a).

An important concept when dealing with distributions is that of sup-
port. This is the set of points where the distribution is not identically
zero. As is usual for distributions, we first define the concept for func-
tions and then use a backwards definition to do so for distributions.

So if f € C*°(R"), we define

supp(f) = f~1(C - {0}).
And if uw € D'(R") then = ¢ supp(f) if and only if there exists an
open set U such that z € U and if supp(f)CU then (u, f) = 0. It
can be shown, using partitions of unity, that the definition implies the
apparently stronger statement, if U is an open set with U Nsuppu = ()

and supp f C U then (u, f) = 0.

For example if a function is supported in R” — {0} then it will always
pair with the delta function to give zero. We therefore conclude that

supp(dp) = {0}.

Clearly the only distribution whose support is empty is the zero func-
tion.

A related concept is that of singular support, this is the set of points
where the distribution is not smooth. We say = ¢ singsupp(u) if there
exists a smooth function f such that = ¢ supp(u — f). An equivalent
definition is that there exists a smooth ¢ such that ¢ (z) # 0 and
Yu € C°. If the singular support is empty then the distribution is
given by a smooth function.

However the operation we really want to extend to distributions, the
Fourier transform, can not be extended to the full class as the space
of compactly supported smooth functions is not invariant under it.
Indeed, the only smooth function of compact support whose Fourier
transform is compactly supported is the zero function - to see this
observe that the Fourier transform will be analytic. We therefore need
to work within a larger class of functions - the Schwartz functions.

4.3. The Fourier Transform and Tempered Distributions. We
define the space of tempered distributions, S'(R"), to be the space of
linear maps, u, from S(R") to C such that if f, — f in S(R") then

(u, fu) = (u, f).
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An important but non-obvious fact is that the space of tempered dis-
tributions form a natural subspace of the space of distributions. To see
this, one needs to check two things. The first is that it is continuous on
C>*(R"), to see this we need to show that if f, — f in C*(R") then
it does in S(R™) - as we then know that

(u, fn) = (u, f).

The second is that if a tempered distribution vanishes on all functions
of compact support then it vanishes everywhere - this means that a
tempered distribution is determined by its value on C2°(R™). This will
follow if given any Schwartz function f there exists a sequence of f, €
C>*(R"™) converging to it in S(R™) (but not of course in C°(R").)

First let’s show a tempered distribution is continuous on C°(R"). If
Jn converges to f in C°(R™) then supp(f,) is contained in some fixed
ball B(0, R) for some R. So,

||fn - f”a,ﬁ = sup |'raD,3(fn - f)(r)‘ < R%sup |fn - f|a
which converges to zero.

Theorem 13. Given f € S(R") there exists a sequence of functions
fn in C°(R™) such that

sup [+*DP(f, — f)| = 0, Vo, 8
as n — OoQ.

Proof. Let 1 > 0 be a bump function with support in ||z|| < 1 with
Y(z) =1, [Jz]] < 5. So D is bounded for each ov. Let

x
outr) =4 ()
for R > 0. Then sup [D*¢r| = i sup [D*)|; so for R > 1 the D*g’s

are uniformly bounded. We set

Then
sup |22 DP(f, — f)| = sup |2*D?(2p, — 1)f]
= o, 2D (¢, — 1) f|

< C Y swp DR

a1<e,01<B ||z||>n/2

But 2 D% f is a Schwartz function and so is rapidly decaying at in-
finity. O
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We can now define the Fourier transform on tempered distributions.
We have seen that the Fourier transform is a bijection on S(R™). More-
over we showed that the estimate

sup (€7D f(€)] < Csup [J(1 + |2*) (D (=) f ()]
This shows that the Fourier transform is continuous on §. That is if
fo— finS
then A A
fo— finS.
So if u is a tempered distribution then so is f — (u, f); on the other
hand if f, g € S(R") we have

(f,9)=(f,9)-
So for a tempered distribution u we define its Fourier transform by
(i, f) = (u, f).

Example 6. What is the Fourier transform of the delta function dy?
<$07f> = <601 f)

= f(0)

=(35)" [ o1

A . 1\ "/2
So g 1is the constant function (ﬁ) .

We can extend the relations we proved for the Fourier transform on
Schwartz space to cover the Fourier transform on distributions too. If
u is a tempered distribution and f is Schwartz then

(Dju, f) = (Dyu, f)

= —(u, D, f)
= (u,&;f)
= (4, &;[)
= (&, f)-
So -
Dju = & u.

Note here that as f is being paired with @ we regard it as being a
function of ¢ rather than x. A similar argument shows that

—

Tju = —Dju.
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We can now swiftly deduce that the Fourier transform of a derivative
of the delta function is a polynomial and vice-versa.

We have already made some progress towards solving PDEs - if P(D)
is such that p(§) is never zero - for example P(D) = —A + 1. Then to
solve

P(D)u=f
we let A
a=p(&) 'f

and the fundamental solution is just given by

i=p(&)! (%)m :

A large part of the theory of PDEs is different ways of dealing with the
zeros of p(&).
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It is important to realize that when u is an L' function that one can
compute the Fourier transform in the “traditional” way.

Proposition 2. Ifu € L' then

1 n/2 ]
= <—> /efm'gu(x)dx
2m

and U 1s a continuous function.

Proof. To see the first statement, just observe that if f is Schwartz
then

.9y =y = ()" [ e bute) s

as all integrals involved are absolutely convergent there is no problem
with interchanging orders and so the result is immediate.

The second statement follows from the Dominated Convergence the-
orem as

[ e =5 (@)ldo

exists. ]

In fact, the Fourier transform will tend to zero at infinity - this is called
the Riemann-Lebesgue lemma. An important corollary to this for us is

Corollary 5. If q(§) is smooth and
g < gy

for some € > 0 then the (inverse) Fourier transform of q is C'.
NB < € >= (1+[¢?)"/2

Proof. Just observe that the D2 is the Fourier transform of an L'
function. 0

If P is an elliptic operator then p(§) is non-zero for £ large enough
as

Ip(&)] > Clg|™ — C'lg|™ .

So, we can find something almost good as a fundamental solution by
putting
1 1

B=(5)" o wiE
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where 1) € C§°(R") is identically one in a neighbourhood of the zeroes
of p. We then have that

e 1 n/2 1 n/2
POE=(3-) ~(5) v©
which means that
P(D)E = &y — @(—x)

so F is a fundamental solution up to a Schwartz error. In fact, we can
make this Schwartz error be supported in arbitrarily small set about
the origin, once we have proven

Theorem 14. If P(D) is elliptic of order k, ¢ is a smooth function
of compact support identically one on a neighbourhood of the zero set

of p and /
. 1 n/2 1
B=(5) gt e

then
P(D)E = 5, + f(x)
with f € S(R") and E is singular only at the origin.

We say FE is a parametriz for P.

Proof. To check the singularity property, we show that if ¢ is a smooth
function of compact support, support in z; # 0 for some j then ¢FE is
smooth.

We have that
OE = (z;'¢p)aE
so its enough to show that ’EéE is C* for any « for [ sufficiently large.
(I depending on « of course!) Now ’EéE is the inverse Fourier transform

“ (55

So need to show that differentiating increases the decay. Any derivative
falling on x will yield something of compact support so we need only
consider

(1—x)Dgp".
By using an inductive argument, we can show that Dép* is a sum

of terms of the form ¢,/p" with ¢, a polynomial of order s, where
s, —lr = —k — | and the result follows. O

1
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If we now multiply the parametrix by a bump function identically one
near zero and supported in the set ||z|| < p. We have a parametrix
supported in ||z|| < p. The existence of such a parametrix will allow
us to show that the singular support of P(D)u is equal to that of u for
any distribution u but first we have to understand what convolution
means for distributions.

4.4. More Operations on Distributions including Convolution.
We use a method going back to Schwartz to define convolutions of dis-
tributions. Convolutions are essential to using fundamental solutions
to invert linear partial differential operators and have many other uses
besides. Recall that if f, g are L' functions of which one is compactly
supported then one can define

frg= [ fla— vy
We can regard this as three operations.

e Exterior Product
D'(R") ® D'(R") — D’(RQ”)

(f.9) = f©y,

this is the extension of the map taking (f,g) to f(z)g(y) to dis-
tributions.

e A Linear Change of Coordinates We wish to do the linear change
of coordinates,

(r,y) = (z = y,9).

e Push-forward - we map the distribution h(x,y) = f(x —y)g(y) to
[ h(z,y)dy. This will only be defined given certain conditions on
the support of h.

We will consider each of these operations separately. Note that it
is a quite useful standard technique to divide a complicated operation
into a sequence of quite simple basic operations.

4.4.1. Exterior Product. If f and ¢ are L' functions then we could
define for h € C°

(o 9.0 = [ £a) ([ sw)he,y)dy) da.

So if u € D'(R"),v € D'(R™), we put h,(y) = h(z,y) and define
(u®wv,h) = (u,(v,hg)).
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For this to be well-defined we need to know that «(x) = (v, h,) is a
smooth function of x. Now we have that

Oh
h(x + sej,y) — h(z,y) — sa—(r y) = s*(x,s,7)
Lj
by Taylor’s theorem with ¢/ smooth. So
a(x + se;) — alx) — s(v, Oh ) = 8%(v, Yy ).
3:1:]-

But as s — 0, 1, tends uniformly to —(x y) and the same is true

for the derivatives so we conclude that

oo oh
a—rj(x) = (v, B ).

