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Scenario of strongly nonequilibrated Bose-Einstein condensation
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Large scale numerical simulations of the Gross-Pitaevskii equation are used to elucidate the self-evolution of
a Bose gas from a strongly nonequilibrium initial state. The stages of the process confirm and refine the
theoretical scenario of Bose-Einstein condensation developed by Svistunov and co-workers [J. Mosc. Phys.
Soc. 1, 373 (1991); Sov. Phys. JETP 75, 387 (1992); 78, 187 (1994)]: the system evolves from the regime of
weak turbulence to superfluid turbulence via states of strong turbulence in the long-wavelength region of

energy space.
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I. INTRODUCTION
A. Statement of the problem

The experimental realization of Bose-Einstein conden-
sates (BEC) in dilute alkali-metal and hydrogen gases [1]
and more recently in a gas of metastable helium [2] has
stimulated great interest in the dynamics of BEC. In the case
of a pure condensate, both the equilibrium and dynamical
properties of the system can be described by the Gross-
Pitaevskii equation (GPE) [3] (in nonlinear physics this
equation is known as the defocusing nonlinear Schrodinger
equation). The GPE has been remarkably successful in pre-
dicting the condensate shape in an external potential, the
dynamics of the expanding condensate cloud, and the motion
of quantized vortices; it is also a popular qualitative model of
superfluid helium.

An important and often overlooked feature of the GPE is
that it gives an accurate microscopic description of the for-
mation of a BEC from a strongly degenerate gas of weakly
interacting bosons [4,5]. By large scale numerical simula-
tions of the GPE it is possible, in principle, to reveal all the
stages of this evolution from weak turbulence to superfluid
turbulence with a tangle of quantized vortices, as was argued
by Svistunov, Kagan, and Shlyapnikov [6—8] (for a brief
review, see Ref. [9]). This task has up to now remained un-
fulfilled, although some important steps in this direction
were made in Refs. [10,11]. We would also like to mention
the description of the equilibrium fluctuations of the conden-
sate and highly occupied noncondensate modes using the
time-dependent GPE [12,13].

The goal of this paper is to obtain a conclusive description
of the process of strongly nonequilibrium BEC formation in
a macroscopically large uniform weakly interacting Bose gas
using the GPE. We are especially interested in tracing the
development of the so-called coherent regime [4,6-8] at a
certain stage of evolution. According to the theoretical pre-
dictions [7,8], this regime sets in after the breakdown of the
regime of weak turbulence in a low-energy region of wave
number space. It corresponds to the formation of superfluid
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short-range order, which is a state of superfluid turbulence
with quasicondensate local correlation properties.

The notions of weak turbulence and superfluid turbulence
are crucial to our understanding of ordering Kkinetics. In the
regime of weak turbulence (for an introduction to weak tur-
bulence theory for the GPE, see Ref. [14]), the “single-
particle” modes of the field are almost independent due to
weak nonlinearity of the system. The smallness of the corre-
lations between harmonics in the regime of weak turbulence
implies the absence of any order. On the other hand, the
regime of superfluid turbulence (for an introduction, see Ref.
[15]) is the regime of strong coherence where the local cor-
relation properties correspond to the superfluid state, but
long-range order is absent because of the presence of a cha-
otic vortex tangle and nonequilibrium long-wave phonons
[8]. In the case of a weakly interacting gas, local superfluid
order is synonymous with the existence of quasicondensate
correlation properties [7]. In a macroscopically large system,
the crossover from weak turbulence to superfluid turbulence
is a key ordering process. Indeed, in the regime of weak
turbulence there is no order at all, while in the regime of
superfluid turbulence (local) superfluid order has already
been formed. Meanwhile, rigorous theoretical as well as nu-
merical or experimental studies of this stage of evolution
have been lacking. The general conclusions concerning this
stage [7,8] were made on the basis of a qualitative analysis
that naturally contained ad hoc elements. The difficulty with
an accurate analysis of the transition from weak turbulence
to superfluid turbulence comes from the fact that the evolu-
tion between these two qualitatively different states takes
place in the regime of strong turbulence, which is hardly
amenable to analytical treatment. Large computational re-
sources are necessary for a numerical analysis of this stage
since the problem involves significantly different length
scales and, therefore, requires high spatial resolution.

