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3 Parabolic equations

3.1 The heat equation on an interval

Next consider the heat equatiore [0, 1] with Dirichlet boundary conditions(0,¢) =
0 = u(1,t). Introduce the Sturm-Liouville operatd?f = —f”, with these boundary

conditions. Its eigenfunctions,, = v/2sinmma constitute an orthonormal basis for
L*([0,1]) (with inner product(f,g) = | f(x)g(x)dz, considering here real valued

functions). The eigenvalue equation#%,, = A, ¢, with \,, = (mx)% In terms
of P the equation is:
U + Pu=0

and the solution with initial data
U(O, I’) - U()(ZE) - Z(¢m7 u0)¢m,7
is given by
u(@,t) =Y e (G, o) - (3.1)

(In all these expressior}s, meansy . ~_,.) An appropriate Hilbert space is to solve for

u(-,t) € L2([0,1]) givenuy € L2, but the presence of the factor* = ¢~"’™ means
the solution is far more regular for> 0 than fort = 0.

3.2 The heat kernel

The heat equation i8, = Au whereA is the Laplacian on the spatial domain. For the
case of spatial domair” the distribution defined by the function

1 el g
K(a,t) — § Ve XPL= ] TE>0, (3.2)
0 if t <0,

is the fundamental solution for the heat equations{ispace dimensions). This can
be derived slightly indirectly: first using the Fourier transform (in the space variable
only) the following formula for the solution of the initial value problem

up = Au, u(z,0) = f(x) f € S(R™). (3.3)



Let K;(z) = K(x,t) and letx indicate convolution in the space variable only, then
u(w,t) = Ky % f(x) (3.4)

defines fort > 0 a solution to the heat equation and by the approximation lemma (see
question 2 sheet 3Jm; o, u(x,t) = f(z). Once this formula has been derived for
f € S(R") using the fourier transform it is straightforward to verify directly that it
defines a solution for a much larger class of initial data, £.g.L>°(R").

Now theDuhamel principlegives the formula for the inhomogeneous equation

uy = Au + F, u(z,0) =0 (3.5)

asu(z,t) = fot U(z,t,s)ds whereU(z,t,s) is obtained by solving the family of homo-
geneous initial value problems:

U, =AU, Ulx,s,s)=F(x,s). (3.6)

This gives the formula

u(x,t):/o Kt—s*F('7S)d3:/0 K, s(x —y)F(y,s)ds = K ® F(x,t),

for the solution of (3.5), where® means space time convolution.

3.3 Parabolic equations and semigroups

Lemma 3.3.1 (Semigoup property) The solution operator for the heat equation given
by (3.1) (respectivel 3.45:

S(t) - ug — ul-,t)

defines a strongly continuous one parameimigroup(of contractions) on the Hilbert
spaceL?([0, 1]) (respectively.?(R")).

Noting the following properties of the heat kernel:
e K;(z)>0forallt> 0,z € R",
o [.. Ki(x)de = 1forallt >0,
e K,(z) is smooth fort > 0,z € R", and fort fixed K;(-) € S(R"),

the following result concerning the solutian-, t) = S(t)uy = K; * u, follows from
basic properties of integration (see appendix):

e for vy € L'(R") the functionu(x, t) is smooth fort > 0,z € R" and satisfies
u — Au = 0,

o |lu(-,t)|lee < ||uollze @andlimy oy ||u(-,t) — ug||zr = 0for 1 < p < oo,

o if a <wup<bthena <u(z,t) <bfort>0,zr€R".
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Fhrom these and the approximation lemma (see question 2 sheet 3) we can read off the
theorem:

Theorem 3.3.2 (i) The formulau(-, t) = S(t)uy = K;*ug defines fou, € L' a smooth
solution of the heat equation for> 0 which takes on the initial data in the sense that
hmt_)o_i_ ||U(, t) - UOHLl = 0.

(i) The family {S(¢) }+>0 also defines a strongly continuous semigroup of contrac-
tions onLP(R™) for 1 < p < oc.

(iii) If in addition w, is continuous then(z, t) — uo(x) ast — 0+ and the conver-
gence is uniform iy, is uniformly continuous.

The final property of the kernel above implies a maximum principle for the heat
equation, as is now discussed in generality.

