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Abstract. The formation of retinal mosaics is thought to involve lateral movement of retinal cells
from their clonal column of origin. The forces underlying this lateral cell movement are currently
unknown. We have used a model of neurite outgrowth combined with cell movement to investigate
the hypothesis that lateral cell movement is guided by dendritic interactions. We have assumed
that cells repel each other in proportion to the degree of dendritic overlap between neighbouring
cells. Our results first show that small cell movements are sufficient to transform random cell
distributions into regular mosaics, and that all cells within the population move. When dendritic
fields are allowed to grow, the model produces regular mosaics across all cell densities tested. We
also find that the model can produce constant coverage of visual space over varying cell densities.
However, if dendritic field sizes are fixed, mosaic regularity is proportional to the cell density and
dendritic field size. Our model suggests that dendritic mechanisms may therefore provide sufficient
information for rearrangement of cells into regular mosaics. We conclude by mentioning possible
future experiments that might suggest whether dendritic interactions are adaptive or fixed during
mosaic formation.

1. Introduction

Retinal cells are regularly arranged into ‘retinal mosaics’ possibly to ensure that all of the visual
field is efficiently sampled. Each class of retinal cell produces its own mosaic, although some
classes are more regular than others [35]. How do these mosaics form in the developing retina?
Several mechanisms have been proposed [5, 35]. (i) Each cell could have a repulsive force
so that an original random pattern of cells disentangles itself. (ii) Neighbouring cells could
compete for inputs from presynaptic cells. (iii) Activity-mediated cell death may remove
inappropriately placed cells from the mosaic. (iv) The layout of each mosaic could be
predetermined genetically by a precise pattern of cell lineage. The first three hypotheses
imply some element of self-organization, whereas the last hypothesis is heavily reliant on
genetic determination. In this paper, we use a theoretical model to investigate the first of these
hypotheses: the role of repulsive forces in generating retinal mosaics.

Early work on the genesis of retinal cells indicated that they migrate primarily in a radial
direction from their clonal column of origin [30,36]. However, recent analysis of cell migration
has shown that as well as radial movement, cells of certain classes are also tangentially dispersed
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up to 150µm from their clonal column of origin [20–22]. Furthermore, all cells within these
classes move laterally and these classes have the most regular mosaics [21]. Independent
support for lateral cell movement comes from work exploiting the discovery of an early marker
for cholinergic amacrine cells. During migration to their destination, the ganglion cell layer
(GCL), cholinergic amacrine cells show no regular minimal distance to their neighbours; after
arriving in the GCL, these cells then become regularly spaced. Some lateral cell movement
must therefore be involved once cells arrive in the GCL [10]. Although this recent evidence
shows that retinal cells move laterally, the developmental forces controlling this movement are
unknown.

Several theoretical models have previously addressed the problem of retinal mosaic
formation. In one class of model, cells are initially placed in a regular hexagonal grid and then
each cell is independently moved in some small random direction [1,38]. Mosaic regularity is
controlled here by the regularity of the hexagonal grid and the magnitude of cell displacement.
In another class of model, cells are sequentially positioned within the retina. Each cell has a
circular exclusion zone surrounding it, so that subsequent cells cannot be positioned within any
of the earlier cells’ exclusion zones [7, 10, 26]. In this type of model, cell density and size of
the exclusion radius determine regularity. However, both these types of model concentrated on
reproducing final cell distributions rather than describing how an initially unordered population
rearranges itself. A recent model investigated the role of activity-mediated cell death to shape
retinal mosaics. Starting from a random distribution of cells, selective removal of around 20%
of the cells produced mosaics matching the regularity of ganglion cell mosaics [12]. However,
no mechanism was proposed for stating which cells should die. Finally, other models have
investigated the process of specifying cell fate amongst a group of undifferentiated cells [28,29].
In these models, cell position is already fixed in a regular grid, and the problem is how to divide
the undifferentiated cells into regular sub-classes.

Our starting point for this work is the model of neurite outgrowth [31,32] which explored
the role of intracellular calcium level of a cell ([Ca2+]i) on neurite outgrowth. In the model, low
[Ca2+]i promoted neurite outgrowth, whereas high [Ca2+]i promoted neurite retraction [13].
[Ca2+]i was assumed to be proportional to the firing rate of a cell. Each cell’s firing rate was
influenced by the firing rate of neighbouring cells, modulated by the area of overlap of their
neurites. In a randomly positioned set of cells, neurite sizes became inversely proportional to
the local cell density. In this paper we extend the model to allow cells to move as well as to
change their neurite size.

