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Abstract

Retinal cells are regularly spacedacrossthe
retinaandform mosaic-like patternsThedevel-

opmentalprocessemvolvedin producingsuch
mosaicsare unclear althoughrecentevidence
suggestshatlateralmovementof cellsmay be
involved[1]. In thispaperwe extendamodelof

neuriteoutgrownth [2] to allow cellsto move as
well asto changetheir dendriticextent. Start-
ing from randominitial positions, cells reor

ganiseinto regular mosaics. The network can
also dynamically adaptto either increasesor

decreases network sizeduring development.
Ourresultssupporthehypothesighatlocal cell

movementproducedby local dendriticinterac-
tionscangenerateegularmosaics.

1 Introduction

A commonpropertyof retinal cellsis thatthey
areregularly spacedn neuraltissue. This reg-
ular arrangemenensuresthat the visual field
is processeefficiently andwith completecov-
erage. Mary different classesf retinal cells,
including conephotoreceptordhorizontalcells
and ganglioncells, are all regularly arranged
[3]. How do such mosaicsarise during de-
velopment— arenewborn cells positionedm-
mediatelyin a regular fashionacrossthe sur
face, or do they gradually self-olganisefrom
someunorderedstate?Two lines of recentevi-
dencdavourstheargumenthatcellsreorganise
during developmentio producemosaics.First,
stainingof cholinegic amacrinecellsin therat
shaved thatduring migrationthe cells have no
spatialordering,but thenlaterbecomaegularly
spacedwithin their destinationlayer [4]. Sec-
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ond, labellingof retinalprogenitorcellsshoved

thatit is commonfor certainclasseof retinal

cellsto betangentiallydispersedrom their col-

umn of origin [1]. Henceit is suggestedhat
lateral cell movementcontributesto establish-
ing theregularity of thesemosaics.

The forces controlling such tangentialcell
movementhowever arestill unknovn. We sug-
gestthatthis lateralmovementcould be there-
sult of repulsie forcesbetweercells. Suchre-
pulsive forceswere hypothesiseds a mecha-
nismfor creatingmosaicsidenticalnenecells
shaw repulsive actiontowardseachotherandan
originally random patterndisentanglestself”
[3, p457].

1.1 Previouswork

Previoustheoreticalvork onretinalmosaicsas
focusedmainly on describingthe final mosaic
patternratherthanon how themosaicdevelop.
Two ruleshave beendevisedfor generatingno-
saicpatternd5]. In thefirst, thedisturbedrian-
gularlatticerule, cellswereinitially positioned
in aregularhexagonamosaicandtheneachcell
movedto somerandompositionwithin afixed-
width radius. By superimposingwo indepen-
dentmosaicgeneratedisingthis rule, on- and
off-centreganglioncell mosaicscould be simu-
lated[6].

In the secondule, the softdisk parkingrule,
cellsweresequentiallypositionedonto the sur
face. A tentatize positionfor a new cell was
selectecat random. The probability of keeping
the new cell was a function of distanceto its
nearesneighbouy following a Boltzmann-like
distribution. This rule produceda closermatch
to horizontalcell mosaicsn turtlesthanthedis-
turbedtriangularlatticerule [5]. A simplerver



sion of this rule, called the dmin rule [4], re-
jectednew cellsif they werecloserthansome
minimum distance(dmin) of its nearesheigh-
bour The dmin rule replicatedboth horizon-
tal cell and cholinegic amacrinecell mosaics
[7, 4]. Thedmin rule hasalsopreviously been
usedin ecologicakontetsto describéheasyn-
chronousformation of territoriesamongstani-
mals[8].

As well astheserules, a recentsuggestion
is that selectve ganglioncell deathmay cre-
atemosaicdrom randomcell distributions[9].
Neuralactiity playsarole in this processhut
it is notclearhow cellsareselectedo die.

To our knowledge,the only modelproposed
for iteratively producing regular distributions
from random starting conditions is the syn-
chronougerritory modelfrom ecology[8]. At
eachtime step,eachunit is moved slightly to-
wardsthe centreof its Voronoi polygon. (The
Voronoipolygonof aunitis thepolygonenclos-
ing all pointsin spacehatarecloserto the unit
thanto ary otherunit.) Althoughthismodelhas
never beencomparedvith retinalmosaicsit is
likely it will producegoodmatchedo realmo-
saics. It doesnot considerthe relatedissueof
dendriticfield sizehowever.