3.4 The maximum principle

Maximum principles for parabolic equations are similar to elliptic once the correct no-
tion of boundary is understood. f# C R" is an open bounded subset with smooth

boundaryo$2 and forT > 0 we define2; = Q x (0, T'] then the parabolic boundary of
the space-time domain; is (by definition)

3paTQT:Q_T—QT:Q><{t:0}UaQ><[O,T].

We consider variable coefficient parabolic operators of the form

Lu = Ou + Pu
where . .
Pu= — > apdidpu+ Y bjdju+ cu (3.7)
4, k=1 j=1

is an elliptic operator with continuous coefficients and throughout this seetjor-
a;, bj, c are continuous and

mlgl® <) apésn < M| (3.8)

jk=1
for some positive constants, M and allz, t andg¢.

Theorem 3.4.1Letu € C(Qr) have derivatives up to second orderirand first order
in t which are continuous if27, and assuméwu = 0. Then

o if c = 0 (everywhere) themax u(x,t) = max u(z,t), and

T dparQT

e if ¢ > 0 (everywhere) themax u(x,t) < max u*(z,t), and

QT aparQT

max [u(z,t)] = max |u(z,?)].
QT apa'rQT

whereut = max{u, 0} is the positive part of the functian
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Proof We prove the first case (when= 0 everywhere). To prove the maximum
principle bound, considet(x,t) = u(z,t) — et which verifies, fore > 0, the strict
inequality Lu® < 0. First prove the result fox*:

max u(x,t) = max u(z,t)
m apm"QT

Sinced,,, 1y C Qr the left side is automatically the right side. If the left side were
strictly greater there would be a poipt,, ¢.) with 0 < z, < 1 and0 < ¢, < T at which
a positive value is attained:

u(xy, te) = max u(z,t) > 0.
(I,t)EQT

By calculus first and second order conditiodsu® = 0, uf > 0 anddj;ug, < 0 (as a
symmetric matrix - i.e. all eigenvalues afe0). These contradictu® < 0 at the point
(x4, t.). Therefore

max u‘(z,t) = max u(x,t).

Qr OparSp

Now lete | 0 and the result follows.

3.5 Regularity for parabolic equations
Consider the Cauchy problem for the parabolic equation= J,u + Pu = f, where

Pu= — Z 0j(a;10ku) + Z b;0;u + cu (3.9)
j=1

jk=1

with initial datau,. For simplicity assume that the coefficients are all smooth functions

of z,t € Q. The weak formulation of.u = f is obtained by multiplying by a test
functionv = v(z) and integrating by parts, leading to (whére means the.? inner
product defined by integration overe 2):

(ut,U)+B(U,U):(f7U), (310)

B(u,v) = / O ajpdudw + Y bidjuv + cuv) da .
ik

To give a completely precise formulation it is necessary to define in which sense the time
derivativeu, exists. To do this in a natural andé;enera way requires the introduction of
Sobolev spaceé/® for negatives - seet5.9 ands7.1.1$7.1.2 in the book of Evans.
However stronger assumptions on the initial data and inhomogeneous term are made a
simpler statement is possible:

Theorem 3.5.1For ug € H}(Q) and f € L*(Qr) there exists

w € L2([0, T); B*() N L([0, T]: H(2)



with time derivativeu; € L*(Qr) which satisfie3.10)for all v € H} () and almost
everyt € [0,T] andlim; o, ||u(t) — upl/z2 = 0. Furthermore it is unique and has the
parabolic regularityroperty:

T
()l Fr2 () + luell 220y ) dt+-€88 sup [[u(®)]Fq) < Ol 2@ + 1ol i) -

0 0<t<T of
(3.11)

(The time derivative is here to be understood in a weak/distributional sense as discussed
in the sections of Evans’ book just referenced, and the proof of the regularity (3.11) is
in §7.1.3 of the same book.)

