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Dr. R. A. Reid-Edwards Lent 2020

String Theory: Example Sheet 1

Corrections and suggestions should be emailed to R.A.Reid-Edwards@damtp.cam.ac.uk.

1. Show that the Nambu-Goto and Polyakov expressions for the relativistic string are
classically equivalent. The Polyakov action has reparameterisation and Weyl invari-
ance, yet the Nambu-Goto action only has reparametrisation invariance. What is going
on?

2. (a) hab is a two-dimensional worldsheet metric and h = dethab. Using

δh = hhabδhab, δhab = −hachbdδhcd,

derive an expression for the energy-momentum tensor

Tab =
4π√
h

δS

δhab

from the Polyakov action for the string.

(b) Now choose a metric such that the line element on the worldsheet is − dτ 2 + dσ2.
Show that, in worldsheet light-cone coordinates σ± = τ ± σ, Tab may be written
as

T++ = − 1

α′
∂+X

µ∂+X
νηµν , T−− = − 1

α′
∂−X

µ∂−X
νηµν , T+− = 0

Hence show that
∂−T++ = 0 = ∂+T−−.

(c) Find an expression for T++ and T−− in terms of the oscillator modes αµn and ᾱµn
at τ = 0, defined in the lectures and hence find an expression for the Virasoro
modes `n, where

T−−(σ) = −
∑
n

`n e
inσ, T++(σ) = −

∑
n

¯̀
n e
−inσ.

3. (a) Using the Poisson bracket relation

{αµm, ανn} = −imηµνδm+n,0,

show that
{`m, αµn} = inαµm+n.

(b) Hence show that
{`m, `n} = −i(m− n)`m+n.
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4.* In this question, we consider the worldsheet to be an infinite cylinder with a Euclidean
metric ds2 = dτ 2 + dσ2. One might like to think of this as a Wick rotation τ → iτ of
the flat Minkowski metric. We map worldsheet to the complex plane using

z = eτ−iσ, z̄ = eτ+iσ.

(a) Show that this diffeomorphism is also a Weyl transformation.

(b) Explain why one can think of the worldsheet now as a sphere with two points
removed.

(c) Write the mode expansion of Xµ as a function of (z, z̄) and show that we can
write

Xµ(z, z̄) = Xµ(z) + X̄µ(z̄).

(d) Assuming |z| < |ω| (i.e. τz < τω), and using the canonical commutation re-
lations for the oscillator modes αµn, show that the two-point function for the
‘z̄-independent’ part of the embedding fields is

〈0|∂zXµ(z)∂ωX
ν(ω)|0〉 = −α

′

2

ηµν

(z − ω)2

The result ∑
n>0

nyn−1 =
1

(1− y)2
, |y| < 1.

may be useful. By directly integrating the above result, find a similar expression
for

〈0|Xµ(z)Xν(ω)|0〉.

5. Consider the Polykov action, but with boundary conditions at σ = 0, π. This describes
the open string.

(a) Show that the equations of motion require the boundary conditions to be either

δXµ = 0, or ∂σX
µ = 0

on the boundary. The first are called Dirichlet boundary conditions and signal
the presence of D-branes. The second are called Neumann boundary conditions.

(b) Show that the boundary conditions imply only one set of independent oscillators.

(c) Impose canonical commutation relations on the modes and show that the theory
has a tachyon in the ground state.

(d) Show that
|A〉 = Aµ(k)αµ−1|k〉,

is massless (what do you have to assume about L0 for this to be the case?). Show
that kµAµ = 0 and that the state

|λ〉 = λ(k)kµα
µ
−1|k〉,

is spurious (i.e. 〈λ|λ〉 = 0). Give a spacetime interpretation to the Fourier
transform of Aµ(k).
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6.* Given the canonical commutation relations, one can show that the Virasoro generators
Ln in the quantum theory do not satisfy the Witt algebra, but instead satisfy

[Lm, Ln] = (m− n)Lm+n + A(m)δm+n,0,

where A is the anomaly.

(a) Show that the SL(2) sub-algebra generated by L0, L±1 has no anomaly.

(b) Assume that A has the form

A(m) = Bm3 + Cm,

where B and C are constants. Show, by considering 〈0|[Lm, L−n]|0〉 for suitable
values of m and n, that

A(m) =
D

12
m(m2 − 1),

where D is the dimension of spacetime. Does this mean the quantum string is
only consistent in D = 0 dimensions? What have we missed?