In this paper we extend a model previ-
ously developedto explore the role of cal-
cium in regulatingneuriteoutgrawnth [2]. This
model assumedhat intracellular calcium lev-
els ([Ca*];) controlled cell outgronth: low
levels of [Ca?*]; promotedoutgranth, whereas
highlevelspromotedretractionof neuriteq10].
Cellswereinitially placedatrandomin thesur
faceandtheresultingneuritesizewasinversely
proportionalto the local density of units. We
extend this model so that as well as allowing
neuritesto changesize, we alsoallow cell po-
sition to vary accordingto the relative position
of neighbouringeells. In this context, themodel
appliesto only dendritesof retinal cells, rather
thantheir axons.

2 Methods

The model consistsof N cells placedwithin a
surface of size 400x 400 pm?. (The size of
thesurfaceis arbitraryhowever sincewe do not
matchcell densitiesand dendritic sizesto val-
uesfor specificclasseof retinal cells.) Each
cellis givenaninitial randompositionC; (bold
denotesa 2-d vector)within the surfaceanda
circular dendriticextent of radiusR; = 0.0pm.
The meanmembranepotentialof cell i, X, is

givenby:
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whereF (X;) is the meanfiring rate of cell j.
Ajj is theareaof overlapbetweerthe dendrites
of celli andj. Theinputfrom cell j to cell i
is Ajj multiplied by a constantc, representing
synapticstrength. The dendriticextent of each
cell, R, changesccordingo its firing rate:
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G(x) controls dendrite outgranvth: when the
cell’s firing rate is belowv the threshold &,
G(F (X)) is positive, causingoutgronvth. Con-
versely whenthefiring rateis above threshold,
G(F (X)) is negative andthe dendriteretracts.

In additionto the abore mechanismsisedin
previous work [2], eachcell movesaccording
to the relative positionsand size of overlap of
neighbouringells:

where  G(x)=1-

d N
G Ci=n j;u(ci — Cj)W; 3)

whereu(V) is the vectorV normalisedto unit
length,unlessv = 0 (whentwo cellsoccupy the
sameposition)in which caseu(V) = 0. n con-
trols therateof movementof eachcell. Bound-
ary conditionsareimposedsuchthat eachunit
cannotmove beyond the surface (so both ele-
mentsof C; areboundecbetweer0,400]um).

Thethreedifferentialequationgfor eachcell
weresolvednumericallyusingthe Runge-Kutta
techniquewith adaptve stepsize [11]. Typi-
cal simulationparametersvere: (N = 100,T =
10,6 = 0.5,a0 = 0.1,c = 0.6, = 0.6, =
0.1,p=0.00L,n=0.1).

The conformity ratio (CR), a standardmea-
sure basedupon measuringnearesteighbour
distances(NND) amongstcells, was usedto
evaluatemosaicregularity. The CR is defined
asthe meanof the NND divided by the stan-
darddeviation of theNND [12]. Thehigherthe
value,the moreregularthe mosaic.Thereis no
upperboundfor the CR, but typical valuesfor
retinalmosaicsare4—9[3]; valuesabore 3.1for
greaterthan 50 cells from a squaresampleare



consideredegularattheP = 0.0001confidence
level [12]. In contrastthe theoreticaimeanfor
randomsampless aroundl.9.

To exclude samplingerrorsaroundthe sur
face edges,NND values are measuredonly
for cells within the central region of the
surface[12. This buffer zoneexcludescells at
the boundaryof our surfacewhich tendto have
larger dendriteghanthe restof the population.
In this paper cells musthave both coordinates
in therange[30,370]um to bein thecentralre-
gion. This typically excludesarounda third of
our cellsfrom the CR measurements.

3 Reaults

In this sectionwe presentresultsfrom the net-
work under normal developmentand various
experimentatonditions.Moviesof network de-
velopmentarealsoavailableontheinternetat:
http://wwwanc.ed.ac.ukéstephen/ican/.

3.1 Normal development

Figurel(a-d)shavs normaldevelopmenbf the
network. Startingfrom randominitial positions
(1a), cells tend first to extend their dendrites
(1b). As dendritesstartto overlap,thecellsthen
begin to repel eachother covering the whole
spacecoarsely(1c). Gradually cells stabilise
and form a regular mosaic(1d). The bound-
ary conditionson cell position causecells at
the edgeof the surfaceto have largerreceptve
fields sincethey have fewer neighbouringcells
thancentralcells.