4 Hyperbolic equations

A second order equation of the form
Uy + Z a;0;0;u + Pu =0
j

with P as in (3.7) (with coefficients potentially depending upon t and x), is strictly hy-
perbolic if the principal symbol

o(r,&tx) = =17 — (- T+ apbib

ik

considered as a polynomialirhas two distinct real roots = 7. (; ¢, «) for all nonzero
&. We will mostly study the wave equation

Ut — Au=20 s
starting with some representations of the solution for the wave equation. In this section
we writeu = u(t, z), rather thanu(z, t), for functions of space and time to fit in with
the most common convention for the wave equation.
4.1 The one dimensional wave equation: general solution
The general’? solution ofu,, — u,, = 0is
u(t,z) =F(x—t)+ G(x + 1)

for arbitraryC* functionsF, G. From this can be derived the solution at time 0 of
the inhomogeneous initial value problem:

Ut — Ugg = f (4-12)

with initial data
u(0,z) = up(x), u (0, 2) = ug(x) . (4.13)



1 T+ T+t—s
u(t,z) = = (uo(z —t) +up(z +1)) + 5/ y)dy + = / / (s,y)dyds.
r—t r—

t+s
(4.14)
Notice that there is again a “Duhamel principle” for the effect of the inhomogeneous

term since
T+t—s t
/ / (s,y)dyds = / Ult,s,z)ds
r—1+s 0

whereU (t, s, x) is the solution of thdhomogeneouproblem with datel (s, s,z) = 0
ando,U (s, s, x) = f(s,z) specified at = s.

DN | —

Theorem 4.1.1 Assuming thatug, u;) € C*(R) x C'(R) and thatf € C'(R x R) the
formula(4.13)defines aC%(R x R) solution of the wave equation.

4.2 The one dimensional wave equation on an interval

Next consider the problem < [0,1] with Dirichlet boundary conditions(¢,0) =
0 = u(t,1). Introduce the Sturm-Liouville operatd?f = — f”, with these boundary

conditions as i§3.1, its eigenfunctions being,, = /2 sin mnrz with eigenvalues.,,, =
(mm)2. In terms of P the wave equation is:

U + Pu=0
and the solution with initial data
u(0,2) = uo(z) = > d(m)dm,  w(0,2) =u(z) =Y @(m)m,

is given by

VA

with an analogous formula fer,. Recall the definition of the Hilbert spaé¢g! ((0,1)) as
the closure of the functions ii5°((0, 1))* with respect to the norm given Hyf||%,, =

fo1 2+ f?dx. In terms of the basig,, the definition is:

= Z cos(ty/ N ) o (M) o + M?ﬁ(m)qﬁm

o0

Hy((0,1) = {f =) fubm : If N7 = D_ (L +m*7%)| fuul® < 00}

m=1
(In all these expressions meansy > _,.) As equivalent norm we can take Al fim 2

An appropriate Hilbert space for the wave equation with these boundary conditions is to
solve for(u,u;) € X whereX = H} & L?, and precisely we will take the following:

X={(£,9) = O_ futm: > Gmdm) 1L )% = D" Nl fin* + 13 [?) < 00} .

1i.e. smooth functions which are zero outside of a closedusét C (0, 1)
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Now the effect of the evolution on the coefficientsn, t) andu;(m, t) is the map

a(mv t) — COS(t\/E) % a(m7 O)
(@(m,t)) <—\/msin(t\/E) COS(\QE) (@(m, 0)) (4.15)

Lemma 4.2.1 The solution operator for the wave equation

) U(t, )
S() - (Ul) - (Ut(t7 -))
defined by(4.15)defines a strongly continuogsoupof unitary operators on the Hilbert
spaceX, as in definition 5.3.1.

4.3 The wave equation om”

To solve the wave equation @ take the Fourier transform in the space variables to
show that the solution is given by

sin(t[¢])
e

for initial valuesu(0,z) = ug(z),u:(0,2) = ui(x) in S(R™). The Kirchhoff formula
arises from some further manipulations with the fourier transform in thercasa and
ug = 0 and gives the following formula

u(t,z) = (27?)_"/expif'“”(cos(ﬂ{l)%(f) +

u(t,z) = uy(y) d¥(y) (4.16)

drt

y:lly—zl|=t

for the solution at time¢ > 0 of u;; — Au = 0 with initial data(u,u;) = (0,u;). The
solution for the inhomogeneous initial value problem with general Schwartz initial data
ug, u; can then be derived from the Duhamel principle, which takes the same form as in
one space dimension.

4.4 The energy identity and finite propagation speed
Lemma 4.4.1 (Energy identity) If  is aC? solution of the wave equation show that

u? + |Vul?

o

) + E)Z(—ut(?zu) =0

whered; = 2.

From this and the divergence theorem it follows that

Lemma 4.4.2 (Finite speed of propagation)if u € C? solves the wave equation and
u(0, z) andu,(0, z) both vanish folz| < R thenu(t, z) vanishes folz| < R — |t] if
lt] < R.