7. Show that
S[φ] = 〈φ|(L+

0 − 2)|φ〉,

where

|φ〉 =

∫
dk φ̃(k)|k〉,

gives the standard Klein-Gordon action for a Tachyon φ. Note, you will need the
zero-mode Fourier transform relation

φ̃(k) =
1

2π

∫
dx φ(x)eik·x.

This isn’t quite right (what have we missed?) but gives a rough idea of how you might
try to go off-shell to find a second quantised theory of strings.

3
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Dr. R. A. Reid-Edwards Lent 2020

String Theory: Example Sheet 2

Corrections and suggestions should be emailed to R.A.Reid-Edwards@damtp.cam.ac.uk.

1. An inner product of two worldsheet tensors Aa1...an and Bb1...bn is defined as

(A|B) ≡
∫

Σ

d2σ
√
−hha1b1 ...hanbnAa1...anBb1...bn .

By requiring the variation of the metric in moduli space δthab to be orthogonal to the
variation given by Diffeomorphisms and Weyl transformations, show that δthab must
satisfy

habδthab = 0, (PT δth)a = 0,

where PT is the conjugate to P under this inner product; i.e. (A|PB) = (PTA|B) and
P is that operator which generates traceless diffeomorphisms in the general variation
of the metric

δhab = (Pv)ab + (2ω − ∂cvc)hab + δthab.

Thus we see that the conformal Killling vectors are in Ker(P), whilst the moduli vari-
ations of the metric are in are in Ker(PT ).

2. Let

〈O1...On〉h =

∫
DXDh eiS[X,h] O1...On,

where S[X, h] is the Polyakov action, be the correlation function for some observables
Oi calculated using a worldsheet with metric hab. Starting with this path integral
expression for the correlation function show that, under a change in the worldsheet
metric, the first order change in the correlaton function is given by

δh〈O1...On〉h = − 1

4π

∫
Σ

d2σ
√
−hδhab〈T ab(σ)O1...On〉h.

By considering the change of the correlation function under a Weyl transformation,
show that

〈T aa (σ)O1...On〉h = 0.

3. Consider the Polyakov action S[X] with fixed worldsheet metric hab describing a closed
string embedded into flat Minkowski space. Show that, under the transformation
δvX

µ = va∂aX
µ, the action changes as

δS[X] =
1

2π

∫
Σ

d2σ (∂avb)Tab,

where Tab is the stress tensor.

4
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4. Consider a d-dimensional flat spacetime with Minkowski metric ηµν and coordinates
xµ. An infinitesimal diffeomorphism is given by

xµ → fµ(x) = xµ + εvµ(x) + ...

where ε� 1 is a small dimensionless constant.

(a) Show that vµ(x) is a conformal Killing vector if, to leading order in ε

∂µvν + ∂νvµ −
2

d
ηµν∂λv

λ = 0.

(b) By considering a further derivative of this equation, show that,(
ηµν2 + (d− 2)∂µ∂ν

)
∂λv

λ = 0,

and therefore
(d− 1)2∂λv

λ = 0.

(c) Show that the final equation derived in part (b) implies that, in d > 2, v(x)µ is
of the form

vµ(x) = aµ + bµνx
ν + cµνλx

νxλ

where aµ, bµν , and cµνλ are constants.

The aµ parameterise translations. We can decompose into symmetric and antisymmet-
ric parts: bµν = ληµν +mµν, where λ parameterises dilations and mµν are the Lorentz
transformations (or rotations in d-dimensions). By further analysis one can show that
the important information in cµνλ can be encoded in a vector bµ = 1

d
cννµ and the bµ

parameterise special conformal transformations xµ → xµ + 2(x · b)xµ − (x · x)bµ.

5. z is a coordinate on the complex plane. Consider the vector fields

`n = −zn+1∂z, n ∈ Z.

(a) Show that the `n satisfy the Witt algebra

[`m, `n] = (m− n)`m+n.

(b) Using the change of variable, z = −ω−1, show that the only `n holomorphic at
ω = 0 and z = 0 are `0 and `±1. Show that these generate SL(2). Comment on
which conformal transformations are globally defined on the Riemann sphere.