In the present paper we demonstrate that this problem can
be unambiguously solved with a powerful enough computer.
Our numerics clearly reveal the dramatic process of transfor-
mation from weak turbulence to superfluid turbulence and
thus fills in a serious gap in the rigorous theoretic description
of strongly nonequilibrated BEC formation Kinetics in a
macroscopic system.
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The paper is organized as follows. In Sec. | B we discuss
the relevance of the time-dependent GPE to the description
of BEC formation kinetics and its relation to the other for-
malisms. In Sec. | C we give some important details of the
evolution scenario that we are going to observe. In Sec. Il we
describe our numerical procedure. In Sec. |11 we present the
results of our simulations. In Sec. 1V we conclude by outlin-
ing the observed evolution scenario and making a comment
on the case of a confined gas.

B. Time-dependent Gross-Pitaevskii equation and BEC
formation kinetics

In this section we will discuss the question of applicabil-
ity of the GPE to BEC formation kinetics, and its connec-
tions to other—fully quantum—treatments. This discussion
is especialy relevant in the wake of a recent controversy on
the applicability of the classical-field description to a non-
condensed bosonic field.

A genera analysis of the kinetics of a weakly interacting
bosonic field was performed in Ref. [16]. In terms of the
coherent-state formalism, it was demonstrated that if the oc-
cupation numbers are large and somewhat uncertain (with
the absolute value of the uncertainty being much larger than
unity and with the relative value of the uncertainty being
arbitrarily small), then the system evolves as an ensemble of
classical fields with corresponding classical-field action. (For
an elementary demonstration of this fact for a weakly inter-
acting Bose gas and especialy for a discussion of the struc-
ture of the initial state, see Ref. [5].) This has a direct anal-
ogy with the electromagnetic field: (i) the density matrix of a
completely disordered weakly interacting Bose gas with
large and somewhat uncertain occupation numbers is almost
diagonal in the coherent-state representation, so that the ini-
tial state can be viewed as a mixture or statistical ensemble
of coherent states; (ii) to leading order each coherent state
evolves along its classical trgjectory, which in our case is
given by the GPE

Iﬁa—t——%v ¢+U|¢| lﬂ! (1)

where ¢ is the complex-valued classical field that specifies
the index of the coherent state, m is the mass of the boson,
U=4mrh?a/m is the strength of the §-function interaction
(pseudo)potential, and a is the scattering length. (Note that in
astrongly interacting system it isimpossible to divide single-
particle modes into highly occupied and essentially empty
ones, so the requirement of weak interactions is essential
here. In a strongly interacting system there are always quan-
tum modes with occupation numbers of order unity that are
coupled to the rest of the system.) Therefore, the behavior of
the quantum field is equivalent to that of an ensemble of
classical matter fields.

It isimportant to emphasize that in the context of strongly
nonequilibrium BEC formation kinetics the condition of
large occupation numbers is self-consistent: the evolution
leads to an explosive increase of occupation numbers in the
low-energy region of wave number space [6] where the or-

PHYSICAL REVIEW A 66, 013603 (2002)

dering process takes place. Even if the occupation numbers
are of order unity in the initial state, so that the classical
matter field description is not yet applicable, the evolution,
which can be described at this stage by the standard Boltz-
mann gquantum kinetic equation, inevitably results in the ap-
pearance of large occupation numbers in the low-energy re-
gion of the particle distribution (see, e.g., Ref. [17]). The
blowup scenario [6] indicates that only the low-energy part
of thefield isinitially involved in the process. Therefore, one
can switch from the kinetic equation to the matter field de-
scription for the long-wavelength component of the field at a
certain moment of the evolution when the occupation num-
bers become appropriately large. As the time scale of the
formation of the local quasicondensate correlations is much
smaller than any other characteristic time scale of evolution
[7], the cutoff of the high-frequency modes, associated with
the matter field description, is not important. By the time the
interactions (particle exchange) between the high- and low-
frequency modes became significant, the local superfluid or-
der had aready been developed. The interaction wavelengths
are of the order of the typical thermal de Broglie wavelength
and therefore these interactions are essentially local with re-
spect to the quasicondensate and can be described in terms of
the kinetic equation [6,17].