Figure 1e shows the increasein mosaicreg-
ularity over time. After a thousandseconds,
themosaicis clearlyregularasindicatedby the
high CR value. Althoughnetwork development
timeis measuretherein secondswe expectthat
retinalmosaiadevelopmenbccursoveralonger
timescale. Even thoughcells arefree to move
anywherewithin the surface they typically tend
notto move veryfar (figure2).

3.2 Density variations

Thedensityof retinalcellsis notconstanacross
the retina, but decreasewvith eccentricity To
compensatdor this decreasen density the
size of receptve fields increaseq413]. This is
quantifiedoy measuringhe (anatomicalover-
agefactor, definedasthe averagedendriticarea
multiplied by thedensityof cells. Althoughdif-
ferentclasse®f retinalcellshave differentcov-
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Figure 1: Normal network development. (a-d)
Developmentof dendriticfields and positions.
Eachcircle representshe position of one cell

with theradiusequalto R;. Scalebar=2100pm.

(a) Initial conditions. (b) 190 seconds(c) 350
seconds(d) 2950seconds(e) Increasén mo-
saicregularity with time.

eragefactors(for example,aroundl.2 for gan-
glion cellsto aroundb6 for horizontalcells[13]),
the coveragefactorfor a givenclassis constant
acrosgheretina.

We thereforetestedthe network with a wide
rangeof numberof cellsto seeif this affected
mosaicdevelopment Figure3 andtablel sum-
marisetheresults.We first find thatmosaicreg-
ularity is uniformly high (CR > 11) over the
widerangeof network sizes.However, although
the dendritic extent decreasesvith increasing
numbersof cells,the decreasén dendriticfield
areais not enoughto keepthe coveragefactor
constant.(For example,for the datain table 1,
whenN = 100,the coveragefactoris estimated
to be5.3,whereasvhenN = 400,the coverage
factorrisesto 9.9.)

Theseresultsshov that coverageincreases
with the numberof cellsin the network, assum-
ing thatall other parametersre kept constant.
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Figure 2: Typical movementof cell position
during development.Eachtraceshavs a cell’'s
positionduringthe simulation. This plot shovs

thetracesof 12 typical cellsfrom a network of
100cells. Scalebar= 100 ym.

However, we find thatthe coveragefactoralso
variesaccordingo thesynapticstrengthparam-
eter ¢, asshawn in table2 andfigure 4. To at-
tain uniform coverageover awide rangeof cell
densitiesn ourmodel thevalueof c mustthere-
fore increaseawith density
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Figure3: Examplefinal networks usingdiffer-
entnumbersof cells. Only the cell positionis
plottedfor clarity. (&) N = 50. (b) N = 200. (c)
N =300.(d) N = 400. Scalebar=100pum.

3.3 Dynamically changing network
size

The retinais robust and can adaptto losing a

groupof neighbouringcells. After alesionto a

groupof retinalganglioncellsin therat retina,
nearbyganglioncellsextendtheirdendritesnto

the areaof the lesionandrestorethe coverage

N NND(um) R (um) CR

50 54.1+4.96 63.3+1.91 12.0+2.6
100 38.1+3.40 51.841.30 11.240.5
150 31.142.74 46.6+1.19 11.6+0.9
200 26.54+2.27 43.040.97 12.0+1.2
300 21.742.12 38.4+0.63 13.240.8
350 20.0+1.61 36.84+0.71 12.7+1.1
400 18.7+1.32 3554053 14.2+0.8
450 17.6+1.28 34.4+051 13.7+0.4

Tablel: AverageNND, dendriticextentandCR
asa function of cell density Eachvaluegiven
asmeants.d.averagedver five runsfrom dif-
ferentinitial conditions.