2. Methods

Here we summarize the model of neurite outgrowth with cell movement. See [31] for further
details of the original model. We also describe the measures used to quantify the network.

2.1. Network description

The model hasn cells positioned on a square surface of side lengthl. Each celli is represented
by three variables: (Ci , Ri , Xi). Ci (bold denotes a 2D vector) represents the position of the
cell body, andRi is the radius of the circular dendritic field around the cell body.Xi denotes
the mean membrane potential of a cell. Initially, each cell is given a random positionCi on
the surface and bothRi andXi are set to zero. The three variables for each cell are iteratively
updated using the following differential equations, solved numerically using the Runge–Kutta
technique with adaptive step size [18]:
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(i) The mean membrane potential of a cell,Xi , is a weighted function of inputs from
neighbouring cells, along with a decay term of time constantτ :

d

dt
Xi = −Xi

τ
+ (1−Xi)

n∑
j=1

WijF (Xj )

where F(Xj ) = 1

1 + exp[(θ −Xj)/α]
and Wij = cAij .

(1)

The mean firing rate of cellj , F(Xj ), is a sigmoidal function with thresholdθ and
steepness controlled byα. Aij is the area of overlap between the dendritic fields of cell
i andj , with Aii = 0 since cells do not overlap with themselves. The input from cell
j to cell i, Wij , is thencAij , wherec is a constant representing synaptic strength.Xi is
dimensionless and bounded in the range [0, 1].

(ii) Since the effect of electrical activity on outgrowth is mediated by intracellular calcium [13],
and the firing of action potentials leads, via depolarization and the opening of voltage-
sensitive calcium channels, to calcium influx, the outgrowth is taken to be dependent upon
the firing rate:

d

dt
Ri = ρG(F(Xi)) where G(x) = 1− 2

1 + exp[(ε − x)/β]
. (2)

The sigmoidal functionG(x) controls the direction and rate of dendritic growth. When
the cell’s firing rate is below the thresholdε, G(F(Xi)) is positive, causing outgrowth.
Conversely, when the firing rate is above threshold,G(F(Xi)) is negative and the dendritic
field retracts.β determines the steepness of the sigmoid andρ further modulates the rate
of dendritic growth.Ri is measured inµm.

(iii) Cell bodies repel each other in proportion to their dendritic overlap:

d

dt
Ci = η

n∑
j=1

u(Ci −Cj )Wij (3)

u(V ) is the vectorV normalized to unit length, exceptu(0) = 0. Both elements ofCi
are bounded within 0–l µm to keep each cell within the surface.η controls the rate of cell
movement.

Starting from random initial positions, cell position and dendritic field size were iteratively
updated using equations (1)–(3) until cell position and size stabilized (typically after 50 min).
Typical parameter values were: (n = 200 cells,l = 400µm, τ = 1.0 s,θ = 0.5, α = 0.1,
c = 0.6, ε = 0.6, β = 0.1, ρ = 0.1 µm s−1, η = 0.1µm s−1). Early postnatal mouse retina
is 2–3 mm in diameter, and so our model simulates a small patch (2–5%) of the retina. Other
parameter values are somewhat arbitrary since several quantities, such as the speed of lateral
cell movement, are unknown. However, we ensure that outgrowth and cell movement occur
on a slower timescale than membrane potential dynamics by settingρ andη smaller thanτ .
Smaller values forρ andη would lead to longer (and more realistic) development times, but
would also slow down the simulations.

2.2. Measurements

The following two dimensionless measures are used to quantify network development.

Regularity index. The regularity index (RI), a standard measure based upon measuring
nearest-neighbour distances (NND) amongst cells, was used to evaluate mosaic regularity [35].
The RI is defined as the mean NND divided by the standard deviation of the NND. A RI value
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greater than 3.0 usually indicates a non-random distribution of cells [4]; typical values for
retinal mosaics are 4–9 [35]. NND values were not measured for border cells since their
NNDs may be overestimates [4]. Border cells were defined here as cells whose Voronoi
polygon [8] crossed the edge of the surface. (The Voronoi polygon of a cell is the polygon
enclosing all points in space that are closer to the cell than to any other cell.)