6. The weight (2, 0) component of the stress tensor may be written as the mode expansion

T (z) =
∑
n

Lnz
−n−2.

(a) Show that

Ln =

∮
z=0

dz

2πi
zn+1 T (z).

5
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(b) Let Φ(z, z̄) be a primary field of weight (1, 1) with mode expansion

Φ(z, z̄) =
∑
n,n̄

φnn̄z
−n−1z̄−n̄−1,

where you may assume

[Lm, φnn̄] = −nφn+m,n̄, [L̄m̄, φnn̄] = −n̄φn,n̄+m̄.

By considering the commutator of Φ(z, z̄) with the charge

Q =

∮
ω=0

dω

2πi
v(ω)T (ω) +

∮
ω̄=0

dω̄

2πi
v̄(ω̄)T̄ (ω̄)

for appropriately chosen v(ω), show that

i. The action of translations z → z + c on the field jµ(z), where c ∈ C are
generated by L−1.

ii. Dilations z → eλz ≈ z + λz, where λ ∈ R are generated by L+
0 .

iii. Rotations z → eiθz ≈ z + iθz, where θ ∈ R are generated by L−0 .

Hint: Start by choosing appropriate forms for v(z) in each case (e.g. v(z) = λz
in the case of dilations).

7. * In this question, you may assume the OPE

∂Xµ(z)∂Xν(ω) = −α
′

2

ηµν

(z − ω)2
+ ...

(a) Given

∂Xµ(z) = −i
√
α′

2

∑
n

αµnz
−n−1

show that

αµn = i

√
2

α′

∮
dz

2πi
zn ∂Xµ(z)

and therefore show that
[αµn, α

ν
m] = nηµνδm+n,0.

(b) By finding the OPE of Xµ(z) with T (ω), prove that ∂Xµ(z) has conformal weight
(h, h̄) = (1, 0).

(c) Show that ∂nXµ(z) has conformal weight h = n but is not a primary operator for
n > 1.

8. * Let W (ω) be the chiral operator

W (ω) := εµ : ∂Xµ(ω) eik·X(ω) :

where kµ and εµ are arbitrary constant spacetime vectors. By considering the OPE
with the stress tensor T (z), show that V (ω) has weight

h = 1 +
α′k2

4
.

6
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Explain why V (ω) is a primary field if k · ε = 0.

Without doing any further calculations, give conditions on εµν and kµ for

V (ω, ω̄) := εµν : ∂Xµ(ω)∂̄Xν(ω̄) eik·X(ω,ω̄) :

to be a primary field of weight (1, 1).

7



C
op

y
ri

gh
t

c ©
20

20
U

n
iv

er
si

ty
of

C
am

b
ri

d
ge

.
N

ot
to

b
e

q
u
ot

ed
or

re
p
ro

d
u
ce

d
w

it
h
ou

t
p

er
m

is
si

on

Dr. R. A. Reid-Edwards Lent 2020

String Theory: Example Sheet 3

Corrections and suggestions should be emailed to R.A.Reid-Edwards@damtp.cam.ac.uk.

1. By considering a general infinitesimal mobius transformation, show that the infinites-
imal action of SL(2;C) on a complex coordinate z is of the form

z → z′ = α + βz + γz2,

where α, β and γ are constants.

Hence show that the volume element of SL(2;C) may be written in terms of three
points on the Riemann sphere with coordinates z1, z2 and z3 as

dVol(SL(2;C)) =
d2z1 d2z2 d2z3

|z1 − z2|2|z2 − z3|2|z3 − z1|2
.

2. Using the mode expansion

c(z) =
∑
n

cnz
−n+1,

where cn|0〉 = 0 for n > 1, show that

〈c(z1)c(z2)c(z3)〉 = K(z1 − z2)(z2 − z3)(z3 − z1),

and find the constant K.

Using this result and that for question 1 show, for an appropriate choice of puncture
labelling, that we may write

n∏
i=1

d2zi

〈 3∏
i=1

c(zi)c̄(z̄i)
〉/

dVol(SL(2;C)) =
n∏
i=4

d2zi.

3.* Show that the OPE of two operators of the form : eik·X : takes the form

: eik1·X(z1) :: eik2·X(z2) := |z1 − z2|α
′k1·k2 : eik1·X(z1)eik2·X(z2) : .