5 One-parameter semigroups and groups

If Aisabounded linear operator on a Banach space its norm is

JAl = sup LAY

, (operator or uniform norm)
uexuo |[ull

5.1 Definitions

Definition 5.1.1 A one-parameter family of bounded linear operat¢f¢)},~o on a
Banach space&X forms a semigroup if

1. S(0) = I (the identity operator) , and
2. S(t+s)=S5(t)S(s) forall t,s > 0 (semi-group property).
3. Itis called a uniformly continuous semigroup if in addition to (1) and (2):

tlirgl+ |S(t) —1I]| =0, (uniform continuity).

4. Itis called a strongly continuous (@r,) semigroup if in addition to (1) and (2):

tli%a+ |1S(t)u —ul| =0,Vu e X (strong pointwise continuity).

5. If [|S(#)|| < 1forall t > 0 the semigrou{S(t)}:+>o is called a semigroup of
contractions.

Notice that in 3 the symbdl- || means the operator norm, while in 4 the same symbol
means the norm on vectors Ki. Also observe that uniform continuity is a stronger
condition than strong continuity.

5.2 Semigroups and their generators

For ordinary differential equations= Ax, whereA is ann x n matrix, the solution can
be writtenz(t) = e!4z(0) and there is & — 1 corespondence between the mattiand
the semigrougd (t) = ¢4 onR™. In this subsectiohwe discuss how this generalizes.

~ Uniformly continuous semigroups have a simple structure which generalizes the fi-
nite dimensional case in an obvious way - they arise as solution operators for differential
equations in the Banach spa&e

Z—ZL +Au=0, for u(0) € X given. (5.17)

Theorem 5.2.1 {S5(t) }+>0 is a uniformly continuous semgroup éhif and only if there
exists a unique bounded linear operatdr : X — X such thatS(t) = e 4 =

> i—o(—tA) /5!, This semigroup gives the solution(®17)in the formu(t) = S(t)u(0),
which is continuously differentiable int&. The operatorA is called the infinitesimal
generator of the semigroufS () }+>o-

2This subsection is for background information only
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This applies to ordinary differential equations whéris a matrix. It is not very useful

for partial differential equations because partial differential operators are unbounded,
whereas in the foregoing theorem the infinitesimal generator was necessarily bounded.
For example for the heat equation we need to tdke —A, the laplacian defined on
some appropriate Banach space of functions. Thus it is necessary to consider more
general semigroups, in particular the strongly continuous semigroups. An unbounded
linear operatorA is a linear map from a linear subspab¢A) C X into X (or more
generally into another Banach space The subspac®(A) is called the domain ofl.

An unbounded linear operater: D(A) — Y is said to be

e densely defined D(A) = X, where the overline means closure in the norm of
X, and

e closedif the graphl'y = {(u, Au)|uepay)} C X x Y isclosed inX x Y.

A class of unbounded linear operators suitable for understanding strongly continuous
semigroups is the class nfaximal monotoneperators in a Hilbert space:

Definition 5.2.2 1. A linear operatorA : D(A) — X on a Hilbert spaceX is
monotone if{u, Au) > 0 forall u € D(A).

2. A monotone operatad : D(A) — X is maximal monotone if, in addition, the
range of/ + Ais all of X, i.e. if:

VieX3ueDA) :(I+Au=Ff.

Maximal monotone operators are automatically densely defined and closed, and there is
the following generalization of theorem 5.2.1:

Theorem 5.2.3 (Hille-Yosida) If A : D(A) — X is maximal monotone then the equa-
tion
du

T Au=0, for u(0) € D(A) C X given, (5.18)

admits a unique solution € C([0,00); D(A)) N C*([0, 00); X) with the property that
lu(t)]] < |lw(0)| forall ¢ > 0 andu(0) € D(A). SinceD(A) C X is dense the
map D(A) > u(0) — u(t) € X extends to a linear mapa(t) : X — X and by
unigueness this determines a strongly continuous semigroup of contratfa(i9 }+>o
on the Hilbert spaceX. OftenS4(t) is written asS4(t) = e~

Conversely, given a strongly continuous semgrétifx) }:>, of contractions on¥,,
there exists a uniqgue maximal monotone operator D(A) — X such thatS,(t) =
S(t) for all t > 0. The operatorA is the infinitesimal generator ofS(¢) }>o in the
sense thatt S(t)u = Au for u € D(A) andt > 0 (interpreting the derivative as a right
derivative att = 0).