Coverage factor. This is defined as the product of the mean dendritic field area and cell
density (〈R〉 denotes the mean dendritic radius for non-border cells):

coverage= π〈R〉2n
l2

. (4)

3. Results

This section shows the development of retinal mosaics under a range of conditions.
Movies showing examples of network development are available from the internet at
http://www.anc.ed.ac.uk/∼stephen/mosaics. Two related models are presented. First, we
show the effect of adapting dendritic field sizes whilst cells move. Second, we investigate the
effect of cell movement whilst fixing dendritic field sizes at some initial value.

3.1. Model 1: development with adaptive dendritic fields

Figure 1 shows a typical network during different stages of development. Starting from random
initial positions, cells first extend their dendritic fields—there is no movement until their fields
overlap. Once dendrites begin to overlap, cells repel each other and start to cover more of
retinal space. Once dendritic field sizes have stabilized, cells are regularly distributed across
the surface. Although cells are free to move throughout the whole surface, they typically move
only small distances to form a regular mosaic (figure 2).

In agreement with the previous model, dendritic fields stabilized whend
dt Ri = 0 for all

cells [31]. When dendrite sizes stabilize, so does cell activity:d
dt Xi = 0 for all cells. Setting

the left-hand side of equations (1) and (2) to zero then shows that, at steady-state, the sum of
inputs to each cell (i) is a constant:

n∑
j=1

Wij = F−1(ε)

ετ (1− F−1(ε))
(5)

(F−1(x) is the inverse function ofF(x) in equation (1)). The values of
∑n

j=1Wij for the final
network shown in figure 1 (mean 1.960, s.d. 0.004,n = 100 cells) agree with direct calculation
using equation (5) (1.964). Each cell therefore adapts its dendritic field until it receives a
constant amount of input from neighbouring cells. (Border cells have larger dendritic fields
than other cells because they overlap with fewer cells.) In principle, once dendritic fields
have stabilized, any further cell movement can cause small changes to the dendritic field sizes.
The peak of cell movement occurs during the period when dendritic fields are overlapping and
rapidly changing size (figure 3). Long after dendritic fields have stabilized, there is some small
movement of a few cells, but this is usually too small to change dendritic field sizes.

Cell densities in the retina are normally much higher in the centre than in the periphery,
producing a gradient of cell density. Mosaic regularity in the model remains high over a range
of cell densities (figure 4). The mean NND is inversely proportional to the square root of the
number of cells, as shown by the close fit between the data points and the theoretical curve.
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(a)

(b)

(c)

Figure 1. Typical mosaic development (n = 100 cells). On the left, each circle represents the
position of one cell with its radius equal to the dendritic extent. On the right, each dot represents a
cell body. The same network is shown at three stages of development. (a) After 2 min, dendrites are
growing outward, but cells have not yet moved and the mosaic is still random (RI= 2.1). (b) By
6 min, the dendrites have grown enough to cause some small movement and a slight increase in
mosaic regularity (RI= 3.0). (c) By 48 min, dendrite sizes are uniform and the mosaic is highly
regular (RI= 10.8). Scale bar: 100µm.
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Figure 2. Cell movement during development. Each trail shows the
position of one cell body during a typical simulation. The positions of
16 typical cells were taken from the simulation shown in figure 1.
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Figure 3. Amount of cell movement during development. Cell position is sampled approximately
every 50 s; cell movement is defined as the Euclidean distance between the current and previous
cell position. Error bars show one standard deviation of the mean cell movement. This figure
quantifies cell movement for the simulation shown in figure 1.

This relationship is expected for regular arrays: multiplying the number of cells in a hexagonal
grid by four will halve the NND.

Retinal cells are born over several days and therefore arrive to their destination at different
times [33]. To see if this prolonged period of cell migration affects network regularity, the
network was tested by gradually adding ‘newborn’ cells to a small network. We found that the
mean NND smoothly decreases during cell addition, whilst maintaining a regular arrangement
of cells (figure 5). Similarly, the network also adapts to loss of cells, as occurs during either
natural cell death or after experimental lesions, by increasing the average NND (data not
shown).