Zj T
The smoothness then follows by induction and so our operation is well-
defined. We need to check that u ® v is continuous but if A, — h
then clearly h,, — h; so a, — « but the argument above shows the
derivatives of o will converge also and so we get a distribution.

4.4.2. Linear Changes of Coordinates. If A is a linear map on R" then
it induces a change of coordinate map on smooth functions:

A" f(x) = f(Ax).
The transpose of this map is
(A%)'g = f(A") det(4)~"
as
/f(Ar r)dr = /f y) det(A")dy.

The transpose is clearly continuous so we can extend to distributions
in the standard way.

4.4.3. Pairings and Push-forwards. If f € CX®(R* x R™) and g €
C*(R") then we have

/fxydyg /ffry x)dydz.
So the transpose operation is the pull-back
7 COR") - C*(R" x R™)
given by
mg(z,y) = g(x).
This is a pretty simple operation but has the problem that it maps

compactly supported functions to functions which are not compactly
supported! We have defined distributions to be maps from the space
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of compactly supported functions to the complex numbers so we have
a problem. However, the pairing between a function and a distribution
can in fact always be defined provided the intersection of their supports
is compact.

If K is a subset of R", we denote D'(K) to be the distributions
supported in K and C*(K) to be the smooth functions supported
there.

Proposition 3. If K, LCR" are such that K N L s compact there s
a well-defined pairing

D'(K) x C*(L) — C.

Proof. Let M = KN L and let ¢ =1 on an open neighbourhood of M
and be compactly supported. We define

<U, f)qb = <u7¢f>

We need to check that this is independent of the choice of ¢ but if ¢,
is another choice we have that the difference is

< <u7 ((b o ¢1)f>
The support of (¢ — ¢1) f is disjoint from that of u so this equal to zero
and the pairing is well-defined. 0J
We leave to the interested reader to formulate the continuity properties
of this pairing.

Let 7 be the projection, 7(x,y) = x. We say that a set, LCR" x R™
is proper with respect to the projection if

T (K)NL
is compact for every K compact in R".
We now have

Proposition 4. If u € D'(R" x R™) is proper with respect to 7 then
there is a well-defined distribution m,(¢p) on R™.

Proof. We just define for f € C§°(R")
(mou, f) = (u, 7" f).
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4.4.4. Convolution. So with all that done we can now define convolu-
tion to be
uxv=m,A"(u®v)

where A is the map A(z,y) = (z—y,y) and 7 is the projection (z,y) —
y. This of course requires the push-forward to be well-defined, which is
implied by requiring
{(2,y): 3y, (x —y) € supp(u),y € supp(v)}
to be compact for x in each compact set K.
The first important point here is that convolutions are always defined

provided one of the distributions is of compact support. The delta
function is the identity for this operation:

(G0 * v, @) = (do(2)v(y), P(z + y))
= (0o(x), (v(y), d(x + y))a)
= (v, §).
As
(uxv,¢) = (u®v, ¢z +y))

we have that u x v = v *x u so Jq is both left and right inverse. As

(D (uxv),¢) = (~1)*(u® v, (D) (x +y))
we have that
Duxv) = (D%) *v =ux* D%
and that
D% = D%y * u.
This last statement implies that applying any differential operator is
equivalent to convolving with a distribution.

Another important property of convolutions is associativity - without
associativity one can do nothing! This follows from observing that

(ux (vxw),d) =(uRv@w d(r+y+2)),
provided the right hand pairing make sense i.e. that
{(z,y,2):x+y+2z € K,z €supp(u),y € supp(v), z € supp(2)}

is compact for all K compact - so provided this condition is satisfied,
we have associativity. (Of course, this requires exterior product to
be associative but it is.) Note that if F is fundamental solution then
regarding the operator P(D) as being convolution with P(D)d, we have
that

ExP(D)=6 =P(D)*E
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and that if P(D)u = f then u = E x f provided the convolution exists!
Note that while a fundamental solution is a left and right inverse - the
standard proof that left and right inverses are equal only works when
the fundamental solutions are convolvable. So a differential operator
can have many fundamental solutions. One can think of these as being
inverses on different classes of functions.

For example, if 88_;1 = f then if u, f = 0 for x; large negative, we
have that

u = 7 f(s,2")ds

and if u, f are zero for x; large positive we have that

u=— 7Of(s, 2")ds.

We can regard these solutions as being convolution with the fundamen-
tal solutions H(x;) and H(x;) — 1.

Another important fact about convolving is that convolving a distri-
bution with a smooth function always yields a smooth function. (given
the condition on supports.) The philosophical reason this is true is
that if you differentiate you can put all the differentiations onto the
smooth part which remains smooth so differentiating never makes the
convolution worse so it must be smooth. How do we prove it though?
Let u be a distribution and f a smooth function which are convolvable
and consider the map

z — (U, gz)

where g, = f(xr — y). This is a smooth as a function of z - same
argument we used when defining exterior products. This is morally
the convolution - we check

((f(x —y), u(y))s ¢(x)) = (uly), f(x — y)o(y))
= (f(z — y)uly), ¢(z))
= (fxu,o).

It is quite easy to establish an upper bound for the support of a
convolution in terms of the supports of the original distributions:

supp(f * g)C{z:3y.y € supp(f),z — y € supp(g)}.

This is easy to prove - one just computes the action on supports of
each of the three basic operations.
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With all this done, we can now prove an important theorem - ellip-
tic regularity. This is sometimes expressed as “weak implies strong”
as it says that every weak or distributional solution is also a smooth
or strong solution. This is historically very important as one can con-
struct distributional solutions of elliptic PDEs using the Hahn-Banach
theorem and it is then useful to know that they are in fact ordinary
solutions too.

Theorem 15. Ifu € D'(R") and P(D) is an elliptic differential oper-
ator then u and P(D)u have the same singular support. In particular,

PD)ue C*® = ue C™.

Proof. Given p > 0 there is a parametrix E supported in ||z| < p. So
P(D)E=06y+ f, EP(D)=060+g
with f, g smooth and supported in ||z|| < p. So
u+gxu=FEx(P(D)u).
Now g x u is smooth as g is. So u and E x (P(D)u) have the same
singularities. Thus if P(D)u is smooth, so is u.

If P(D)u = h is not smooth then we can write it as hy + hy with hy
smooth and h; supported within p of the singular support of h. So u
has the same singularities as F % hy but E x h; is supported within 2p
of the singular support of h.

This is true for any p > 0 and singular support is contained in
support so the result follows. O

Remark 2. While our proof required P(D) to be constant coefficient,
this result holds in the variable coefficient case too and this is an impor-
tant part of Hodge theory which relates the cohomology of a manifold
to its differential geometry. Note this theorem 1is often called “Weyl’s
lemma.”

A very important fact is that every constant coefficient operator has
a fundamental solution.

Theorem 16. If P(D) is a constant coefficient operator on R™ then
there exists a distribution FE such that

P(D)E = &,

We will prove this only in a special (but important case), see for
example [1] for the general case.
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We assume that there exists an a € R" such that

p(€ +ia)l > a >0 VE€R",
Example 7. If P(D) =2 — % % then p(€,7) = it + 2. So,

p(7 +ia, &) =8 +i(r + ia)
=2 4T —a.
So taking a < 0, we have
p(T +ia,&)| > —a > 0.
Note the asymmetry here.
Example 8. If P = g—; - 38_;2 then p(&,7) = &2 — 12, Fora € R, we
have t
& (r i) = (& 7 +a) + 40P
— Jlel[* + 70 + at + da2r? — 2J¢]Pr — 2022 + 207 €
= (€2 — 72 1 a* + 24272 + 24%€2
> at.
Before we can prove our result we need some results on the analyt-
icity and growth of Fourier transforms of compactly supported smooth

functions so we can move contours around - this will allow us to move
a towards 0.

Proposition 5. (Paley-Wiener Estimate) If f € C(R™) then f(€)
has an analytic extension to CV | f(z) and

F(2)] < On(1+ ||2|) Nerl¥2,

Note that this implies that f(z + iy) is uniformly Schwartz in  for
y in a compact set - that is the norms || f||4 seta regarded as functions
of y are bounded for y in compact sets.

Proof. As f is compactly supported, the integral
f() = [ f(a)da

will converge for any z € CV. This will be the extension. As everything
is smooth and compactly supported, we can differentiate under the
integral sign so f(s + it) is smooth and

~ —

2%f = Def.
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But e ™ is analytic in z and so satisfies the Cauchy-Riemann equa-
tions in (s,t) and so f does also. Thus f is analytic. To get the estimate
on growth, just estimate Do f. O

Now, if [p(§ +a)| > a > 0 V&, for some fixed a € iR". We define
(-
ro=(z)" /e
(B ) = f—l— a
We compute

(P(D)E, ¢) = (E, P(=D)¢)
1\"? [ $(—¢ —a)
:(%) /WM) p(€ + a)de

1 n/2 .
() [ot
We can now shift the contour using the Paley-Wiener estimate and
Cauchy’s theorem to conclude that this is equal to

<%>m/é<—f)df = $(0).

So F is indeed a fundamental solution.