5.3 Unitary groups and their generators

Semigroups arise in equations which are not necessarily time reversible. For equations
which are, e.g. the Schdinger and wave equations, each time evolution operator has an

inverse and the semigroup is in fact a group. In this subse€ctvergive the definitions
and state the main result.

3In this subsection you only need to know definition 5.3.1. The remainder is for background informa-
tion.



Definition 5.3.1 A one-parameter family of unitary operato{#/(¢)},.g on a Hilbert
spaceX forms a group of unitary operators if

1. U(0) = I (the identity operator) , and
2. U(t+s) =U(t)U(s) forall ¢, s € R (group property).

3. Itis called a strongly continuous (@¥,) group of unitary operators if in addition
to (1) and (2):

%ir% |U(t)u —ul| =0,Vu e X (strong pointwise continuity).

A maximal monotone operatot which is symmetric (=hermitian), i.e. such that
(Au,v) = (u, Av) forall u,vin D(A) C X (5.19)

generates a one-paramegeoup of unitary operatorg U (¢)},.gr, often writtenU (¢) =
e~*4, by solving the equation

% +iAu=0,  foru(0) € D(A) C X given. (5.20)

It is useful to introduce the adjoint operatd via the Riesz representation theorem:
first of all let

D(A") = {u e X : the mapv — (u, Av) extends to a bounded linear functional— C}

so thatD(A*) is a linear space, and far € D(A*) there exists a vectan, such that
(wy,v) = (u, Av) (by Riesz representation). The map— w, is linear onD(A*)

and so we can define an unbounded linear opet&tor D(A*) — X by A*u = w,,

and since we started with a symmetric operator it is clear fhgt) c D(A*) and
A*u = Au foru € D(A); the operatord* is thus an extension of.

Definition 5.3.2 If A: D(A) — X is an unbounded linear operator which is symmetric
and if D(A*) = D(A) thenA is said to be self-adjoint and we writé = A*.

Theorem 5.3.3 Maximal monotone symmetric operators are self-adjoint.

Theorem 5.3.4 (Stone theorem)f A is a self-adjoint operator the equati¢h.20)has
a unique solution foru(0) € D(A) which may be writtenu(t) = Ux(t)u(0) with
|lu(t)|| = ||u(0] for all ¢ € R. It follows that theU,(t) extend uniquely to define
unitary operatorsX — X and that{U4(¢) },cr constitutes a strongly continuous group
of unitary operators which are writteti4 (t) = ¢4,

Conversely, given a strongly continuous group of unitary operafdrg)},.r there
exists a self-adjoint operatot such that/(t) = Uy(t) = e~ for all ¢ € R.
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6 Appendix: integration

The aim of this appendfxis to give a brief review of facts from integration needed -
completeness of thé? spaces, dominated convergence and other basic theorems. We

first consider the case of functions on the unit intefal]. A main achievement of
the Lebesgue integral is to constrummpletevector spaces of functions where the

completeness is with respect to a norm defined by an integral such Bstloem || - || .
defined by

17112 =/0 ()2 da.

This is a perfectly good norm on the space of continuous functi¢i@, 1]), but the
resulting normed vector space is not complete (and so not a Banach space) and is not
so useful as a settlng for analysis. The Lebesg]ue framework provides a larger class of
functions which can be potentially integrated - theasurable functions’he complete

Lebesgue spack’ which this construction leads to then consists of (equivalence classes
of) measurable functionswith || f||7. < oo; here itis necessary to consider equivalence

classes of functions because functions which are non-zero only on sets which are very

small (in a certain precise sense) are invisible to the integral, and so have to be factored

gulg_of ;[jhe discussion. The “very small” sets in question are called null sets and are now
efined.

6.1 Null sets and measurable functions ofD, 1]

An interval in|0, 1] is a subset of the forrtu, b) or [a, b] or (a, b] or [a, ) (respectively
open,closed, half open). In all cases the length of the intery&l is b—a. A collection
of intervals{I,} coversa subsetd if A C U,1,.