3.1.1. Coverage factors. The amount of overlap between neighbouring dendrites of the
same class varies across different cell types. The overlap is quantified using the coverage
factor (equation (4)). For tight, almost non-overlapping, dendritic fields this is as low as 1.4
(alpha ganglion cells), up to around 11 (beta ganglion cells) for cells whose dendritic fields
overlap heavily [27]. Furthermore, retinal cells show a remarkable constancy in coverage factor
despite large central-peripheral cell density gradients: as cell density increases, dendritic field
size decreases to maintain constant coverage.
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Figure 4. NND (N) and RI (•) as a function of the number of cells in the network. Each value is
the mean and standard deviation from five simulations with different initial conditions. The dashed
curve shows the least-squares fit of the NND data to the liney = (a/√n)+b (a = 388.0, b = −0.7).
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Figure 5. Network development during cell addition. (a) Number of cells in the network. Starting
with 70 cells, every 200 s a newcell was randomly positioned in the network until it had 200
cells. (b) Mean NND. As more cells are added, the NND decreases. Error bars show the standard
deviation of NND at regular intervals. (c) Mosaic regularity. The dashed line indicates the baseline
level (3.0) for a regular mosaic. Mosaic regularity gradually increases during cell addition despite
short-term fluctuations. After cell addition has finished, RI increases to a stable value.

As shown in the previous section, each dendritic field adapts until it receives a fixed
amount of input from its neighbours. In the model, the amount of dendritic overlap is therefore
controlled by the synaptic strength parameter,c. Whenc is small, dendritic fields must heavily
overlap to get sufficient input. Conversely, whenc is large the overlap between dendritic fields
is much smaller (figure 6).
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(a) (b)

Figure 6. The amount of dendritic overlap is controlled by the synaptic strength parameter,c.
Each plot shows the dendrites of all surrounding cells (coloured grey) that overlap one central cell
(black) (a) c = 0.6: high overlap. (b) c = 4.0: low overlap. Scale bars: 100µm.

0

5

10

100 200 300 400

co
ve

ra
ge

number of cells

c=0.6

c=1.0

c=4.0

Figure 7. Average coverage factor as a function of cell density for absolute area of overlap (◦,
c = 0.6) and relative area of overlap (•, c = 0.6, 1.0, 4.0). Each mean coverage factor was
calculated from five simulations with different initial conditions. The standard deviation of each
mean was too small (always less than 0.16) to be visible on the plot.

Although the model generates dendritic fields that decrease in size as cell density increases,
the decrease is not sufficient to generate constant coverage of visual space. Instead we find
that the coverage factor increases with cell density (figure 7). The coverage factor is invariant
to cell density when the overlap functionAij is changed to measure the relative amount of
overlap between two cells (the absolute area of overlap divided by the mean area of the two
dendritic fields). In this case, the coverage factor is just dependent upon the synaptic strength
parameterc (figure 7).

3.1.2. The form of dendritic interactions.The dendritic overlap function,Aij , determines
both the influence of one cell’s firing rate upon another cell and also the strength of the repulsive
force between cells. This function is usually the area of overlap (termed ‘area’ below) between
the two dendrites. We have also tested other functions forAij to see what properties of this
function are important for normal development as listed below.
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Table 1. Mosaic regularity and mean dendritic field sizes for different overlap functionsAij . For
each condition, the mean and standard deviation was calculated over five simulations (n = 200 cells)
with different initial conditions. Border cells were excluded from the dendritic field measurements.

Aij RI MeanR (µm)

Area 12.0± 1.16 43.0± 1.00
Length 12.3± 1.39 34.4± 0.86
Area/50 12.1± 0.99 43.3± 0.75
Area/30 11.0± 1.68 43.6± 1.26
Area/10 9.2± 0.55 45.0± 1.11
Area/5 6.0± 0.31 47.2± 1.58
Area/3 7.4± 1.26 50.6± 3.41
Area/2 1.5± 0.11 55.5± 6.11
Touching 4.1± 1.23 17.4± 4.37

Length:Aij measures the length of overlap between two circular dendrites. If celli

andj overlap with their cell bodies a distanced apart, thenAij = Ri + Rj − d. (If
cell i is completely inside cellj , Aij = 2Ri .)

Touching: If the dendritic fields of celli andj touch each other,Aij = 1, else it is 0.

Area/k: The true area of overlap,A′ij , is approximated by one ofk equally spaced
values between zero and the maximum value ofA′ij for those two cells,m:

Aij = (m/k)floor(A′ij k/m) where m = π [min(Ri, Rj )]
2.