The thesis of the applicability of the matter field descrip-
tion at large occupation numbers was justified by the analysis
of Ref. [16]. Later, Stoof questioned the validity of thisthesis
by introducing the concept of *‘quantum nucleation™ of the
condensate as a result of an essentially quantum instability
[18]; the path-integral version of the Keldysh formalism was
used to substantiate this concept. For a criticism of the con-
cept of ““guantum nucleation” see Refs. [5,19].

It is important to emphasize, however, that the path-
integral approach developed in [18] appears to be the most
fundamental, powerful, and universal way of deriving the
basic equations for the dynamics of a weakly interacting
Bose gas. In particular, we believe that the demonstration of
the applicability of the time-dependent GPE to the descrip-
tion of highly occupied single-particle modes of a noncon-
densed gas within this formalism would be the most natural
since the effective action for the bosonic field is simply the
classical-field action of the GPE. Basically, one simply hasto
make sure that for the modes with large and somewhat un-
certain occupation numbers the main contribution to the path
integral comes from the close vicinity of the classical tragjec-
tories with the quantum corrections being relevant only at
large enough times of evolution.

An interesting all-quantum description of the BEC kinet-
ics was implemented in Ref. [11]. This technique is based on
associating the quantum-field density matrix in the coherent-
state representation with a correlator of a pair of classical
fields, whose evolution is governed by a system of two
coupled nonlinear equations with stochastic terms. Using this
method the authors performed a numerical simulation of
BEC formation in a trapped gas of a moderate size. We be-
lieve (in particular, in view of the general results of Refs.
[5,16]) that this approach might be further developed ana-
Iytically to demonstrate explicit overlapping with the other
treatments and with the time-dependent GPE. Indeed, the
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form of the system of two coupled equations of Ref. [11] is
reminiscent of that of the GPE. This suggests that under the
condition of large occupation numbers the system can be
decoupled, leading to the GPE for the diagonal part of the
density matrix with relative smallness of the nondiagonal
terms. If the standard Boltzmann equation is applicable, so
that the system can be viewed as an ensemble of weakly
coupled elementary modes [20], it is natural to expect that
the equations of Ref. [11] should lead to the kinetic equation.
A natural way for deriving this kinetic equation from the
dynamical equations of Ref. [11] is to utilize the standard
formalism of the weak turbulence theory. In the case of the
GPE, the weak turbulence approximation leads to the
guantum-field Boltzmann kinetic equation without spontane-
ous scattering processes (seeg, e.g., Ref. [14]; note also that it
is the simplest way to make sure that the GPE isimmediately
applicable once the occupation numbers are large). It is natu-
ral to expect that in the full-quantum treatment of Ref. [11]
the weak turbulence procedure over the dynamical equations
would result in the complete quantum-field Boltzmann ki-
netic equation with the spontaneous processes retained. Un-
fortunately, we are not aware of such investigations of the
equations of Ref. [11], which might be very instructive for
the general understanding of the dynamics of a weakly inter-
acting Bose gas.

C. Initial state and evolution scenario

In what follows we consider the evolution of Eq. (1) start-
ing with a strongly nonequilibrium initial condition

w(r,t=0)=; a, exp(ik-r), 2

where the phases of the complex amplitudes a, are distrib-
uted randomly. Such an initial condition follows from the
microscopic quantum-mechanical analysis of the state of a
weakly interacting Bose gas in the kinetic regime [5]. Theo-
retical investigations of the relaxation of such an initia state
toward the equilibrium configuration were performed by
Svistunov and co-workers [6—8]. The analysis reveded a
number of stages in the evolution. Initialy the system is in
the weak turbulence regime and thus can be described by the
Boltzmann kinetic equation. The kinetic equation is obtained
as the random-phase approximation of Eqg. (1) for occupation
numbers n, defined by (aka’;,>~nk5kk/. Alternatively, the
weak turbulence kinetic equation follows from the general
guantum Boltzmann kinetic equation if one neglects sponta-
neous scattering as compared to stimulated scattering (be-
cause of the large occupation numbers). Svistunov [6] and
later Semikoz and Tkachev [17] considered the self-similar
solution of the Boltzmann kinetic equation:

n(t)=Ae; *()f(eleg), t<t,, 3
eo(t)=B(t, —t)VA*™ D, (4)
f(x)=x"¢ a x—o», f(0)=1, (5)
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where e=7#2k?/2m. The dimensional constants A and B re-
late to each other by (a—1)m3U2A2=\#3a7B2(¢~ D),
where the parameters o and \ were determined by numerical
analysis as a~1.24 [17] and A~1.2 [6]. The form of the
function f was also determined numerically in Ref. [6]. The
solution (3)—(5) has only one free parameter, say A, which
depends on the conditions of the nonuniversal dynamics pre-
ceding the appearance of self-similarity. This dynamics is
sensitive to the details of the initial condition or/and cooling
mechanism as well as to the spontaneous-scattering terms in
the kinetic equation, which cannot be neglected until the oc-
cupation numbers are large enough. When the self-similar
regime setsin at a certain step of evolution all the particular
details of the previous evolution are absorbed in the single
parameter A.

The self-similar solution (3)—(5) describes a wave in en-
ergy space propagating from high to lower energies. The
energy eo(t) defines the ““head” of the wave. The wave
propagates in a blow-up fashion: e,(t) —0 and nEO(t)—mo as
t—t, . Inreality the validity of the kinetic equations associ-
ated with the random-phase approximation breaks down
shortly before the blowup time t, . This moment marks the
beginning of a qualitatively different stage in the evolution
of the coherent regime: strong turbulence evolves into a qua-
sicondensate state. In the coherent regime the phases of the
complex amplitudes a, of the field ¢ become strongly cor-
related and the periods of their oscillations are then compa-
rable with the evolution times of the occupation numbers.
The formation of the quasicondensate is manifested by the
appearance of a well-defined tangle of quantized vortices
and, therefore, by the beginning of the fina stage of the
evolution: superfluid turbulence. In this regime the vortex
tangle starts to relax over macroscopically large times.

I1. NUMERICAL PROCEDURE
A. Finite-difference scheme

We performed a large scale numerical integration of a
dimensionless form of the GPE:

L T ©

starting with a strongly nonequilibrium initial condition. Our
calculations were done in a periodic box N3, with N= 256,
using a fourth-order (with respect to the spatial variables)
finite-difference scheme. The scheme corresponds to the
Hamiltonian system in the discrete variables ¢;j:

ik _ M

7
A =g @)

where
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H=Ez W = (Gisoi k= i kUi isok— Wi
2ijk ijk 12 i+2j,k i—2j,k i,j+2k i,j—2k

ik Yijk-2) T 5 (Wis ik~ Yionj kT i1k
~ i o1kt Vi ke i k-0 ]~ 3l (8
(in the numerics we set the space step in each direction of the
grid as dx=dy=dz=1).
Equation (7) conserves the energy H and the total particle

number Eijk|1,//ijk|2 exactly. In time stepping, the leapfrog
scheme was implemented:

iwﬂtl—wﬂ#:( H )
2dt I '

©)

with dt=0.03. To prevent the even-odd instability of the
leapfrog iterations, we introduce the backward Euler step

1
iwﬂ-tl—wﬂ-k:< oH )
dt i

(10)

every 10* time steps. The leapfrog scheme is nondissipative,
so the only loss of energy and of the total particle number
occurs during the backward Euler step and, since we take
this step very rarely, these losses are insignificant.

The code was tested against known solutions of the GPE:
vortex rings and rarefaction pulses [21]. The simulations
were performed on a Sun Enterprise 450 server and took
about three months to complete for the main set of calcula-
tions discussed below.

B. Initial condition

To eliminate the computationally expensive (and the least
physically interesting) transient regime, we started directly
from the self-similar solution Eq. (2) with Egs. (3)—(5), so
that

a = Véxnof (€l €g) expli ¢y], (11)