Note that, although initially, it seems that we have a different fun-
damental solution for each a, if we have |p(§ + a)| > a > 0 for a in
a connected, compact set then the same shifting contour argument as
above yields that the fundamental solutions obtained are the same. So
for the wave equation, we obtain two different fundamental solutions
according to the sign of Sa. For the heat equation we only obtain one
- from a such that Sa > 0.
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5. THE LAPLACIAN

5.1. Finding the Fundamental Solution. We have already proven
some things about elliptic operators of which the Laplacian is a special
case - they always have a compactly supported parametrix which is
singular only at the origin and any distributional solution is always a
smooth function. This implies that any fundamental solution is sin-
gular only at the origin as if F is fundamental solution and P is a
parametrix then
A(E — P)eC™
and so by elliptic regularity

E - Pe(C™.

Now an important fact about the Laplacian is that is rotationally
invariant. The highbrow way to see this is to observe that the Laplacian
is defined by the metric and that rotations are an isometry. The low
brow way is just to compute

A(f(Az)), (Af)(Az)

for an orthogonal matrix and observe that they are equal. (Indeed as
two-dimensional rotations generate, it is enough to do this for two-
dimensional ones only.) One therefore expects there to exist a funda-
mental solution which is rotationally invariant - indeed given that there
exists some fundamental solution, F, one can construct a rotationally
invariant one by averaging:

B = [ ABdA,
SO(n)
But this requires an understanding of integration over Lie groups which

is beyond our scope.

Another important guide to finding fundamental solutions is homo-
geneity. A differentiable function, f, on R* — {0} is (positively) homo-
geneous of degree m if

f(Az) = A" f(x) VA > 0.

We do not require differentiability or continuity at the origin as the
class would then be very small!

Now, if we differentiate with respect to A and set A = 1 then we
deduce that
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a n
where r5- = 12:31 T
equivalent to homogeneity. To prove this observe that if f satisfies the

equation then

0

o This is called Euler’s relation and is in fact
J

]| f (/[ 12]])

agrees with f on ||z|| = 1 and satisfies the same equation so using our
uniqueness theorems for first order, real PDEs they must be equal.

Definition 1. If u € D'(R") then u is homogeneous of degree m € C

Z;

For the delta function we compute, for a test function ¢,

9 54y = a%w» (5.1)

8xj
O¢
6—:1:j> (5.2)

= —(0,9). (5.3)

We thus deduce that the delta function is homogeneous of degree —n.

(2

= 7<6a¢+1‘]‘

Differentiating a distribution reduces its order of homogeneity by
one; to see this

o (9 _ 6__( —1) Ou
O x@x my= x@x mn oxj

So since the Laplacian is of order 2 and has no lower order parts, we
expect its fundamental solution to be homogeneous of order 2 — n and
to be rotationally invariant. It also must be smooth away the origin.
Thus the obvious candidate is

E, = Cn”'THQina

this is an L' function near 0 and so defines a distribution. (In fact,
this is the only distribution with these properties.) Now, away from
the x = 0 we can compute in the usual way to find that

Allz|]*" =0

so we have that Al|z|[*~" is both supported at the origin and singular

there, (using elliptic regularity). It is also homogeneous of degree —n.
(We could deduce from this that it is a multiple of the delta function
but this would require too much theory.)
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Let ¢ be a bump function, identically 1 near 0, and ¢ (z) = ¢ (x/¢).
The support of ¢ yields that (AE,,¢.¢) is independent of €. Now using
Taylor’s theorem, we have that

<AEna ¢> - ¢ U we + Z AEna rafa <AEna'¢6h'>a

la|<N

where h is smooth and vanishes to N** order at z = 0. The first term

is independent of € from the support properties and the second is zero

from the homogeneity of AEy - its pairing with any function of the
0

form x%g(m) is zero and 2 = ix%x“. The last term equals

[l A /e)h)da

and this will go to zero as ¢ — 0 provided N is sufficiently big as h
vanishes to order N.

So we know we have a multiple of the delta function - we need to
know which one! Let ¢ be smooth, radial and identically one near 0,
we compute, using polar coordinates,

(Allz [P, o)) =(l2]1* " Av(l2))
:wnq/?ﬂ*"r"*l (62_1/1 + o= 161/})

or? r  or

7 0% ]
=Wn— 1/7"7"‘ n—l)a—lfd
0

=(2 — n)wy_1

where w,, 1 is the volume of the unit sphere. We have thus solved the
problem when n > 3. The argument does not quite work when n = 2
as in that case ||z||*™™ is constant and so smooth. We therefore use
log(||=||) instead. This is not homogeneous but is almost homogeneous
in that
0 1 c™

o5 log(lal)) € O
We then have that Alog(||x||) is almost homogeneous and supported at
the origin which implies that it is homogeneous as a smooth function
supported at the origin is zero. The arguments then go through as
before and we have proven:

Theorem 17. The Laplacian on R" has the fundamental solution

1

2—n
okl
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forn >3 and for n =2
1
——1 i
L tog(] 2]

5.2. Identities and Estimates.

Theorem 18. Gauss Divergence Theorem If f € C(B(0,1)), C' in
B(0,1) then

o :
/ 9 i :/ Fa)-2dz (5.4)
<1 O Jol=1" [
Hence
/ V-gdr = / g-nydx (5.5)
llzl|<1 [l =1
where n, = ﬁ is the outward normal at x € S™ ' and g is vector
valued.

Proof. The second statement is just a summation of the first one. Take
¢e(r) st. ¢ =1ifr <1—¢ ¢ =0ifr > 1. Then [, f =
1ime—>0<f: ¢ > But

a—fgbedx - —/fa¢fdx

B —/f or &be
N 0 87“

o rjﬁgzﬁe
- [t

_ ] nflaqse
— /I/_T (f||7]> (rw)dwr 5 dr

_ /% (Ml (ﬂ%) (rw)dw) dedr

Letting e — 0 this is equal to

0/1% (/ pn1 (ﬁ%) (rw)dw) dr

which of course just
x.
f—L ) (w)dw.
/ ( |||
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Proposition 6. Green’s Identities: If u,v are C? functions on B(0,r)

then J
(a) /vAu:—/ Vv-Vu+/v.—u
B B s dv

where & = in% =rd gnd S = OB.
T; dr

dv
(b) /B vAu — uAv = /Sv@ - U

Proof. (a) follows from Gauss’ divergence theorem applied to vVu =

(vg)

(b) follows by swapping u and v in (a) and subtracting. O

Remark 3. Settingv = 1, we obtain [z Au = [5 % There are obvious
results for spherical shells obtained by subtracting identities (a) € ()
for different values of r.

Proposition 7. Energy Estimate: [5|Vul> = [g u‘j—’,j — [g uAu.

To prove this just set u = v in (a).

Thus if Au = 0 in B and either u or ‘3—’; =0on S, we have Vu = 0 on

B, ie u is a constant, necessarily 0 in first case. Hence we can deduce
the uniqueness of solutions to some boundary value problems.

Dirichlet Problem Solve for u with Awu prescribed in B and u pre-
scribed on S.

Neumann Problem Solve for u with Au prescribed in B and Z—’V‘
prescribed on S. and so to summarise we have proven:

Theorem 19. The Dirichlet Problem has at most one solution and the
Neumann Problem has at most one solution up to a constant. (for the
unit ball)

Proposition 8. Weak Mazimum Principle: Let € be a bounded open
domain R™ with smooth boundary 0. If u € C(Q), u € C*(Q) with
Au >0 in Q then sup,q u(x) = sup,cyo u(x)

Proof. If Au > 0 in €2, the result is easy. For at a local maximum in 2

we must have % = 0 Vi. But Au > 0 implies % > 0 some j. So in
i i

the x; direction we can increase u.

Now take v(z) = ||z]|>. Then Av > 0 and hence A(u + ev) > 0 on
Q. So from the first part

sup(u + ev) = sup(u + €v)
a o0
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So supgu < supyq (u+€v) < supyq, u + € supy, v- Now let € — 0 to get
the result. O

A function, f, such that Af is zero is often said to be harmonic.

Corollary 6. If u is complex valued and harmonic

sup [u(z)] = sup |u(z)].
z€Q TEIN

Proof. Apply the maximum principle to Re(e?u) where 6 is chosen, so
that

sup Re(e”u) = sup |ul.
Q Q

Proposition 9. Gauss Mean Value Property:

(a) The value of a harmonic function at a point is equal to its average
over any sphere centred at that point

(b) The value of a harmonic function at a point is equal to its average
over any ball centred at that point.

We will see that property (a) characterises harmonic functions.

Proof. In fact, we prove that if Au > 0 then these are in fact true with
inequalities - the result will then follow by applying the inequality for
u and —u.

By translation invariance, it suffices to consider the case where the
point is the origin.

First, putting v = 1 in Green’s identity we observe that

/ s = Aude>o0.
S(r) Ov B(r)

Now, if v is the function [[z]|? then Av = 2n and applying Green’s
identity we have

Qn/ udr < 27“/ u(z)dS
B(r) S(r)

so putting
o(r) = / u dx
B(r)
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we have that

This implies that
d —n
ar (7" ¢(7")) >0

or that r~"¢(r) is increasing so we conclude that

1-n

limr"g(r) < R"9(R) < = /S(R)u(.r)ds.

As the surface area of a sphere of radius R is n/R times the volume
the result now follows. O

Proposition 10. Strong Mazimum Principle: Suppose

e <o~ [ ul) (5.6)

for all & and p sufficiently small in Q. If Q2 is a bounded open connected
domain, then either u is constant or u(§) < supyq u(z) for all & € Q.