You may find it useful to write the exponential operator as

: eik·X(z) :=
∞∑
n=0

in

n!
kµ1 ...kµn : Xµ1(z)...Xµn(z) :

and consider Xµ(z1) : eik·X(z2) : first.

4. Given the point particle action

S[X, e] =

∫
dτ

(
1

2
e−1ẊµẊνηµν − eḃc+ iB(e− 1)

)
,

8
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(a) Show that this action is invariant under the BRST transformation

δQX
µ = iεcẊµ, δQe = iε

d

dτ
(ce), δQb = εB, δQc = iεcċ.

(b) Integrate out B. Show that the action becomes

S[X, e] =

∫
dτ

(
1

2
ẊµẊνηµν − ḃc

)
,

and find the BRST transformations that leave this action invariant.

(c) Find the BRST operator for the gauge-fixed action and show that it generates
the correct BRST transformations up to terms which vanish on the equations of
motion. You may assume the canonical commutation relations

[Pµ, X
ν ] = −iδνµ, {b, c} = 1.

5. Let

jB(z) = c(z)

(
TX(z) +

1

2
Tgh(z)

)
+ κ∂2c(z),

be the the BRST current. By requiring jB(z) to transform as a weight (1, 0) conformal
field, find a suitable value for the constant κ.

6. The stress tensor for the ghost sector is given by

Tgh(z) =: (∂b)c(z) : −2∂(: bc(z) :).

Derive the Tgh(z)c(w) OPE and hence show that c(w) is a conformal field of weight
h = −1.

7.*

(a) State under what conditions is the operator

εµνcc̄∂X
µ∂̄Xνeik·X (1)

BRST closed. (You may refer to results from the previous example sheet).

(b) Consider the operator

W = λµc(z)∂Xµ(z) eik·X(z,z̄).

Show that{QB,W} is of the form (1) where QB is the BRST operator and you
should give εµν in terms of λµ and kµ. How does this illustrate the relationship
between BRST-invariance and gauge-invariance in spacetime?

9
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Dr. R. A. Reid-Edwards Lent 2020

String Theory: Example Sheet 4

Corrections and suggestions should be emailed to R.A.Reid-Edwards@damtp.cam.ac.uk.

1. * Explaining your reasoning carefully, show that

lim
z,z̄→0

− 2

α′
εµν : c(z)c̄(z̄)∂Xµ(z)∂̄Xν(z̄)eik·X(z,z̄) : |0〉 = εµνc1c̄1α

µ
−1ᾱ

ν
−1|k〉,

and explain how this relationship between operators and states is useful in describing
string scattering amplitudes.

2. Compute the scattering amplitude for three tachyons in a flat spacetime using path
integral methods as discussed in lectures. Derive the same result using the OPE given
in question 3 of example sheet 3.

3. Using path integral methods, show that the four-point closed string tachyon tree-level
scattering amplitude is

A4 = g2
c C δ26

(
4∑
i=1

kµi

)∫
d2z |z|α′k1·k4|1− z|α′k2·k4 ,

where C is a constant that you need not determine. You may find it helpful to choose
the points

z1 = 0, z2 = 1, z3 →∞, z4 := z.

4. Using the OPE given in question 3 of example sheet 3 and the OPE of ∂Xµ(z) wtih
: eik·X(ω) :, which you should derive, evaluate

〈: ∂Xµ(z1)eik1·X(z1) :: eik2·X(z2) :: eik3·X(z3) :〉.

Hence compute the scattering amplitude for a massless field of polarisation εµν and
momentum k1 with two tachyon fields, with momenta k2 and k3 and show that it may
be written in the form

An = Kgc εµν k
µ
23k

ν
23 δ

26

(
3∑
i=1

kiµ

)
,

where K is a constant that you need not determine and kµ23 = kµ2 − k
µ
3 .

5. (a) By introducing the dummy (z and z̄ independent) variables ρiµ show that

i∂Xµ(zj) e
ikj ·X(zj) =

[
∂

∂ρjµ
exp

(
i

n∑
j=1

∫
Σ

d2z

(
kjµ + ρjν

∂

∂z

)
Xν(z)δ2(z − zj)

)]
ρj=0

.