Figure 4: Example dendritic field sizesand
overlap when c=1.0 (left) and ¢=16.0 (right).
Only the central portion of each network is
shawn. Scalebar=100pm.

c R (um) Cov CR

0.1 82.4+1.32 13.4+0.14 8.9+1.2
0.3 61.5+1.23 7.444+0.10 12.4+1.8
0.6 51.74+1.38 5.27+0.05 13.2+2.8
1.0 45.8+1.38 4.12+0.04 12.3+1.3
4.0 335+145 2.21+0.03 10.7£1.0
8.0 29.4+1.81 1.70+0.04 10.8+2.2
16.0 26.44+2.81 1.38+0.04 8.7+0.8

Table2: Averagedendriticextent,coveragefac-
tor (Cov) and CR as a function of synaptic
strength(c). Eachvaluegivenasmeants.d.av-
eragedover five runsfrom differentinitial con-
ditions(N =100).



of visualspacq14]. To testif themodelcanre-
producethis behaiour, a network of 100 cells
was developedas normal. Then, after a regu-
lar mosaichad formed, a lesion was madeby
removing ten neighbouringcells from the net-
work (figure 5a). The network thencontinued
toreomganiseandeventuallyrecoveredfromthe
lesion(figure 5b): remainingcellsimmediately
neighbouringhelesioninvadedthe vacantarea
to cover the surface. Figure5c shavs the mean
NND asa function of time. Following the le-
sion,the meanNND increaseslightly to com-
pensatdor thelossin cells.Immediatelybefore
the lesion, CR=9.5;after recovery from the le-
sion,CRincreasedo 10.6.
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Figure5: Examplelesionexperiment(N =100,
¢=10.0). (a) Network immediatelyafter lesion
at 3000s. (b) Reoganisechetwork after recov-
eryfrom lesion.Scalebar=100um. (c) Plot of
meanNND during development,with time of
lesionindicated. Error barsindicate+1 s.d. of
NND.

As well as adaptingto lossesin cells, the
retinahandlesincreasesn cell numberduring
the periodof cell division and migration. New
cells are likely to be addedover a period of
mary daysratherthanthe cellsbeingproduced
all at once. We thereforetestedthe network’s
capacityto reomganiseby increasingthe num-
ber of cells during development.In oneexper
iment, a network with 100 cellswasdeveloped
for 3000seconds Another100 cellswerethen
addedto the network at randompositionswith
R = 0. Thenetwork adaptedo this increasen
cellnumbersandformedanotheregularmosaic

with smallerNND distancesasshownin figure
6. Justbeforetheincreasdn network size,CR
= 13.1. After recovery from the increaseCR
wasrestoredto 12.9. Both lesionand growth
experimentavererepeatabl@singdifferentini-
tial conditionsandnumbersof cells.
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Figure6: Plot of NND overtime for a network
thatstartswith 100 cellsandonceorganisedas
markedby asteriskgainsanotherlOOcells. Er-
ror barsindicate+1 s.d.of NND.

4 Discussion

Our model demonstrateghat local displace-
mentsof cells are sufiicient to reoganiseran-
domly positioned cells into regular mosaics
similar to thosefoundin the retina. The model
also adaptsto changesn network size during
development. We assumehat cells move un-
dertheinfluenceof dendriticinteractionsfrom
neighbouringcells. Further work is needed
however to seewhethersuchinteractionsoccur
in the developingretina— currentlythe forces
causindateralcell movementareunknavn [1].

Our model improves on earlier work by
shaving how both cell position and dendritic
extent develop. However, our model is not
completesinceit accountsfor uniform cover-
ageof thevisual spaceacrossvaryingcell den-
sitiesonly if we assumehat synapticstrength
increaseswith the densityof cells. Thereare
thereforeseveralwayswe canextendthis work
to seeif otherfactorsalsoaffectcoverage First,
we would like to remove the boundarycondi-
tionson cell positionby usingtoroidalsurfaces.
Second,dendritesof cells could be modelled
using a set of processeshat extendin differ-
ent directionsaroundthe cell body. This will
alsoallow usto compareherelatveimportance
of cell movementversuselongateddendritic
growth in conditionssuchasrecovery from le-
sions[14].



In this work, we have not tried to specifi-
cally modeloneclassof retinal cell mosaic. At
present,t is likely that the simulatedmosaics
are too regular (as indicatedby the high CR
values)to replicatea specificclassof mosaic.
Good fits may be attainedin future work by
addingsomerandomcomponentsnto the net-
work, for exampleby addingnoiseto thedirec-
tion of cell movement.As well asusingthe CR
measure other measuresuchas the distribu-
tion of Voronoi polygonareasandthe number
of nearesneighbourswill be usedto compare
simulatedandrealmosaics.
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