Definition 2. Any u € C(Q) satisfying (5.6) for sufficiently small
balls is said to be sub-harmonic. So any u € C(Q), C? in Q such that
Au > 0 is subharmonic.

Proof of Strong Mazimum Principle. Let M = sup u and define
Q) =A{z|u(zx) = M} Qy = {zfu(z) < M}.

Then Q = €, LI, (disjoint union). The continuity of u implies that €2y
is open. If we can show €2; is also open, the result follows immediately
from connectivity since either 2; or €, is then empty.

Say u(&) = M for £ € Q2. Then
0< Av (M —u(x)<M-—u(§)=0

==l
Since M —u(x) > 0 is continuous, this force u(z) = M for ||z —£|| < p.
So €, is open, as required. O

5.3. The Dirichlet and Dual Dirichlet Problems. Let {2 be a
bounded open set in R" with smooth boundary 0f).

(a) The Dirichlet Problem in  asks for a solution of Af =0 in
Q with f = h an 0.
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(b) The Dual Dirichlet Problem in 2 asks for a solution of Af =g
in 2 with f =0 on 0Q.

These problems are more or less equivalent:

(a) = (b): Define g to be the distribution obtained by setting ¢ = g
on Q and 0 on R*\Q. Set f; = E x g where £ = find solution of A.
Then Af; = g. Solve Ah =0, h = f; on 9 using (a). Then A(f; —
h) =g and f; — h =0 on 0.

(b) = (a): Extend h to a function A on Q which is C? on €. Solve

Ak=AhinQ, k=0o0n 092 Then A(h—k)=0inQand h —k =h
on 0f).

5.4. The Dual Dirichlet Problem for the Unit Ball. We have to

solve

Af =gfor|z| <1
f =0 for ||z|| = 1.

We shall assume that g € C(B) with ¢ € C* in B. (Actually once a
formula for the solution has been obtained, it will be clear that far less
restrictive conditions on ¢ are needed for a solution.)

_ We start by looking at f; = E % g where g is the distribution = g on

B and 0 on R*"\B. (Here E is the fundamental solution of A obtained

before.) Clearly A(E  g) = ¢ as distributions. We assume n > 3. (we

will discuss n = 2 later.)

Lemma 7. f; € CY(R") and % = 28 « . We also have that fi, %
J J J

are of order ||z||*~", ||z||'"™" for x large.

Proof. We show all the derivatives are continuous functions. We com-
pute % x ¢. This is a convolution of a locally integrable function and a
J

function of compact support and so can be computed directly. Suppose
|z — || <€, then in some fixed ball

9f1 9/

a5, " " B,

[5Gt ) lotw)lay

3:1:]-
/6<||Iy<1

+2 sup |g] ‘

() (')

OF oE
To =) et =)oty

J

IN

oF
3:1:]-

[z—yl|[<d+e

(fﬂ—y)‘dy
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The second integral is small if § 4 € is small. The first integral is small
will go to zero as x — 2’ — 0 as it is smoothly dependent on them.

Hence % is continuous. To see the bounds, observe that if |z| > 2

J
then |z —y| > |z|/2 for |y| < 1 and then just estimate

/'E@*ywwﬂy

lyl<1

and

oE

ggm—ymwmy

lyl<1

U
Lemma 8. f; is C® in ||z|| < 1 and ||z|| > 1; in fact fi is harmonic

in [|z|| > 1.

Proof. This is an immediate consequence of elliptic regularity. O

At the moment we have Af; = g but f; has the wrong boundary
value on [|z]| = 1. The way round this, due to Kelvin, is through the
method of reflection. We put

Kf - ||.r||“f( i )

]

We then have that K f, and f; are equal on the unit sphere and so
fi — K fy is zero there. We will show that K almost commutes with
the Laplacian and so will be able to deduce that K f; is harmonic in
|z|| < 1 and so

Alfi—Kfi)=Afi=g
in the ball - thus solving the problem!

Lemma 9.
0

A(KS) = || *K(A), 1o Kf = (-n+2Kf Ko

f)

o _ 0
Here r4- = Z'Tlaa;i'

Proof. Observe that the Laplacian and the Kelvin transform are ro-
tationally invariant and thus so is the statement of the lemma. This
means it is enough to show it is true at the point

z = (|z],0,...,0).
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At such a point, for 7 > 1,

82 4 3
e 2( (/ll=]1*) = ll=ll 55 — 2l

and 5
a—ﬁ(f(fr/llfrlf))—ll ||~ 4 + 2||zf|” 3
So

AU@WWﬂ%)=Hﬂ|%Afxamn|%+%2””'”3ii'

Using,
A(ab) = bAa +2Va.Vb + aAb

the result then follows.

For the second equality, reduce to the same case as above and then
compute as for one dimension. U

Now let f, = K f;. By the lemma, f5 is harmonic near each x # 0
with ||z]| < 1. However we have to check it does satisfy the equation
at x = 0.

Lemma 10. f5 is harmonic near 0.

Proof. We must show that if ¢ € C>(R") with suppy C B(0,p) then
<Af2, g@) == 0, i.e. <f2, Ag@) = (0. But

(f2, Ap) = /szw

= [ pde+ [ pAg
[zl <e ]| =e
d
= / f2Ap + Afap — / f2
[zl <e ]| =e llzll= 6 llz]|=e

d@ de
_ A _/ afa
/:c||5e P fee a0 T e v ®

;From the lemmas, f, and £ are O(||z[°), O(||z|| ') for ||z|| small.

v

So the integrals tend to 0 as e — 0. Hence (fy, Ap) = 0 as required. O

So tracing through the arguments above, we have
Theorem 20. Forn > 3, let

o~ gt el gz — ol
wn-1(2 —n) wn1(2 —n)

G(r,y) =



PARTIAL DIFFERENTIAL EQUATIONS 59

Then f(x) = [ <1 G(x,y)g(y)dy solves the dual Dirichlet problem.
G(z,y) 1s called the Green’s function. When n = 2, we obtain

1 .
G(z,y) = 5—{log & =yl = log |z =y}

Note that while the Kelvin transform may seem a little mysterious,
it can be given a geometric interpretation: map Fuclidean space to the
sphere by stereographic projection and then reflect in the equator and
then map back to the plane.

The energetic can check that the appropriately modified arguments
also work in the two dimensional case.

5.5. Deduction of the Poisson formula for the Dirichlet prob-
lem. We now wish to solve Af =0in B, f = h on S. We compute f
near a point a such that |ja|| < 1.

According to the previous prescription, we extend h to a continuous
function h on B, C? on B.

Set h(z) = h(chll) (lz||) where v is a bump function identically 1
near 1 and supported in [1 —€,1 + €] where |ja]| < 1 — €. Set k(z) =
[ G(z,y)Ah(y)dy. Then k =0on S and Ak = Ahin B. So A(h—k) =
0and h —k = h on S. So we set f(x) = h(z) — k(z).

Thus we get

ﬂ@zﬂﬁﬂwmeG@)((HW(Mm

]

Now let z = a. Using Green’s formula and the fact that G(z,y) is
harmonic in y for y # x, we get

f@:zfd DRG]y
[ ay1—5i<mwy

L%%?MMM

since ¢(1) = 1 and ¢(r) = 1 for r near 1, so that r2¢ = 0 for r = 1.
Thus we get for |[z]] <1

f@) = [ Dy = [ Pa iy

dn,
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llyl*—(a.y)

Since 7 | yia%im =(2—n) el e get
dG(z,y)
Py = —c
(I‘,y) dny
11— (zy) =" (pp9)
SR ] I

L 1—A(z,y)  =l* = (z,9)
Wn—1 ||x - y”” wn—1||56 - yHn
1— ||

w2 —y"

1 1-|a|?
w1 [[z—yl"

Thus the Poisson formula P(z,y) = . (This is also valid for

n=2)

5.6. The Dirichlet Problem for the Unit Ball with non-smooth
data. The preceding deduction requires the data to be smooth and
so we now verify the formula directly in the case where the data is
continuous.

Let P(z,y) = —1 112 he the Poisson kernel in R* for ||z| < 1

wn—1 [[z—y"

and ||y|| = 1, where w,_; = area of unit sphere in R". Note that if
Zz=1—y
P(z,y) = 20,2zl + 12 ") /wn

= g e

Thus, for fixed y, P(x,y) is a harmonic function in [|z]] <1 since =
1 ) _ —(n—2)x;

8 . .
e . re harmonic in .
5a; (a7 [ are harmonic in z # 0

and its derivation

The constant function 1 is the unique solution to the Dirichlet prob-
lem with boundary value 1 so we conclude from the Poisson formula in
the case we have proven it that

/ Pl w)de =1 (5.7)

(One could also prove this directly thus avoiding the reliance on the
previously proved case.)

Proposition 11. Poisson’s formula can be used to solve for any f
continuous on the unit sphere.
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Proof. Near any point in the interior, the integrand is smooth in x and
so we can commute the integration with the Laplacian. As P(x,y) is
harmonic in = we conclude that

F(x) = [ Ple.y)f(y)dy

is too. It therefore suffices to show that F(ry) — f(y) uniformly in y
as r 7T 1. But, using (5.7)

Fry) -~ f)l < [ Plry.w) f(w) — f)ldw

< swp [f(w) - f()+2suplf [ P(ry,w)dw

lly—wll<e llw—yl|>e
The first term is small because f is uniformly continuous on S. To
estimate the second time we estimate the denominator by

|lw—ry|| > |[w—y|| —|ly —ryl|l >e—-(1-7) >

3

DN | ™

forr>1—§. O

Remark 4. A simple rescaling arqgument shows that if f is harmonic
in ||z]] < r and continuous in ||z|| < r then f can be recovered from its
boundary values by

f)=[ Py

1 r—|z|?
rwn—1 [lz—yl"
not centred at the origin.

where P,(x,y) = There 1s an analogous result for balls

We now know that the Dirichlet problem for the unit ball has a
unique solution for continuous data on the unit ball.