Table 1 summarizes the results of using these different overlap functions. (For the touching
and area/k overlap functions, Runge–Kutta integration with a fixed step size of 0.01 s was used
because of discontinuities in their functions.) The length function works equally well as the
area function for producing highly regular mosaics—the only difference is that the dendritic
extent tends to be slightly smaller when using the length function. Highly regular mosaics are
also produced when the area function is discretized into a high number of values (k = 50, 30).
However, as the number of possible values decreases, so does the regularity of the resulting
mosaics. The drop in mosaic regularity is reflected in the increased variance of the dendritic
field sizes. Finally, the touching function produces irregular mosaics: most cells tend to
just touch each other with little overlap (figure 8) and have a high variation in dendritic field
sizes. Cells also tend not to stabilize their dendritic field size since the stability contstraint
(equation (5)) cannot be satisfied.

3.2. Model 2: development with fixed-size dendritic fields

The crucial element of our model is that cells are allowed to move; without cell movement,
mosaics cannot develop. In the previous model, both dendritic extent and cell position were
modifiable on the same timescale. To test whether dendritic growth is also necessary for mosaic
formation, we evaluated the model when dendritic fields are fixed at some initial value, and
only cell position changes during development. This paradigm might also correspond to the
situation when cells move at a much faster rate than dendritic outgrowth. We ran two sets of
experiments where the dendritic field sizeRi for each cell was taken from a uniform random
distribution with mean〈R〉 µm and standard deviation either 1 or 2µm. The rate parameter
ρ in equation (2) was set to zero to prevent dendritic growth. We have investigated the effect
of (1) initial dendritic field size and (2) cell density upon mosaic regularity.
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Figure 8. Example mosaic created when using the touching
overlap function forAij . Scale bar: 100µm.

(a) (b)

(c) (d)

Figure 9. Typical final mosaics for different fixed dendritic field sizes (n = 200 cells).
(a) Ri = 6 ± 2 µm, RI = 3.4. (b) Ri = 8 ± 2 µm, RI = 5.2. (c) Ri = 14± 2 µm,
RI = 18.1. (d) Ri = 30± 2µm, RI= 18.5. Scale bar: 100µm.

Figure 9 shows typical mosaics produced with different fixed-size dendritic fields. When
〈R〉 is small, cells simply repel each other until dendritic fields are non-overlapping. As〈R〉
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Figure 10. Effect of different fixed-size dendritic fields upon network development. (a) NND.
(b) RI. (c) Percentage of cells that moved during the simulation. (d) Percentage of non-border
cells (as defined in the methods section). For each size of dendritic field, the mean and standard
deviation was calculated over ten simulations (n = 200 cells) with different initial conditions.
Dendritic field sizes in each simulation were fixed at〈R〉 ± 2µm.

increases, more cells touch each other and therefore move, producing more regular mosaics.
These results are quantified in figure 10. There is a clear change in behaviour for values of
〈R〉 around a threshold of 17–20µm (denotedrt), and so these two regimes will be discussed
separately. (This value ofrt closely matches the radius of hexagonally arranged circles to
cover the surface with a minimum coverage of 1.21 [34]; substituting this coverage factor into
equation (4) withn = 200,l = 400µm givesrt = 17.5µm.)

For values of〈R〉 less thanrt , the mean NND (figure 10(a)) and regularity of the mosaic
(figure 10(b)) increase with〈R〉. This increase in regularity is correlated with more cells
moving as〈R〉 increases (figure 10(c)). The number of cells that remain within the central
(non-border) region of the retina remains constant (figure 10(d)) and so coverage is proportional
to 〈R〉2, reaching 1.21 atrt .

Network behaviour changes once〈R〉 exceedsrt . First, there are no longer consistent
improvements in the RI with increases in〈R〉 (figure 10(b)), although mosaics are still highly
regular. Second, the NND has an upper limit of around 25–30µm (figure 10(a)). This
corresponds closely to the theoretical NND value required for 200 cells to be hexagonally
arranged in the square surface (l/

√
200 sin 60= 30.4µm). We also find that as the dendritic

field increases, more cells are pushed to the borders of the surface (figure 10(d)). However, this
increase in the number of border cells is not enough to maintain constant coverage—coverage
still increases as〈R〉 increases (data not shown).