where &, and ¢, are random numbers. (Note that in the
simulations the momentum k is the momentum of the lattice
Fourier transform.) The phase ¢, is uniformly distributed on
[0,27r] in accordance with the basic statement of the theory
of weak turbulence and with the explicit microscopic analy-
sis of corresponding quantum field states [5]. The choice of
&, israther arbitrary: we only fix its mean value to be equal
to unity, introducing, therefore, the parameter ny. The weak
turbulence evolution isinvariant to the details of the statistics
of |a,|. By the time the system enters the regime of strong
turbulence, the proper statistics is established automatically
since each harmonic participates in a large number of scat-
tering events. We tried different distributions for &, and saw
no systematic difference in the evolution picture. The main
set of our simulations was done with the distribution function
w(& ) =exp(—&) (heuristically suggested by equilibrium
Gibbs statistics of harmonics in the noninteracting model).
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When choosing the parameters of the initial condition (2)
specified by the complex Fourier amplitudes (11), we have to
take €5 small enough to be free from the systematic error of
large finite differences. On the other hand, taking e, too
small reduces the physical size of the system. Let us define
one period of the amplitude oscillation ast, =27/ €, and the
number of periods before the blowup as P=t, /t,. When
choosing the value of ny in combination with €,, we would
like to avoid having P too small when the time scale of the
kinetic regime becomes too short, or having P too large
when the finite-size effects (the discreteness of the k) domi-
nate the calculation. Given the maximal available grid size
N =256, we found that it is optimal to take ny=15 and ¢,
=1/18, so that t,~113,

t, =4\l (a—1)e3n3~893, (12)
and P~8.

I11. DATA PROCESSING AND RESULTS

The instantaneous values of the occupation numbers
ne(t)=|a,(t)|? are extremely *“noisy” functions of time. To
be able to draw some quantitative comparisons and conclu-
sions we need either to perform some averaging or to deal
with some coarse-grained self-averaging characteristics of
the particle distribution. Taking the second option, we intro-
duce shells in momentum space. By the ith shell (i
=1,2,3,...) we understand the set of momenta satisfying
the condition i—1<log,(k/27r)<i. The idea behind this
definition is that each shell represents some typical momen-
tum (wavelength) scale and thus allows us to introduce a
coarse-grained characteristic of the occupation humbers cor-
responding to a given scale; namely, for each shell i we
introduce the mean occupation number  7;(t)
=3l D (1)/M;, where M; is the number of harmonics
in the ith shell. The harmonic k=0, which plays a special
role (at the very end of the evolution), is not assigned to any
shell.

Another instructive coarse-grained characteristic of the
particle distribution is the integral distribution function F,
=2 <kNyr Which shows how many particles have momenta
not exceeding k. We use the function F to keep track of the
formation of the quasicondensate and to determine the wave
number span of the above-the-condensate particles. This in-
formation is used, in particular, for filtering out the high-
frequency harmonics in order to interpret the results of our
numerical calculations in the superfluid turbulence regime.

With the above-introduced quantities we now turn to the
analysis of the results of our numerical simulations. The self-
similar character of the evolution is clearly observed in Fig.
1. Theinsets in Fig. 1 give a comparison of the theoretical
prediction of the evolution of the occupation number func-
tion n(t) defined by Eq. (3) and the evolution of the first
and the second shells. The agreement with the theoretical
predictions [6] is quite good for t<<600. After that the nu-
merical solution deviates from the self-similar theoretical so-
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FIG. 1. The time evolution of #;(t=100j) in the weak turbu-
lence regime for j=0, ... ,6. In the insets we show the theoretical
self-similar solution (3)—(5) (solid line) and the solution obtained
through the numerical integration of Eq. (6) (dashed line) for the
shellsi=1 (a) and i =2 (b).

[ution, which is the manifestation of the onset of the strong
turbulence stage of evolution.

As follows from the dimensiona analysis (see, e.g., Ref.
[9]), the characteristic time t, and the characteristic wave
vector kg at the beginning of the strong turbulence regime
are given by the relations

t* _t0~Co[ﬁ2a+5/m3u2A2]ﬂ(2a—l), (13)
k0~Cl[AU(m/h)a+l]]J(2a—l)’ (14)

where Cy and C; are some dimensionless constants. Our
numerical results (Fig. 1) indicate that the characteristic time
of the begining of the strong turbulence regime is ty~ 600
which together with the theoretical blowup time (12) gives
t, —to~300 and implies that Cy~ 40. After the formation of
the quasicondensate (t>1000), the distribution of particles
acquires abimodal shape, whichisseenin Fig. 2. The salient
characteristic of the distribution is the shoulder, which be-