An immediate consequence is

Proposition 12. Ifu is continuous and satisfies the Mean Value Prop-
erty for small balls then u is harmonic.

Proof. On each small ball, we can pick a v agreeing with u on the
boundary and harmonic. Applying the strong maximum principle to
u — v we deduce that v = v so u is harmonic too. O

Corollary 7. If f,, is a sequence of harmonic functions which converge
uniformly to a function f then f is harmonic.

Proof. The mean value property is preserved by uniform convergence.
O
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5.7. Harnack’s Convergence Theorem. We start by proving

Theorem 21. Harnack’s Inequality: Let f be a non-negative continu-
ous function on ||z|| < R harmonic for ||z| < R.

Then if ||z|| = r < R we have

Rnf2(R o ’I“) Rn72(R + 7“)
—f(0) < < — 2 f(0
Proof. Poisson’s kernel P(z,y) = 55— Iﬁi:%‘,‘f. If |yl = R, ||z|| = r
we have
R—r<|z—y|<R+r
So
1 R2_ 2 1 R2 2
= < P(z,y) d

<
Ro" 1 (R+r)" — ~ Ro" 1 (R—r)"
Hence, since f(z) = [y, —r P(z,y)f(y)dy

1 R? - r? 1 R?r?
ot T T oy 0 < @) < sy [ Wy

But, since f is harmonic, f(0) = ﬁlm,l Sii=r f(y)dy So

R" R 1)

R"2(R+r)

f0) < f(z) < =

£(0)
O

Theorem 22. Harnack’s Convergence Theorem: If w, — u point-
wise and monotonically, with w, harmonic, then u, — u uniformly
on bounded sets and u is harmonic.

Proof. For ||z]| <p < R
0 < up(x) — up(z) < c(u,(0) — un(0)) n>m.

SO SUp|4)<p |Un () — Um(2)| — 0. So u, — w uniformly on ||z < p, all
p > 0. Hence u is harmonic from the Mean Value Property. 0

5.8. Solution of the Dirichlet Problem by Perron’s Method.
Let €2 be a bounded open domain in R” with boundary 0€). Consider

the Dirichlet Problem Af = 0in Q, f = h on 99Q. Let u € C(Q) be

any sub-harmonic function, ie u(a) < & [ wu(z) then if u < f on
la—all=p
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0Q) we have u < f in Q by the maximum principle. So the solution
should be given by Perron’s formula
fn(x) = sup u(z) (5.8)

« sub-harmonic
u<h Ol 80

We now show that this yields a solution.

Theorem 23. Let <) be a bounded open domain in R" with the property
that each point x € 0S) has a barrier function, i.e. a sub-harmonic
function g such that g(x) = 0 and g(y) < 0 for y € Q\{z} then (5.8)
solves the Dirichlet problem.

Remark 5. x € 00 has a barrier function if there is a ball, centred at
a, touching Q2 only at x. For then E(y—a)— E(x —a) (or its negative)
will provide a barrier function.

Lemma 11. The mazimum of a finite number of subharmonic func-
tions 18 subharmonic.

Proof. 1f v = max{vy,v2} then [v > [wvy, [vs over any set and so
v(z) < % [ v on small spheres. O

Lemma 12. Ifu is sub-harmonic in Q) and x € Q is such that Bs(x)C)
then there exists a subharmonic function v which is harmonic on Bs(x)CS)
and is equal to u outside Bs(x). We also have u < v.

Proof. We obtain v by solving the Dirichlet problem on Bsx with data
equal to u on the boundary. We have that v > u from the maximum
principle. It is trivial that v is sub-harmonic. O

Proof of theorem. Let £ be the set of subharmonic functions which are
less than h on the boundary of 2.

First we note that any element of £ will be bounded by the maximum
of h on the boundary and so the supremum does exist.

We first show that f;, is continuous in Q. If x € 2 and z,, — « then
let
with v} € .

We let v, be the maximum of uy with j,n <k then vy is still in E
and

’Uk(’En) - fh(xn)a

for all n. This all remains true if we replace v, by wy with w; harmonic
in a ball about x. We then have wy converges uniformly to a function
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w which is harmonic (and so continuous) on the ball and equal to f,
on the sequence x,,. So
Ju(@n) = fu(z)

and w is continuous.

We next show f, is sub-harmonic. Fix a point z. Given € > 0, there
exists u € € such that u(z) > fr(z) —e. We then replace u by v with
v harmonic in a ball of radius § with ¢ fixed and independent of €. We
then have

) <o) te<er [ vy <er s [ Ry
lly—z|=0" ly—z||=0"
This is for any € > 0 and any ¢’ < 1 so we conclude that f; is sub-
harmonic.

It remains to show that f;, is continuous on the closure of €2 and that
it has the right boundary values. Let y be a boundary point. Take g
sub-harmonic with g(y) = 0 and g < 0 on Q\{y}. Consider

u(r) = h(y) —e+ Kg(x) where e >0

Then u is sub-harmonic if K > 0. Clearly u < h near y on 0f) for
||z — y|| < r independent of K. For 09 ||z — y|| > r we can choose K
so large that u < h everywhere. Hence h(y) — e+ Kg(x) < fn(x). So,

liminf f.(z) > h(y).
That is f is lower semi-continuous.

We need to establish the corresponding estimate from above. We

put
fon(x) = supu(zx),

with « subharmonic and less than or equal to —h on the boundary. So
—f_p, is the infimum of U with —U sub-harmonic and U > h on the
boundary. (the infimum of superharmonic functions bigger than h on
the boundary.) So if u € £ then u — U < 0 on the boundary and hence
everywhere for any such U. So,

o < —fon.

The same argument as above shows the lower semi-continuity of f_,
and so the upper semi-continuity of —f_j, and f.

We thus have that f, € €.

We now use the mean value property to see that f; is actually har-
monic. If it does not satisfy the mean value property at a point p we
can replace by a function v which is harmonic in a small ball around
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p and is bigger than f;. But v € £ so must be smaller than f;, so we
have a contradiction. So fj is harmonic in €. O
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5.9. Remarks on the two dimensional Dirichlet Problem.

5.9.1. Cauchy-Riemann equations. Note that (6%4—2'3%)(i —i2) = A,
So if E is a fundamental solution of A = 88—; + 38—; then (X £i2)E

is a fundamental solution of the Cauchy-Riemann operator z= + ia—y.

(Recall that f is holomorphic < % + i% = 0). This gives

1 12z +iy) 1 1
i) gy = — =W 2
(. ! )Wog(:r +v) A 2% + y? 2r x F iy

5.9.2. Separation of Variables. The above analysis of the dual Dirichlet
problem extends to n = 2, but we omit it. There is another interesting
method involving separation of variables.

Recall that in polar coordinates A = g—; + %% + T%g—;. If we look
for a solution of the form
u(r,0) = f(r)2(0)
and separate variables, we are led to the equations
0?d
— + A0 =0 5.9
502 + (5.9)
*f  Of
2
— — = Af=0. 5.10
e + "or / ( )

Since ® has to be 27 periodic, there are solutions only when \ = n?

and these are cos(nf),sin(nf). For such A, the solutions of (5.10) are
r~ ™, r™ and since we want a smooth solution we discard the first one.
This leads us to solutions of the form

" (ay cos(nf) + by sin(nd))

which of course tend to a, cos(nf) + b, sin(nf) as r — 1. So now given
an f on the boundary, we can expand it as a Fourier series

ap + Y _ ay cos(nb) + by, sin(nb)
and then we have a putative solution
ao + > 1" (ay cos(nbd) + by, sin(nd)) .

This will converge to a harmonic function in the interior provided there
is a uniform bound for a,, b,. It will be continuous up to the boundary
giving the right boundary value provided ¥ |a,| + |b,| converges - this
will happen, for example, if f is piecewise smooth. For a general f, one
can always compute the coefficients and see if the sum converges!
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Remark 6. One could deduce the Poisson formula in the plane from
the Fourier expansion - see for example Petrovsky p173.
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6. THE WAVE OPERATOR

6.1. The Problems. The wave operator or d’Alembertian is the ar-
chetypal hyperbolic operator and exists very different behaviour from
the Laplacian reflecting the fact that it describes a system evolving in
time rather than a steady state system:

82
=— A
ot? ’
where A = %.

We principally want to solve two problems. The first is the forcing
problem

Ou =,
u =0, t<<0
f=0,1t<<0

and the second is the Cauchy problem

Ou =0,
U\t:o =Ug,
ou

with wug, uy; given functions. We will actually solve the second problem
by reducing it to the first one.

One way in which the wave operator is very different from the Lapla-
cian is that it is not elliptic and we shall see that it can have singular
solutions.