Definition 6.1.1 (Null sets) For a setA C [0, 1] we define theuter measurto be

Al = {In}ifxlzflec{zn: 1| = AC UL},

whereC consists of countable families of intervals|in1]. A setN C [0, 1] is null if
|I|. =0, i.e. if for all e > 0 there exist{ [, },°; € C which coversd with ) |,| < e.

Definition 6.1.2 We sayf = g almost everywhere (a.e.) flz) = g(z) forall z ¢ N
for some null sefvV. We say a sequence of functiofysconverges tgf a.e. if f,,(z) —
f(z) forall z ¢ N for some null setV.

quality a.e. defines an equivalence relation, and two equivalent fungtigreze said

to be Lebesgue or measure theoretically equivalent. One way to think about measurable
functions is provided by the Lusin theorem, which says a measurable function is one
which is “almost continuous” in the sense that it agrees with a continuous function on
the complement of a set of arbitrarily small outer measure:

4This section gives a brief introduction to the results on Lebesgue integral which we make use of. You
should be able to use the results listed here but will not be examined on the proofs or on any subtleties
connected with the results.
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Definition 6.1.3 (Measurable functions) A functionf : [0, 1] — R is measurable if for
everye > ( there exists a continuous functighi : [0,1] — R and a setF* such that
|F€l. < eand f(z) = f(x) for all z ¢ F°<. We write L([0, 1]) for the space of all
measurable functions so defined.

Theorem 6.1.4 L(]0, 1]) is a linear space closed under almost everywhere convergence:
given a sequencg, € L([0, 1]) of measurable functions which converges to a function
f a.e. itfollows thatf € L([0, 1]).

Definition 6.1.3 is not the usual definition of measurability - which involves the
notion of a distinguished collection of sets, thelgebra of measurable sets - but is
equivalent to it by what is called tHeusin theoren(see for exampl€2.4 and§7.2 in
the bookReal Analysidby Folland). The Lusin theorem gives a helpful way of thinking
about measurability (the Littlewood 3 principles - $g23 in the bookReal Analysis
by Royden and Fitzpatrick). A companion to the Lusin theorem i€teroff theorem
which states that given a sequengec L([0, 1]) of measurable functions which con-
verges to a functiorf a.e. then for every > 0 it is possible to find a séf’ C [0, 1] with
|E|. < esuch thatf,, — f uniformly on £¢ = [0,1] — E. Thus two of Littlewood’s
principles say that “ a measurable function is one which agrees with a continuous func-
tion except on a set which maﬁ be taken to have arbitrarily small size” and “a sequence
of measurable functions which converges almost everywhere converges uniformly on
the complement of a set which may be assumed to be arbitrarily small”.

6.2 Definition of L?([0, 1])

Definition 6.2.1 For 1 < p < oo defineL?([0, 1]) to be the linear space of measurable
functions on0, 1] with the property that

IfIE, = / F(@)P da < 0o,

For the case = oo: firstly, say thatf is essentially bounded above with upper (essen-
tial) bound M if f(x) < M for z ¢ N for some null setV. Then let essup f be the
infimum of all upper essential bounds. Then:

Definition 6.2.2 L>(]0, 1]) is the linear space of measurable functions[onl] with
the property that
| fllr= = esssup |f| < co.

The crucial fact is that considering the spaces of equivalence classes of functions
which agree almost everywhere we obtain Banach spaces , also written1]): these
“Lebesgue spaces” are vector spaces of (equivalence classes of) functions which are
complete with respect to the norjn- ||z». (The fact that strictly speaking these the
elements of these spaces are equivalence classes of functions which agree almost every-
where is often taken as understood and not repeatedly mentioned each time the spaces
are made use of.)

The spaced.?([0, 1]) which arise in this way are special cases/#f M) spaces
which arise from abstract measure spaté¢®n which a measurg (and as-algebra of
measurable sets) is given. Other examples used in this course are

e 17([a, b)) with norm ([ | f(x)|? dz)», and

o LP(R™) with norm( [, |f(z)|? dx)%.
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6.3 Assorted theorems on integration

Theorem 6.3.1 (Holder inequality) | fgdx < || f||z#||gllzs for any pair of functions
f e LP g e L7 (onany measure space) with! + ¢! =1 andp, q € [1, oc].

Corollary 6.3.2 (Young inequality) If f € LP(R") andg € L*(R") thenf*g € LP(R")
and|[f * gll» <[ fllzollgllr for 1 < p < oo.