108 F,

eeee t=600
o = t=1000
. e = t=2000

t = 3000
o— 1 = 5000
1.50 ¢
1..25:

1.00 ¢

0.75 t

0.50

SN
=

0.25

0
0 1000 2000 3000 4000 t

a 10 20 30 40 50 k

FIG. 2. Evolution of the integral distribution of particles F
=3/ <Ny . Notice the appearance of a *‘shoulder” of F indica-
tive of quasicondensate formation. The evolution of n,=0 is pre-
sented in the inset. Note the strong fluctuations typical for the evo-
lution of a single harmonic. The fluctuations are also seen in the
graph of the first shell [see inset (a) of Fig. 1].
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FIG. 3. Evolution of topological defects in the phase of the
long-wavelength part 3 of the field ¢ in the computational box
256°. The defects are visualized by isosurfaces | |2=0.05(|%|?).
High-frequency spatial waves are suppressed by the factor max{1
- k2/k§,o}, where the cutoff wave number is chosen according to the
phenomenologica formula k,=9—1/1000.

comes sharper and sharper as the evolution continues. Note
that by definition of the function F, the height of the shoul-
der is equal to the number of quasicondensate particles.
From Fig. 2 we estimate k, as the characteristic wave num-
ber at which F, (t=600) changes its slope, so that ky~ 15,
which implies that

Within the coherent regime the momentum distribution of
the harmonics yields a rather incomplete picture of the evo-
lution and it becomes reasonable to follow the ordering pro-
cess in coordinate space. It isimportant to trace the topologi-
cal defects in the phase of the long-wavelength part of the
complex matter field ¢ since the transformation of these de-
fects into a tangle of well-separated vortex lines is the most
essential feature of superfluid short-range ordering [8]. To
this end we first filter out the high-frequency harmonics by
performing the transformation a,— a,max{1—k%/k20},
where k.. is a cutoff wave number. When the function F has
a pronounced quasi condensate shoulder, the natural choiceis
to take k. somewhat larger than the momentum of the shoul-
der in order to remove the above-the-condensate part of the
field . In the regime of weak turbulence, when there is no
guasicondensate, the procedure of filtering is ambiguous: the
distribution is not bimodal, so there is no special low mo-
mentum K. ; also, the structure of the defects in the filtered
field essentially depends on the cutoff parameter and thus has
no physical meaning.

The results of visualizing the topological defects are pre-
sented in Fig. 3. The formation of a tangle of well-separated
vortices and the decay of superfluid turbulence are clearly
seen. This is the key point of our ssimulation. To the best of
our knowledge, this is the first unambiguous demonstration
of the formation of the state of superfluid turbulence in the
course of self-evolution of a weakly interacting Bose gas.
This result forms a solid basis for the analysis of the further
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FIG. 4. Evolution of topological defects in the phase of the
long-wavelength part ¥ of the field ¢ in the computational box
128°. The defects are visualized by isosurfaces ||?=0.05(|%|?).
High-frequency spatial waves are suppressed by the factor max{1
- k2/k§,0}, where the cutoff wave number is chosen according to the
phenomenological formula k.= 9—1/1000.

stages of long-range ordering in terms of the well-developed
theory of superfluid turbulence that was performed in Ref.
[8] (see also Ref. [22]).

The characteristic time of the evolution of the vortex
tangle depends on the typical interline spacing R as
R?/In(R/ay), where a, is the vortex core size (see, e.g., [8]).
During the final stage of evolution, when R is of the order of
the linear size of the computational box, the slowing down of
the relaxation process makes numerical simulation of the fi-
nal stage of the vortex tangle decay enormously expensive in
a large computational box. For example, according to the
above-mentioned estimate of the relaxation time, to achieve
the complete disappearance of the vortex tangle in our N
=256 system we would need several years. To observe this
final stage of the vortex tangle decay, we repeated the calcu-
lations for a smaller computational box with N= 128 (reduc-
ing in this way the computational time by a factor of ~32
=23%2?); see Fig. 4. Parameters of the initial condition are
e=1/2 and ny= 27, so that the number of periods before the
blowup is P~5. A single vortex ring remains at t=4000 as
a result of the turbulence decay; see Fig. 5(a).