One possible explanation for this change in network behaviour might be because all cells
move once〈R〉 exceedsrt (figure 10(d)). However, universal cell movement in itself does
not cause problems for the network, since all cells also moved in the simulations presented
in figure 4. It is simply more likely that once the NND reaches the theoretical limit, the RI
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Figure 11. Effect of cell density on regularity for fixed-size
dendritic fields. (a) RI. (b) Percentage of cells that moved during the
simulation. For each cell density, the mean and standard deviation
was calculated over ten runs from simulations starting with different
initial conditions. Initial dendritic field sizes in each simulation
were fixed at 6± 1µm.

no longer improves. Also, as〈R〉 increases more cells are pushed to the border because cells
repel each other more quickly. (Periodic boundary conditions would avoid the problem of cells
getting pushed to the boundary, but it is likely that the results would otherwise be unaffected.)

Mosaic regularity is also dependent on cell density, for any given mean dendritic field size
(figure 11). When there are few cells in the network, there is little cell movement. However,
as cell density increases, there is more movement and therefore higher regularity. (The biggest
network tested here, 500 cells, has a coverage around 0.35; larger networks were not tested
because of the much longer simulation times required. We expect that in networks with more
cells, border effects similar to those in figure 10 will occur once the coverage exceeds 1.21.)

4. Discussion

We have shown here that local cell movements, driven by dendritic interactions, are sufficient
to rearrange randomly positioned cells into a regular mosaic. Although cells are free to move
throughout the whole surface, they tend to move only small distances, in keeping with the
limited lateral movement observed experimentally [20, 21]. Mosaic regularity is also robust
to increasing cell numbers during cell addition.

We have also shown that the model regulates dendritic field size so that the coverage
factor is constant across changes in cell density. This requires the overlap function to be
normalized to account for the different absolute sizes of dendritic fields. This could be
biologically implemented by assuming that each cell, regardless of its dendritic field size,
has the same number of potential points to contact neighbouring cells. A previous suggestion
for dendritic growth was that dendrites grow out from the cell body until they touch another
cell’s dendrite [34]. This proposal is suitable for cell classes with little dendritic overlap, such
as cat alpha ganglion cells, but not for most other classes with higher coverage. In contrast,
regulating dendritic field sizes to maintain a constant percentage of overlap with neighbouring
cells is a general principle that will produce constant coverage factors for all types of retinal
cell.

The model’s behaviour changes depending on if the dendritic fields adapt (the adaptive
model) or if they are fixed (the fixed model) during development. Mosaic regularity in the
adaptive model is independent of cell density and all cells move during development. In the
fixed model both mosaic regularity and the number of moving cells is proportional to cell
density (and dendritic field size). The different behaviours are due to the different stability
criteria. In the adaptive model, each cell adapts its dendritic field until it receives a fixed
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amount of input and moves until the repulsive forces cancel each other out. In the fixed model,
cells repel each other until, ideally, they are no longer overlapping. (Once coverage exceeds
1.21 in the fixed model, cells must always overlap.)

Each model has its own advantages. For the adaptive model, the dendritic field size need
not be fixed in advance, but instead adapts to the density of neighbouring cells. In contrast,
in the fixed model, the size of the dendritic fields must be fixed in advance. Furthermore,
the adaptive model adapts dendritic field sizes to maintain constant coverage factors across
different cell densities, whereas coverage in the fixed model increases with cell density.

The fixed model can be seen as a developmental version of the exclusion zone model
used to model different retinal cell distributions [7,10,26]. The advantage of the fixed model
over the exclusion zone model is that all cells move simultaneously to their final positions.
In contrast, in the exclusion zone model, cells are added into the mosaic one-by-one such
that later-positioned cells cannot move earlier-positioned cells. The exclusion zone model
therefore does not account for universal cell movement [21].

The two models behave differently as cell density varies. In the adaptive model,
mosaic regularity is invariant to cell density. This matches results from mammalian cone
photoreceptors and cholinergic amacrine cells [11,24]. In contrast, in the fixed model mosaic
regularity is proportional to cell density (or equivalently the extent of the exclusion zone). This
agrees with the finding in squirrel retina that regularity of both S-cone and rod mosaics increases
with cell density [9]. Hence, one mechanism is unlikely to account for the development of all
retinal mosaics.

