Exercise 1 (Right-shift operator)
The right-shift operator $K : \ell^2 \to \ell^2$, $\{u_j\}_{j \in \mathbb{N}} \mapsto \{f_j\}_{j \in \mathbb{N}}$, is given by

$$f_j = (Ku)_j = \begin{cases} 0 & j = 1 \\ u_{j-1} & j \geq 2 \end{cases}.$$

(a) Compute the range and kernel of K, i.e. $\mathcal{R}(K), \mathcal{N}(K)$.

(b) Prove or falsify: “The Moore–Penrose inverse of K continuous.” Argue only with the definition of the operator and your results of (a).

(c) Compute the Moore–Penrose inverse of K. It is necessary to also state the domain and the range of K^\dagger.

Exercise 2 (Inverse problem of differentiation)
We consider the problem of differentiation, formulated as the inverse problem of finding u from $Ku = f$ with the integral operator $K : L^2([0,1]) \to L^2([0,1])$ defined as

$$(Ku)(y) := \int_0^y u(x) \, dx.$$

(a) Let f be given by $f(x) := \begin{cases} 2x & x < \frac{1}{2} \\ 2x - 1 & x \geq \frac{1}{2} \end{cases}$. Show that $f \in \overline{\mathcal{R}(K)}$.

(b) Let f be given as in Exercise a). Show that $f \in \overline{\mathcal{R}(K)} \setminus \mathcal{R}(K)$

(c) Prove or falsify: “The Moore–Penrose inverse of K continuous.”

Exercise 3 (Differential quotient operator)
As in Exercise (b), we consider the inverse problem of differentiation. As an approximation to K^\dagger we are interested in studying the following differential quotient operator $R_\alpha : L^2([0,1]) \to L^2([0,1])$ with

$$(R_\alpha f)(x) := \frac{1}{\alpha} \begin{cases} f(x + \alpha) - f(x) & x \in [0, \frac{1-\alpha}{2}] \\ f(x + \frac{\alpha}{2}) - f(x - \frac{\alpha}{2}) & x \in [\frac{1-\alpha}{2}, \frac{1+\alpha}{2}] \\ f(x) - f(x - \alpha) & x \in [\frac{1+\alpha}{2}, 1] \end{cases}.$$

Please turn over!
for \(\alpha \in]0, 1/2[\). Further, let \(H^2([0, 1]) \) denote the Hilbert space
\[
H^2([0, 1]) = \{ f \in L^2([0, 1]) \mid f'', f' \in L^2([0, 1]) \}.
\]
We consider the case of a noisy measurement, i.e. we observe \(f^\delta \in L^2([0, 1]) \) for which
\[
\| f - f^\delta \|_{L^2([0, 1])} \leq \delta
\]
holds true, for the exact data \(f \in \mathcal{D}(K^\dagger) \).

(a) Assume that \(f \in H^2([0, 1]) \) and \(\| f'' \|_{L^2([0, 1])} \leq c \). Verify the following estimate for the overall \(L^2 \)-error between \(u^\dagger \) and \(R^\alpha f^\delta \):
\[
\| K^\dagger f - R^\alpha f^\delta \|_{L^2([0, 1])} \leq \frac{\sqrt{6}}{\alpha} \delta + \frac{\sqrt{17}}{4} \alpha c
\]

(b) Show that \(R^\alpha : L^2([0, 1]) \to L^2([0, 1]) \) is a convergent regularisation method and determine a corresponding a-priori parameter choice rule.

(c) Discretise \(R^\alpha \) by evaluating \(R^\alpha \) at \(2n \) discrete points \(x_k := (k - 1)\frac{a}{2}, \ k \in \{1, \ldots, 2n\}, \) for \(\alpha = \frac{1}{n-1} \) and \(n \in \mathbb{N} \setminus \{1\} \). This way we obtain a mapping \(\tilde{R}^\alpha : \mathbb{R}^{2n} \to \mathbb{R}^{2n} \). Implement a MATLAB©-function \texttt{diffquot} that takes a vector \(\tilde{R}^\alpha f \) as an input argument and returns the output \(\tilde{R}^\alpha f \).