Theorem 6.3.3 (Dominated convergence theorem)et the sequencg, ¢ L' con-
verge tof almost everywhere (on any measure space) and assume that there exists a

nonnegative measurable functi@n> 0 such that|f,,(z)| < ®(x) almost everywhere
and [ ® < co. Thenlim, .o [ f, = [ fandlim, .o || fn — fllzr =0.

Corollary 6.3.4 (Differentiation through the integral) Letg € C'(R" x Q) where
Q C R™is open, and consider(\) = [, g(z, A\)dz. Assume there exists a measurable
function@(zp) > 0 such that

° fR" x)dr < oo,
. SUPA(|Q($, A) +0hg(x, A)]) < (z) .
ThenF € C'(Q) ando\F = [, Org(x, A) dz.

Corollary 6.3.5 If fisaC*(r") function with all partial derivative®“ f of order|a| <
k bounded, ang € L'(R") thenf xg € C*(R") ando(f *g) = (0°f)* g for || < k.

Thﬁorem 6.3.6 (Tonelli) If f > 0 is a nonnegative measurable functipn R! x R —
R then

t/fxyﬂ@/(/fww@)m/</f@wM>d

RrR™

Theorem 6.3.7 (Fubini) If f is a measurable functiofi : R x R — R such that

/’mmwm@<w

RIxR™

(/fxymw/(/f@w@)w/</f@wM)d

Rl xXR™ !

then

Remark 6.3.8 In these two results it is to be understood that when we write down re-
peated integrals that an implicit assertion is that the functigns- [ f(z,y)dxz and

z — [ f(z,y)dy are measurable and integrable.
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Theorem 6.3.9 (Minkowski inequality) If f is a measurable functiofi : R’ xR™ — R
andg : R — R is measurable, then

|| / £, )9(y) dyl o) < / 1 (s ) i |9 dy (6.21)

where

1)y = /|f £y de,

with the understanding as above that thls means that if the right hand si¢&2if)is
finite then the functiorf(z, y)g(y) is integrable iny for almost every: and the resulting
functionz — [ f(z,y)g(y) dy is measurable an¢.21)holds.
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7 Example sheet 4

1. (a) Use the change of variable@, z) = e'u(t, z) to obtain an f%-space” formula
for the solution to the initial value problem:

u+u=Au w0, )=u() e SER").

Hence show thafu(t, z)| < sup, |ug(x)| and use this to deduce well-posedness
in the supremum norm (far> 0 and allzx).

If @ < up(z) < bforall z what can you say about the possible values @f )
fort > 0.

(b) Use the Fourier transform im to obtain a (Fourier space) formula for the
solution of:

Uy — 2up +u = Au u(0, ) =up(-) € S(R™), ut(0,-) =uys(-) € S(R™).

2. Show that ifu € C([0,00) x R")NC?((0, 00) x R") satisfies (i) the heat equation,
(i) w(0,2) = 0 and (iii) |u(t,x)| < M and|Vu(t,z)] < N for someM, N
thenu = 0. (Hint: multiply heat equation bys,, ;(x — z,) and integrate over
|z| < R,a <t < b. Apply the divergence theorem, carefully let— oo and then
b — ty anda — 0 to deduceu(ty, xo) = 0.)

3. Show that ifS(t) is a strongly continuous semigroup on a Banach spaeeth
norm|| - || then

1tlir& 1S (to + t)u — S(to)ul| =0, Vu € X andVi, > 0.

4. Let Pu = —(pu')" + qu, with p and ¢ smooth, be a Sturm-Liouville operator
on the unit interval0, 1] and assume there exist constanmtsc, such thatp >
m > 0 andq > ¢y > 0 everywhere, and consider Dirichlet boundary conditions
u(0) = 0 = u(l). Assume{¢,}>, are smooth functions which constitute an
orthonormal basis fof.?([0, 1]) of eigenfunctionsP¢,, = A\, ¢,. Show that there
exists a numbey > 0 such that\,, > ~ for all n. Write down the solution to the
equationd,u + Pu = 0 with initial datau, € L*([0,1]) and show that it defines
a strongly continuous semigroup of contractionsai[0, 1]), and describe the
large time behaviour.