The focus of this work has been to see whether small cell movements are sufficient to form
regular mosaics; we have not tried to explicitly replicate particular distributions of different
retinal mosaics. More sensitive measures of regularity [10,23], were therefore not used. The
ideal stable states of our models are likely to be too regular to match real data sets. However,
other developmental mechanisms occurring after lateral cell movement may affect the final
distribution. These mechanisms include postnatal retinal growth [16], cell death [37], and
heterotypic cell interactions [14]. Detailed comparisons of natural and simulated mosaics may
not be possible until these processes are included. We have also assumed that cells are initially
randomly distributed, whereas early fate-determination mechanisms may provide some initial
regularity before lateral cell movement begins [2,3].

The circular dendritic fields assumed in our model contribute to the high regularity of the
mosaics. During early development, dendrites tend to be fairly simple with just one or two
primary branches, and so are highly asymmetric [15]. More realistic modelling of a cell’s
dendrites as a set of processes, rather than a uniform circular field, are likely to produce less
regular mosaics. Also, we assume that a cell is free to laterally shift its whole dendritic tree.
Once a complex dendritic tree has grown, such large-scale movement is unlikely to occur,
although the cell body might still be able to recentre itself within its primary dendrites [5].
Furthermore, even after cell position is fixed, dendrites can restructure in response to cell
death [17].

Another reason for the high regularity of the mosaics in the adaptive model could be
because cell movement is unconstrained (except for the boundary conditions). There is some
small cell movement in the model after dendrites have stabilized (figure 3) which fine-tunes the
regularity of the mosaic. This late movement could be prevented in the model by assuming that
movement stops when dendritic fields stop growing. Cell movement may also be constrained
by processes of other cell classes that are also developing. We chose not to include such
constraints in the model however since there is no current experimental data on how lateral
cell movement might be constrained.

Although our model does not suggest specific mechanisms for how dendritic interactions
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might control cell movement, it does suggest some constraints. The repulsive force between
overlapping dendritic fields should be modulated by the amount of overlap. Here we have
found that either the area or length of overlap between dendritic fields are suitable modulating
factors. As these measurements are made less accurate, the regularity of the mosaics decreases.
In the limit when we use binary measures, such as whether dendrites touch, the mosaics are
much less regular, and there is high variation in the sizes of dendritic fields. Our model also
shows that the coverage of retinal space over different cell densities is constant if the magnitude
of dendritic interactions are scaled by the absolute size of the dendritic fields.

This model focuses on the formation of retinal mosaics, rather than accounting for dendritic
growth. Dendritic growth involves many other later processes including retinal expansion,
passive and active dendritic growth, and pruning [19, 25], none of which are accounted for
in this model. However, it is possible that some aspects of dendritic development, such as
the constant coverage factors, could be laid down during mosaic formation. If the proportion
of dendritic overlap between neighbouring cells remains fixed during later development, the
coverage factor will remain constant. Alternatively, coverage factors will increase during
development if dendritic growth exceeds retinal expansion. Both constant and increasing
coverage factors have been observed in developing rabbit retina [6].

Finally, we note that alternative biological interpretations are possible for the mechanisms
in our model. First, we have assumed that dendrites make reciprocal synapses so that the
membrane potential of cells (Xi) can influence each other. The membrane potential of a cell
then controls calcium influx and thus neurite outgrowth. Whether such reciprocal synapses
form between cells during development is unclear. However, it is likely that as soon as
dendrites from cells come into contact, many receptor-activated second messenger systems
could be activated, ultimately causing [Ca2+]i levels to change. HenceXi could be interpreted
as a general activation function reflecting the level of these cell interactions, rather than just the
membrane potential. Second, when the dendritic field sizeR is fixed, we could alternatively
assume that each cell produces a chemorepellant, effective over a limited rangeR around the
cell body, to ensure cells stay a minimum distance from each other.

In this work, we have investigated how dendritic interactions might guide mosaic
formation. More experimental work is needed to test this hypothesis. Currently, the only
evidence for dendritic interactions is correlational: horizontal cell morphology changes from
radial to tangential processes at the time of lateral cell movement [21]. The role of dendritic
interactions needs testing more explicitly by seeing if mosaic order is affected when dendritic
growth is inhibited or stopped. The model here also predicts two different effects of cell
density upon the amount of cell movement. In the adaptive model, cell movement is universal,
regardless of density. In contrast, in the fixed model cell movement is proportional to density.
To test whether dendritic interactions are adaptive or fixed, the amount of cell movement at
different cell densities should be measured [21]. Since lateral movement can currently be
measured only in the mouse, which has a shallow gradient of cell density, this will require
experimental manipulations to change the cell density.
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