6.2. Finding the Fundamental Solution. We have already shown
that two fundamental solutions exist and are given by

1)i (= ( £ i€), —€)
2 IE]]7 = (7 + i€)?
with € a positive number. However we would like to have more explicit

knowledge of what they are - that is we need to invert the Fourier
transform. First, we invert in ¢. Note that

(Bev0) = ( dedr,

7at7it7'dt — 1 1

1 o0
— [ e
\/27r0/ Va2rit +a
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if Ra > 0. So the inverse Fourier transform of —— is v/2re *H(t).
Now,

(B ) _<%> //||5||QT +TZE— zf)) drde (6:7)
() I ||£|E|t2f e (68)

etf 1 1
() (e ) s

(using partial fractions.) So writing, f;(z) = f(¢,2) and using the fact
that the Fourier transform is equal to the inverse Fourier transform up
to a reflection, we have

(E.. f) ( ) // e;J:tHﬂ' (el (eI g,

the e terms cancel and we have

o

<E+,f>=( ) // SmH!th)dtdf.

0

So our next task is to compute the inverse Fourier transforms of these
distributions. Note that as the functions are independent of rotation
in ||£]| so are the inverse Fourier transforms. The computation of this
Fourier transform turns out to be very dimension dependent but there
is a technique for calculating the Fourier transform in n — 1 from the
one in n dimensions. So we start with n = 3.

So we compute the inverse Fourier transform of sin(¢|¢]])/||€]] in R®.
Actually computing it is hard so we start from the answer and check
it works. Let u be defined by

(wf)= [ fl)da
llzl|=¢

This is a compactly supported distribution and

(i, f) = (u, f)

= [ [ r©dgda

llzll=¢

_ / / e~y () dE.

llz(l=¢
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So we have to compute
€7iz'§d$
llz(|=¢

and by rotational invariance it is enough to take £ = (|¢],0,0). So
taking spherical polar coordinates #, ¢ this is equal to

T 2w

tQ/:/e*“D“”K“snme)d¢d&

0 0

Integrating in ¢ gives us a factor of 27 and integrating in 6 we get

Py l .1 eicos(ﬂ)ft]
_Z|£|t 0
which is equal to
2t el i) _ AT
—— ("t —e" — sin([¢|t).
—il€]t ( )= €]

So we deduce that the forward fundamental solution in three (space)
dimensions is

(B34, f) :/% / [z, t)dzdt.
0

llzll=¢

(&Mﬂ:/i;/fWMMﬁ
0

l|z[|=1
Put y = xt regarding (z,t) as polar coordinates, we also have
(E /f ]|,
3 +7 47T |I‘||
This is the forward fundamental solution as it is supported in £ > 0. If
we had taken € < 0, we would have got the backwards solution, sup-
ported in ¢ < 0. Note that the forward fundamental solution in three
space dimension is supported on ¢t = ||z|| - this reflects Huygens prin-

ciple which is that waves travel precisely at speed 1 and will therefore
only be detectable at precisely distance t at time t.

We also want to compute the fundamental solution in two dimen-
sions. Now we can regard Sm‘;‘g‘)
of the corresponding function in three dimensions to the hyperplane

&3 = 0. Restricting a Fourier transform of a Schwartz function to &5 is

in two dimensions as the restriction
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equivalent to integrating the function with respect to x3. The equiva-
lent statement for distributions is that provided the push-forward in x3
exists, its Fourier transform is the restriction of the higher dimensional
Fourier transform to & = 0. Now as Ej5 is supported in ||z|| < ¢ the
push-forward is proper and is defined via pull-backs so we deduce that

<E27+’ ¢(t7 T, 1‘2)> = <E37+a (b(t, T, IQ))
So we need to compute what
/ w(l‘la 'TQ)
llz[|=¢
is. But we can regard x1, xy as parametrising the sphere by
w3 = (% — 2% — 22)7.

And so if we cut into the two hemispheres we obtain,

and thus that

(t
(Ess, f) / / D)
27r |zy,aal<t (82 — ||x[|?)2

Now in one dimension there is a much easier approach, if one per-
forms a change of coordinates w = t + x,y = t — x then the wave
operator becomes

82
c@way
which has the fundamental solution
H(w)H (y)

and so we deduce that (taking care with constants)

(Ev+. f) //frtdrdt

0 |z|<t

In fact, in all dimensions the forward fundamental solution is sup-
ported inside the light cone and in any odd dimension bigger than 1
it is supported on the light cone. These support conditions guarantee
that these are the only fundamental solutions supported in ¢ > 0 as if
L is another such fundamental solution, the convolution K x L exists
and so

E, «(Qdy*x L) = (E, «0dy) x L
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and thus F, = L.
Alternatively,

Reversing the sign of ¢, we obtain £ the backwards fundamental
solution and the Feynmann fundamental solution is just the average of
the two

1
5(Bs+E).

6.3. The Method of Descent. Our argument above to evaluate the
Fourier transforms is really the method of descent which is that if K
is a fundamental solution for the wave operator in n dimensions then
pushing forward in x,, will give the fundamental solution in one lower
dimension provided the push-forward exists. We compute

<Dn717T*Kn; ¢> — <7T*Kn; anl(ﬁ)
= <Kna7r*Dn¢>
as m*¢ is independent of x,,
= (Ky, Oa"9)
= (m.0,K,, ¢)
= (m.00, ¢)
= (0o, ).

6.4. Solving the forcing problem. So we now have the forward
fundamental solution, we can solve the forcing problem

Ou = f,
with u, f =0 in £ << 0 simply by
U:K+*f’

even for distributional f - the convolution will exist because K, is
supported inside the light cone. So, giwen the vanishing in the past,
u will be smooth if and only if f is and w is uniquely determined
by f. However, if we drop the past vanishing condition life is more
complicated: if u is a twice-differentiable function on the real line and
|w| =1 then
Ou(t — z.w) = 0.

(in fact, for any distribution this is true) So, there is no version of
elliptic regularity and solutions are not unique.
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Using the backwards solution, a similar approach works for data
vanishing in the future. So given any f € D’ we can solve

Ou = f

by putting

h=v@)f, fa=f—h
with ¢ identically one in ¢ > 1 and zero in ¢ < —1. The solution will
not be unique though.

6.5. The Cauchy Problem. The uncertainty in solutions of the wave
operator is expressible in terms of Cauchy data - there is a unique
solution of
Ou=f
with
ou
Ut=t, = Uo, E\t:tl =

for given ug, u; € C*. (one could consider more general data) We can
solve the forcing problem so after subtracting a solution of it, it is

enough to consider the case when f = 0.

Now as o
U
F
we deduce that o
U
z- - A
atQ t=tg o

and iterating we can recover all the derivatives i.e. the Taylor series
of uw on t = t;. So we certainly have not specified too little data. One
approach is to then sum the Taylor series, however there is no reason
this should converge except on ¢t = t,. (if the data were analytic then
it would)

However the sum does exist in a more generalised sense:

Theorem 24. The Borel Lemma - given any sequence of smooth func-
tions f;(x) there exists a function f(t, ) such that

F90,2) = fi(=).

So using the Borel lemma, one can pick a function u such that Ou
vanishes to infinite order on ¢ = ¢; and wu, % have the right value on
t = to. Now if Ou = f then fl = H(t — to)f and f2 = H(t[] — t)f
are smooth functions because of the infinite order vanishing. So, we
deduce that

u=u— K, xfi —K_xf,
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is a solution as K x f; is supported in t > t; and so vanishes to infinite
order on ¢t = 0 and similarly for f; using K _.

So there is a solution. We can use the same technique to show
uniqueness - if uy, uy solve then let u = uy — uy, we have that u and its
first derivative in ¢ vanish on t = t; and thus arguing as above that all
its derivatives in ¢t vanish on ¢ = ¢y3. This means

U =Usp+u_
with uy supported in +(¢ — t5) > 0 and smooth. We then have that
Dui = 0

and thus since the forcing problem in a half space has a unique solution,
we conclude that ug = 0.

We now prove the Borel lemma:

Proof. The idea is to use cut off functions, cutting off closer and closer
to the origin so that the sum is always finite so if ¢ is a bump function
we put

ft.a) = 3 S p@)otest)

where e; — +00. As ¢(e;t) is supported in C'/e; the sum is finite for
each ¢ and so converges. We want it to converge uniformly and we also
want all its derivatives to converge uniformly. (for z in compact sets)

Let x € K, a fixed compact set, then the supremum of %fj(x)gﬁ(ejt)

is less than ‘
C J
am<ﬁ>(f).
reK eg

So picking eg ; sufficiently large this will be less than 1/j% and we have
uniform convergence and thus f is continuous.

To get differentiability in x we need

S b pef@oten

to converge uniformly. We therefore pick e, ; as above to get uniform
convergernce.

Of course, we want the same e; for all . We do this by diagonalisa-
tion. Just let

€j = MaX €q;
| <j
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then for any «, we eventually have
Cja < €
and the sum ;
f(t.2) = X 51 @)ole
converges uniformly as do all itsj x derivatives to a function which is
smooth in z but only continuous in ¢.

However, we can now play the same game again. If we differentiate
in t, k times and take D®),, we obtain a sum of terms
koo g

> h o DL ().

=0

Letting D = max |pU)(¢)| and taking j > k (which we can do as we are
i

interested in behaviour for large 7) this is less than or equal to
(C/e;) " Dsup | D3 fj(x) €.
reK
As before, picking e; = ¢;, sufficiently large this will converge.