(d) Test your function for \(\alpha = 2^{-k}, \ k \in \{2, 4, \ldots, 8\} \) and

(i) \(f(x) = \cos(\pi x) \) for \(x \in [0, 1] \);

(ii) \(f(x) = \begin{cases}
0 & x \in [0, \frac{1}{3}], \\
 x - \frac{1}{3} & x \in \left[\frac{1}{3}, \frac{2}{3}\right], \\
 \frac{1}{3} & x \in \left[\frac{2}{3}, 1\right]
\end{cases} \)

and plot the maximum error \(\| \tilde{R}^\alpha f - (f'(x_1), f'(x_2), \ldots, f'(x_{2n}))^T \|_\infty \) dependent on \(\alpha \).

Exercise 4 (Deconvolution)

Let \(\Omega := [0, 1]^2 \), \(k \in L^2(\Omega) \) and \(\overline{k} \in L^2(\mathbb{R}^2) \) be the extension of \(k \) with
\[
\overline{k}(z) = \begin{cases}
 k(z) & z \in \Omega \\
 0 & z \in \mathbb{R}^2 \setminus \Omega
\end{cases}
\]
and consider the convolution operator \(K : L^2(\Omega) \to L^2(\Omega) \) with
\[
(Ku)(x) := \int_\Omega \overline{k}(x-y)u(y) \, dy.
\]

(a) Compute the singular value decomposition of \(K \).

Hint: you can represent a function \(v \in L^2(\Omega) \) as \(v = \sum_{m,n \in \mathbb{Z}} (v, \varphi_{m,n}) \varphi_{m,n} \) with \(\varphi_{m,n}(x_1, x_2) = \exp(-i2\pi(mx_1 + nx_2)) \).
(b) Argue with the singular values whether the inverse problem is ill-posed or not, for the specific choices

(i) \[k(x_1, x_2) = \frac{1}{h^2} \chi_{[-\frac{1}{2}, \frac{1}{2}]} \left(x_1 - \frac{1}{2} \right) \chi_{[-\frac{1}{2}, \frac{1}{2}]} \left(x_2 - \frac{1}{2} \right) \] for \(0 < h < 1 \).

(ii) \[k(x_1, x_2) = \varphi(x_1)\varphi(x_2) \] with \(\varphi(x) := \begin{cases} \exp \left(-\frac{1}{1/4-(x-1/2)^2} \right) & x \in]0, 1[\\ 0 & \text{else} \end{cases} \).

Is the ill-posedness mild or severe?

c) Implement the deconvolution as in Exercise 4 of Example Sheet 1. Regularise the problem using

(i) Truncated singular value decomposition;

(ii) Tikhonov regularisation.

How does the latter relate to Exercise 4 c) on Example Sheet 1?

Exercise 5 (The Radon transform)

(a) The MATLAB© command \(f = \text{radon}(u, \phi) \) computes a discretised two-dimensional radon transform of a discrete image \(u \) for a vector of angles \(\phi \). Use this command to set up a matrix \(R \) that maps the column-vector representation of \(u \) into the column-vector representation of the sinogram \(f \) for an arbitrary image \(u \in \mathbb{R}^{64 \times 64} \geq 0 \) and angles \(\phi \) with \(\phi(j) = j \) for \(j \in \{0, 2, \ldots, 178\} \).

(b) Create a noisy sinogram by applying \(R \) to a down-sampled version of the Shepp-Logan phantom (built-in in MATLAB©; use the command \texttt{phantom}) and subsequently adding non-negative, random numbers to the sinogram. Create multiple versions with different noise levels.

(c) Compute a singular value decomposition of \(R \) via the MATLAB©-command \texttt{svd} and visualise selected singular vectors of your choice.

(d) Create a ’pseudo’-inverse of \(R \) by constructing an appropriate matrix with inverted singular values and apply this matrix to the column-vector representations of your noisy sinograms. Regularise the Moore–Penrose inverse using

(i) Truncated singular value decomposition;

(ii) Tikhonov regularisation.