10
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(b) Hence show that, up to terms which vanish upon contraction with physical po-
larisation tensors,〈

3∏
j=1

∂Xµjeikj ·X(zj)

〉
=

(
α′

2

)2
T µ1µ2µ3

(z1 − z2)(z2 − z3)(z3 − z1)
,

where k2
j = 0 and

T µ1µ2µ3 = ηµ1µ2kµ32 + ηµ2µ3kµ13 + ηµ3µ1kµ21 +
α′

2
kµ13 kµ21 kµ32 .

(c) Hence write down the tree-level scattering amplitude for three gravitons (you do
not need to perform further calculations and may quote the standard result for
the ghost contribution at tree level).

(d) What is the physical significance of the α′ → 0 limit. What is the significance of
the α′ contributions to this three point amplitude?

6. * Using path integral methods, find the three-point tree-level scattering amplitude for
two tachyons and a massless state with polarisation εµν .

7. (a) A string embeds into a one-dimensional circular target space where the embedding
coordinate X is subject to the identification X ∼ X + 2πR where R is the radius
of the circle. Consider a deformation of the worldsheet theory given by adding
the term

∆S[X] = − 1

2πα′

∫
Σ

d2z ε ∂X∂̄X,

to the action, where ε is a real constant. What is the target space interpretation
of this deformation? Explain how this relates to vertex operators and describe
the space of target spaces related by such deformations.

(b) Now consider a string embedding into a two-dimensional target space given by a
square torus (i.e. complex structure τ = i). Write down the vertex operators for
the theory and explain their physical interpretation in terms of deformations of
the background in which the string is embedded.

8. Write down the Polyakov action for a n+1 dimensional membrane. Is Weyl invariance
a symmetry of the classical theory for any value of n?

11
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The following questions go beyond the course and are included for interest. Do not
attempt these questions at the expense of the earlier questions.

9. Consider a closed string with target space embedding into a spacetime with a circular
direction of radius R

(X i, Y ) : Σ→ R24,1 × S1,

so that the coordinate along the circle is periodic; Y ∼ Y + 2πR.

(a) Explain why the periodicity condition on the string is

Y (σ + 2π, τ) = Y (σ, τ) + 2πRω

taking care to give an interpretation to ω ∈ Z and hence find a mode expansion
for Y (σ, τ).

(b) Show that the mass-shell and level-matching conditions are

M2 =
n2

R2
+
w2R2

α′2
+

2

α′
(N + N̄ − 2), nw +N − N̄ = 0,

respectively where n,w ∈ Z. N and N̄ take their usual meaning. Hence show that
the mass spectrum of the theory is invariant under the exchange of winding and
momentum modes around the compact direction provided that R is exchanged
with α′/R. What is the significance of this result?

Hint: Do not assume that αµ0 = ᾱµ0 .

(c) Consider the limit in which R → 0, keeping α′ fixed. How do the low energy
degrees of freedom in the resulting 25 dimensional theory on R24,1 differ in field
theory and string theory?

10. As in question 9, assume that the target space is R24,1 × S1, where the radius of the
circle is now taken to be R =

√
α′.

(a) Using standard OPE results, find the singular terms in the OPEs of the operators

J1(z) =: sin

(
2√
α′
Y (z)

)
:, J1(z) =: cos

(
2√
α′
Y (z)

)
:, J3(z) =

i√
α′
∂Y (z).

(b) Defining

Jan =

∮
z=0

dz

2πi
zn Ja(z),

show that the Jan satisfy

[Jam, J
b
n] =

m

2
δabδm+n,0 + iεabcJ cm+n.

Such an algebra is called a Kac-Moody algebra and plays a crucial role in the construc-
tion of the Heterotic String theories.

11. For a string in a background B-field with field strength H = dB we may write the
action as

S = − 1

4πα′

∫
Σ

d2σ
√
hhabgµν(X)∂aX

µ∂bX
ν − 1

12πα′

∫
V
εabcHµνλ(X)∂aX

µ∂bX
ν∂cX

λ

where V is a surface such that ∂V = Σ.
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(a) Given that H transforms under diffeomorphisms as δvH = iv dH + d(ivH), show
that the Xµ equations of motion are defined entirely by physics on the two-
dimensional world-sheet Σ.

(b) Show that the theory does not depend on the form of the extension V of Σ.

Hint: Consider the difference between the actions given by two different extensions
V and V ′, both with boundary Σ.
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