So we now do a diagonalisation - thus we let

€; = max €jqk-
Llalk<j

Then for any «a, k once j is sufficiently large, we have
€; Z €jak-
So the sum ‘
i
> ﬁsﬁ(ejt)fj(%)
converges uniformly in all derivatives and the result follows.

(note the stage where we did the z derivatives alone was not neces-
sary but has been added as a “warm-up” proof) O

We have specified initial data on a very special hypersurface - t = ;.
In fact, we can specify data on a large class of hypersurfaces but not
all. There are three basic classifications - depending on the geometry
of the normals - space-like, time-like and characteristic. Recall that
the symbol of the wave operator is — (72 — £2).

Definition 3. A hypersurface H in R* x R is space-like if 72 — €2 is
greater than 0 where (1,&) is the normal vector. H is characteristic if
72 — £ =0 and time-like if 7° — £* < 0.
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We recall that a hypersurface is the zero set of a real-valued, smooth
function which has non-zero derivative at every point of its zero set. A
typical example is the set {t = g(x)} with g smooth and real.

So, a cone is characteristic and the plane t = ¢y is space-like. We
can, in general, solve the Cauchy problem for space-like hypersurfaces
- on a Lorentzian manifold this would be the only notion as there is no
special time function.

We proceed similarly to before. The hypersurface can be written in
the form

H = {t = ¢(x)}

and so we can take a Taylor series expansion of the solution u in ¢

about t = ¢(x)

And so computing Ou has the Taylor expansion

i —))).“w V1) + Abf,)

f: = ag - vor 3 A= )

oAl

]:2 ] o 2) ]

Now if we equate coefficients of (t — ¢(x))? to zero, we get for j > 1
that (1 —|V¢|?)f; is equal to a function of the lower order coefficients.
We can solve this for f; as long as (1 — |V¢|?) in non-zero, that is as
long as the hypersurface is non-characteristic. So then applying the
Borel lemma, we have a function u with the correct Cauchy data such
that Ou vanishes to infinite order on H.

As before, we can break up Ou into two pieces supported, fi, on
either side of H and then apply the two fundamental solutions to the
two pieces. This will work as before except that we need to know
that the K4 x f is still supported on one side of H - this will happen
provided the surface is space-like. The point being that the support of
K, % f, is contained in the union of forward cones with tips on H -
the fact that the normal points inside the cone means that the tangent
plane to H (which is precisely the orthogonal to the normal to H) will
meet the cone at the tip only. (this only works locally , wave hands to
get globally.)
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6.6. Domains of Dependence. Suppose for f, ug, u1, smooth we know

Ou =/,
Ujt=0 =UQ,

ou

Ot 1=0 ’

has a unique solution which is smooth. If we just want to know the
value of f at a point (¢,2) where do we need to know f,ug,u;? For
t > 0 we know from our construction of the solution that the value of
fin t < 0 is irrelevant. So consider u, = H(t)u then

2

5 (H(t)u) = Au.

Ou, =

So we compute that

(Do, o) / / Wdrdt (uy, A)

which on integratlng by parts is equal to

—/ @, 0 (x,0) dx—l—/ 5 (x,0)¢(x,0) d:}H—// 572 (x,t)(x, t)dxdt.

Now we have that 2%(x,0) = u; and u(z,0) = ug and in ¢ > 0 that
u(z,t) = uy(x,t) which is equal to K x Ouy so we have a formula for
u(z,t) in terms of the data. We can rewrite this as

uy = Ky (H@)f) + Ky s (6(H)ur) — Ky % (6" (t)ug).

The first term evaluated at (x,t) is just a weighted integral of f on the
set |y — x| <t — s in dimensions 1,2 and on the set |y — x| =¢ — s in

dimension 3. Now we can write
oo

<K+7¢> = /<Kt7 ¢t>
0
where (K, ¢;) is a weighted integral over |y| << t or |y| = ¢. Unravel-
ling the convolutions, we deduce

t
0
u(z,t) = By xup(x) + —Fy xug + /Et,S * fods
0

ot

where * is now convolution in . This is called Kirchhoff’s formula.

An immediate consequence of this, in all dimensions, is that the
value of u(z,t) is determined by the value of f(y, s) on and in the cone
|z —y| <t—sand by ug(y), ui(y) on the set |z —y| < ¢. This expresses
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the property of finite speed of propagation - one need only know the
data within distance t of the point at time ¢.

In three dimensions, E is supported on the cone so we have that the
value at u(z,t) is determined by f on the surface of the cone |z — y| =
t — s and by ug,u; on |z — y| = t. This expresses Huygen’s principle
in three dimensions that light travels exactly at one speed with no
back-wash.

6.7. Energy Estimates. If Ou = 0 then integrating over all space in
x and over [0,7T] in t we have

0= // (g — Ugy )dzdt
= //(ututt + Uty )dxdt
1

1 2 2 r
5 /(ut + uy)dx

which proves the statement. This is of limited utility as it does not
apply if the functions are not compactly supported however there is
a local version which also gives a proof of finite speed propagation
of information which does work. (to get this integrate over a cone
|t —x| < R—t,0<t<T)

0

The local version is that the energy in the |z — x¢| < R at time T is
less than or equal to the energy in the ball |z — xy| < R+ T at time
T'. This expresses the idea that the total amount of energy is preserved
and that it can move around at a maximum rate of 1.

7. THE HEAT EQUATION

7.1. Symmetries. The heat operator is given by

0

— —A

ot
and so it invariant under isometries of R" in z and translations in ¢. It
is mot invariant under reflections in ¢ unlike the wave equation.

Note that

(% - A) (ulaz, a*t)) = o2 ((% - A) u> (az, a?t)
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reflecting the different homogeneities of the operator in x and t. We
will find that the factor |z|?/¢ will appear often in the study of this
operator.

7.2. The Fundamental Solution. As usual we start by constructing
the fundamental solution; we know that a fundamental solution is given

by
(B, 0) = < ) /||§||27++ZZ:fe))‘”df

where € > 0. Of course, we want to compute what this is on the non-
Fourier transform side.

W¢ —£)
||£||2 +e€ + iT

)
> // 6t¢ —([I€]I*+e tdtdf
> // 6t¢ ||£H2+Etdtd€

( )//@ %WﬂMt

So the fundamental solution is

AL Y )

2
I

K(t,z) = {(ﬁ)n/g e 120

0 t<0

Note that we do not get a corresponding fundamental solution if we
reverse the sign of ¢ - the heat equation expresses a definite direction
of time.

The only singularity of the fundamental solution of the heat operator
is at
r=0,t=0.
We can therefore construct a parametrix for the heat operator sup-

ported in any small ball B, and so the arguments in the elliptic case
applied here imply

Proposition 13. The singularities of u and (% — A) u are the same
for any u € D'.
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This property is sometimes called hypo-ellipticity - expressing that
while the operator is not elliptic it behaves similarly in this regard.

The standard problem we want to solve for the heat operator is

0
— —Alu= t
(375 )u g, t>0

g, o) = v

with wug, g given. Writing
Ki(x) = K(t, )

the solution of this is given by

t
u(t,z) = Ky x ug + /Kt,s * geds.
0

The second term here is just the application of the forward funda-
mental solution to ¢ - this will make sense for any g continuous and
bounded on ¢t = 0 as the exponential decay of K, , will ensure that
the convolution converges. The fact that the integral of K (t,z) with
respect to x is 1 for any ¢ tells us that K; 4 * g, is bounded by sup g
and so the ds integral will converge too. This also shows that

t
/Kt,s x gsds — 0
0

att — 0+.

This reduces us to studying the problem for ¢ = 0. We check directly
that K; % ug solves. That it is a solution of the heat equation is clear

as
0
— —A|K;=0.

It is also smooth as K; is. We check that it is continuous up to ¢t =0
with the correct boundary value. Let € > 0, fix z € R” and take § such
that |z — z| < ¢ implies that

[ug(x) —ug(z)| < e
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then
K14 un(@) = uol2)] = | [ K = g 1) (uoly) = uo(z) dy

< [ K@ t)uly) - u(2)ldy

ly—z|<d/2

v [ K=y tluly) - uo(z)ldy
ly—xz|>d/2

< [ K@= y0luly) - uol=)ldy
ly—z|<d

+2suplgl [ Koy t)dy

ly—z|>d/2
< e/K(x—y,t)dy

+2suplgl [ K@y by,

ly—z|>0/2

The first term equals € so we need only check that for any fixed ¢ that

/ K(z,t) =0

|z|>d

as t — 0 4 . Performing the change of variables z = t 2z the integral
is equal to

N
\i\>5t’%
and the result follows. So we have the existence of a solution and one
could deduce from the representation that there is continuous depen-
dence on initial data. We still need to check uniqueness - in fact this
only holds if we make constraints on the solution and we look at this in

the next section using maximum principles which also give a method
of proving continuous dependence on initial data.

If we study the homogeneous problem with ¢ = 0 and we take wu
to be a positive compactly supported smooth function then as K; > 0,
we have that the solution u(¢,z) > 0 for all ¢ > 0, and all z so heat
propagates at infinite speed - this is in contrast to the wave equation
where waves propagate at finite speed. This does not appear very
physical! But the solution is decaying exponentially fast so these extra
effects are very small.
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7.3. Maximum Principles. As usual, we wish to have some control
over the solution - it should be unique and depend continuously on in
initial data. Surprisingly, there are smooth functions u which satisfy
the heat equation and tend to zero at £ = 0+ which are not identically
zero. We therefore need to make some restrictions on our class of
solutions to avoid this. One approach is to make the requirement that
u be positive which is sufficient to guarantee uniqueness and is the
physical case. The analysis however is rather long so instead we use a
boundedness condition to get a maximum principle.