5. (i) LetOu; + Pu; =0, j = 1,2 whereP is as in (3.7) and the functions have
the regularity assumed in theorem 3.4.1 and satisfy Dirichlet boundary conditions:
uj(x,t) = 0Vo € 082, > 0. Assuming, in addition to (3.8), that

c>co>0 (7.22)
for some positive constang prove that forald <t < T

—tco

sup |U1(I,t) - UQ((L’,t)| <e sup |U1(ZL‘70) - U,Q(ZE,OM
e HISY)
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(i) In the situation of part (i) with

Pu= — Z 9j(ajr0u) + Z bjdju + cu, (7.23)
j=1

jk=1

assuming in addition to (3.8) and (7.22) also that b; areC"* and that
Z 8jbj =0, in Q_T,
j=1
prove thatforalD <t < T
/ (2, ) — s, ) dr < etco/ s (2, 0) — ua(z, 02 da.
Q Q

. (i) Let K; be the heat kernel ar™” at timet and prove directly by integration that
Kix K, = Kt+s

for t,s > 0 (semi-group property). Use the Fourier transform and convolution
theorem to give a second simpler proof.

(i) Deduce that the solution operatof$t) = K, define a strongly continuous
semigroup of contractions aif (R") Vp < oo.

(iii) Show that the solution operatct(t) : L'(R") — L°°(R") for the heat initial
value problem satisfie$S(¢)||,1 .~ < ct~: for positivet, or more explicitly,
that the solutionu(t) = Syu(0) satisfies|u(t)||r~ < ct=2||u(0)||.:, or:

sup |u(z, t)| < ct_"/Q/]u(x,O)\d:L’

for some positive numbet, which should be found.

(iif) Now let n = 4. Deduce, by considering = u,, that if the inhomogeneous
term F € S(R*) is a function ofz only, the solution ofu; — Au = F with zero
initial data converges to some limit &s— oco. Try to identify the limit.

. (i) Letu(t, x) be a twice continuously differentiable solution of the wave equation
onR x R™ for n = 3 which is radial, i.e. a function of = ||z|| and¢. By letting
w = ru deduce that is of the form

—t t

PR Gl BN G

T r
(if) Show that the solution with initial data(0, -) = 0 andu(0, -) = G, whereG
is radial and even function, is given by

u(t,r) = = /TH pG(p)dp.

2r Jo_s

(iii) Hence show that for initial data(0,-) € C*(R™) andu,(0,-) € C?*(R") the
solutionu = u(t, ) need only be irC?(R x R™). Contrast this with the case of
one space dimension.
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8.

10.

Write down the solution of the Schrodinger equatigon= iu,, with 2r-periodic
boundary conditions and initial datdz,0) = u(z) smooth an@r-periodic in

x, and show that the solution determines a strongly continuous group of unitary
operators on.?([—m, x]). Do the same for Dirichlet boundary conditions i.e.
u(—m,t) =0 =u(mt)forallt € R.

(i) Write the one dimensional wave equatiop— u,, = 0 as a first order in time
evolution equation fot/ = (u, u;).

(if) Use Fourier series to write down the solution with initial dat8, -) = u, and

u(0, -) = uy which are smootRr-periodic and have zero meai;(0) = 0.

(iii) Show that [|ullyy = >, |m|*|a(m)|? defines a norm on the space of
smooth2r-periodic functions with zero mean. The corresponding complete Sobolev

space is the case= 1 of
i, = > ImlPla(m)[* < oo},

oy = {7 alm)e™ - Jlull

m70 m70

the Hilbert space of zero mea@m-periodic H*° functions.
(iv) Show that the solution defines a group of unitary operators in the Hilbert space

X={U=(uv): ueH

per

andv € L*([-n,7])}.

(v) Explain the “unitary” part of your answer to (iv) in terms of the energy

E(t):/ﬁ (2 + ) dx.

—T

(vi) Show that||U (t)|
ity).

(a) Deduce from the finite speed of propagation result for the wave equation
(lemma 4.4.2) that a classical solution of the initial value problém, = 0,
u(0,t) = f, ut(0,z) = g, with f, g € D(R") given is unique.

(b) The Kirchhoff formula for solutions of the wave equatiors= 3 for initial data
u(0,-) = 0,u4(0,-) = g is derived using the Fourier transform where S(R").
Show that the validity of the formula can be extended to any smooth function
g € C>(R™).(Hint: finite speed of propagation).

e, = (o, ur)ll g (Preservation of regular-
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