The above-mentioned filtering method allows us to visu-
alize the position of the core of a quantized vortex line, but
not the actual size of the core, since we force the solution to
be represented by arelatively small number of harmonics. To
get a better representation of the actual size of the core as
well as to resolve another objects of interest—rarefaction
pulses [21], which are likely to appear in the course of trans-
formation of strong turbulence into  superfluid
turbulence—we implement a different type of filtering based
on time averaging. We introduce a Gaussian-weighted time
average of the field -

FIG. 5. Comparison of two isosurfaces obtained by different
filtering techniques. The solution at t=4000 is obtained by numeri-
cal integration of Eq. (6) in the periodic box with N=128. The
isosurface |9/|?=0.05(|%|?) is plotted in (a) using high-frequency
filtering with k,=5. The isosurface |#|?=0.2(|#|?) is plotted in
(b), where i is defined by Eq. (16).

‘Aﬂijk(t):f () exp[ — (7—1)/100]d 7. (16)

The width of the Gaussian kernel in Eq. (16) is chosen in
such a way that the (disordered) high-frequency part of the
field ¢ is averaged out, revealing the strongly correlated low-

frequency part . Figure 5 compares the density isosurfaces
obtained by two different methods: by high-frequency sup-
pression [Fig. 5(a)] and by time averaging [Fig. 5(b)]. In the
latter case we reveal the actual shape of the vortex core and
resolve the rarefaction pulses.

IV. CONCLUSION

We have performed large scale numerical simulations of
the process of strongly nonequilibrated Bose-Einstein con-
densation in a uniform weakly interacting Bose gas. In the
limit of weak interactions under the condition of strong
enough deviation from equilibrium, the key stage of ordering
dynamics—superfluid turbulence formation—is universal
and corresponds to the process of self-ordering of a classical
matter field whose dynamics is governed by the time-
dependent Gross-Pitaevskii equation (defocusing nonlinear
Schrodinger equation). The universdity implies indepen-
dence of the evolution of the details of initial processes such
as, for example, the cooling mechanism and rate as well as of
quantum effects such as spontaneous scattering. All the in-
formation about the evolution preceding the universal stage
is absorbed in the single parameter A that defines the scaling
of the characteristic time and wave number in accordance
with Egs. (13)—(15).

The most important features of the BEC formation sce-
nario observed in our smulation are as follows. The low-
energy part of the quantum field, characterized by large oc-
cupation numbers and described by a classica complex
matter field ¢ obeying Eq. (1), initially evolves in a weak
turbulent self-similar fashion according to Egs. (3)—(5). The
occupation numbers at small energies become progressively
larger. At the characteristic time moment ty, given by Eq.
(13), close to the forma blowup time t, of the solution
(3)—(5), the self-similarity of the energy distribution breaks
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down. The distribution gradually becomes bimodal; the low-
energy quasicondensate part of the field sets to a state of
superfluid turbulence characterized by a tangle of vortex
lines. The further evolution of the quasicondensate is inde-
pendent of the rest of the system (apart from a permanent
flux of the particles into the quasicondensate) and basically is
the process of relaxation of superfluid turbulence. All vortex
lines relax in a macroscopically large time.

In the present paper we considered the case of macro-
scopically large uniform system. As far as the case of a
trapped gas is concerned, the situation becomes sensitive to
the competition between finite size and nonlinear effects. If
nonlinear effects dominate, the basic physics of the ordering
process is predicted to be analogous to that revealed by our
simulation [23]. If finite-size effects dominate (which means
that the initial size of the condensate is smaller than the
corresponding healing length, so that, for example, vortices
cannot arise in principle [23]), the ordering kinetics is sub-
stantially simplified, being reduced to the growth of a genu-

PHYSICAL REVIEW A 66, 013603 (2002)

ine condensate [20,24]. Clearly, our numerical approach can
be extended to the case of a trapped Bose gas by simply
including a term with an external potential in Eq. (1). Such a
simulation could provide a deeper interpretation of the first
experiments on the kinetics of BEC formation [25,26], an-
swering, in particular, the question of whether the process
involves the formation of a vortex tangle; and if not, under
what conditions one may expect formation of superfluid tur-
bulence (quasicondensate) in a realistic experimental situa-
tion.
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