First, we consider a bounded domain,

Q={lz -yl <r0<t<T}

Proposition 14. If (2 — A)u < 0 in Q and u is continuous on

then the mazimum value of u in S is attained on {|x —y| < r;t =
0fUu{lz —yl=r,0<t<T}.

Proof. First suppose that (2 — A)u < 0 in Q. We let
Qe={lz—y|<r0<t<T—e}.
Suppose that v has a local maximum inside €2, then at such a point,
we have
uy=0,Au >0

which contradicts our supposition so « must attain its maximum on
the boundary of €).. Now if the maximum is attained at a point in
{|lr—y| < r,t =T —€} then at such a point we have u; > 0 and Au < 0
which contradicts the assumption. So we have that the maximum is
attained on {|r —y| < r,t =0} U{|jx —y| =7,0 <t <T — e Taking a
union over all positive e the result follows in this case.

One can reduce the general case to the already proved case by sub-

tracting kt from wu, applying the result and then letting £ — 0. U

Uniqueness and continuous dependence on initial data is now imme-
diate if we consider the problem of specifying data on the set where
the maximum is attained.

A general maximum principle with z unbounded also applies, pro-
vided we make an assumption on the function’s growth.

Theorem 25. Let u be continuous on Q =R" x [0,T) and smooth in

the interior with
0
— — A <0
(i-2) s
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and with u bounded above by M and
u(e,0) = ()
then for (z,t) € €,
u(w,t) < supu(z,0)
wn €.

Proof. We start by fixing a point (y, s) € €, with s > 0 where we shall
estimate the value of u. As the problem is translation invariant in y we
shall take y = 0.
Let
vul,t) = u(e, 1) — p(a® + 2nt)
then applying the maximum principle to the cylinder |z| < p,0 <t < T
we have

v(x,t) < max{ sup , sup (vu(z, 0))} .
2| <p(vu(2,0)) |z|=p,te[0,T]
Now,
sup  (vu(,0)) < M — pp?
|z|=p,t€[0,T]

and

sup (v, (z,0)) < sup(v,(z,0)) < supu(z,0).

lz|<p
So we have

u(0,s) — pus < max{sup u(x,0), M — pp*}.

So given € we pick u so that us < € and then p such that M — pp? <
sup u(z,0) and conclude that

u(0,s) < e+ supu(z,0)

and as € is arbitrary the result follows. O

We remark that our condition on wu is unnecessarily stringent and
that this result could be proved under the assumption that

u(z, 1) < Cetll#ll”,
(see for example [2].)

Uniqueness in the class of bounded solutions and continuous depen-
dence on initial data are now clear. (use the maximum principle for u
and —u.)
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7.4. Group Law. If we are given initial data ug at time 0 for the heat
equation, flow for time s to get u; and then using this as initial data
flow of time t to get (uy);, then this this will be equal to uyy, from
the uniqueness of solutions. As the problem is translation invariant in
time, if write the solution operator at time ¢ as e®? this says that

Als+t) _ A5 AL

e s,t >0

and
A5 Id, t— 0+,

This says that e®! is an operator semi-group and there is a large theory
of such semi-groups.

One can do something similar with the wave equation - working with
pairs (ug, u1) rather than with ug. As we can flow backwards in time,
we get a group rather than a semi-group.

7.5. Arrow of time. We have only solved the forward problem for
the heat operator - we specify initial data at time 0 and then compute
what the solution is in positive time. Unlike the wave equation, the
backwards problem is not solvable for the heat equation - one can not
recover the initial value of a distribution from its future behaviour. For
example, whatever initial data we start with, we always have a smooth
function in all positive time.

7.6. Brownian Motion. One can regard the heat kernel K (x,t) for
a fixed ¢t as a probability density function as it is positive and has
integral equal to 1. This reflects the fact that the heat equation can
be interpreted as a limit coming from Brownian motion. If we have a
particle at y as time 0O then it will be distributed at time ¢ according
to the density function K(x — y,t). So if one imagines there being a
particle of heat at a point y at ¢ = 0 then it is smeared out according
to the density K at time ¢ - this is a rather antiquated notion from the
point of view of physics but can useful mathematically.

7.7. Finite Difference Methods. In this section, we look at how the
one dimensional heat equation can be realized as a limit of finite differ-
ence equations. This gives a numerical method of computing the solu-
tion. It should be noted, although we shall not do this here, that this
approach actually gives a method of proving the existence of solutions
for variable coefficient operators by showing that the approximations
converge to a solution which is not a prior: given.
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What is the finite difference analogue of the heat equation? We
assume h, k > 0 are given and fixed (Later, we will vary them.) and
work on a lattice

Yhie ={(lh,mk),l,m € Z,1 > 0}.
If u is a function on the lattice, we define
Aug — u(z,t+h) —ulzt) ulz+kt)—2u(zt)+ulr— kit
h k? '
Note that this will converge to the heat operator as k,h — 0+ (use
L’Hopital’s rule.)

We can regard this as a recipe for computing u(x,t+ h) from u(y, t);
if
Au=d
then

h
u(z,t+h)=u(z,t)+ ﬁ(u(r +k,t) = 2u(x,t) + u(zr — k,t)) + hd.
If we let ||.|| be the supremum norm in z then we have that
lult+h) < [1—2hk ?|[lu(, )| + 20k *|Ju(., )] + Alld(., 1)]].
b

Jul 2+ R < [lul, )] + hlld(, D).

If we assume that assume that

< % then we have

So if u has initial data f on ¢ = 0 then iterating, we deduce that
Ju(, IR < |LFIF+ thlld(., 2)]
or putting ¢ = [h that
luC, DI < [IF]] + #sup [ld(, s)]] (7.1)

Now suppose we have a solution u of

(% — A) u=d(z,1) (7.2)
w(0,t) = fo. (7.3)

We want to compare it to the solutions obtained from the finite differ-
ence methods by iteration. Suppose we have a nested sequence of lat-
tices ¥, given as above with hk~? fixed independent of v and h, k — 0
as v — oo. We have then for each v a solution w,. Putting U equal to
the union of ¥, over all v, we expect the limiting values of u,(z,t) to
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converge to u(x,t) for (x,t) € U. We prove this subject to a regularity
assumption on wu.

Theorem 26. Suppose u is a solution of (7.2),(7.3) and %, %, Au
are uniformly bounded and uniformly continuous then for all (x,t) € U

we have that
uy(z,t) — ul(z,t).

Proof. The uniform continuity and boundedness guarantee that

u(@,t+h) —ulz,t) Ou

h ot

and
w(x + k,t) — 2u(z,t) + v(x — k, 1)
k2
tend to zero uniformly as h, k — 0 that is as v — oc. (use L'Hopital’s
rule) Given € > 0, we have for v sufficiently big we that

|A,u—d| <e.

— Au

We therefore have that
AL (u—u,)| <e
with initial data zero. So from our estimate (7.1), we have
lu(z,t) —u,(x,t)] < et,

which proves the result. O

8. APPENDIX

8.1. Integration. For convenience, we have used some theorems from
Lebesgue integration. Here we just run over the notions and theorems
we need.

The basic space is L'(R") - a function f will be in L*(R") if both it
and its modulus are Riemann integrable and the integrals converge at
infinity. Much more general functions are in the space but will not be
needed in this course.

We say a function is locally integrable if it is integrable when multi-
plied by the characteristic function of any ball. This space is denoted
by L}

loc*

The main theorem we will use is ( a weakened version of ) the dom-
inated convergence theorem.
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Theorem 27. Let h, be a sequence of functions in L' such that there
exists g € L' with |h,| < g and such that h,, converges to a function h
pointwise then h is in L' and

lim / h, = / h
n—oc

8.2. Taylor’s Theorem. While a smooth function does not in general
have a convergent power series, it can be approximated accurately by
a finite series to whatever order we like.

Theorem 28. (i) Let f(t,x) be a smooth function then for all N € N

; t—s)V1

N-1£G) (0. 2
f(t,z) = jzo %t +/ﬁf(N)(S’x)ds'

[Note that the error is a smooth function vanishing to order N at
t=0.]

(i) Under the conditions of (i), if f9(0,2) =0 for0 < j <N —1
then

f(t,z) =t"¢(t, )
with ¢(t, x) a smooth function.

Proof. (i) (This is just the proof you know and love dressed up a bit to
make a change.) By the fundamental theorem of calculus,

f(t,7) = £(0,2) +/f(1)(s,.1:)ds.

If we iterate this we get,

f(t,z) = ' +// / f(N)(sN)dsNdsN,l...dsl.
0

The result then follows by reversing the order of integration.

(ii) By part (i)

:/7(2]\[ i)l)' FM (s, x)ds,

0

so making the linear change of variable s = tu we have

f(ta ’E) = tn(b(ta I‘)
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with )
(1 _ U)Nfl

o(t, x) :/Wf(m(ut,x)du.

Standard theorems about differentiating under the integral sign show
that ¢ is smooth. 0O

It’s important to remember that there are function whose Taylor
series vanishes to infinite order at ¢ = 0 but are positive for ¢ # 0. For

=2
example e .
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