Modeling Laser Material Strength Experiments

Steve Pollaine
David Petersen
Lawrence Livermore National Laboratory

8th IWPCTM
December 10-14, 2001

D. Kalantar, B. Remington, J. Belak, J. Colvin,
M. Kumar, T. Lorenz, S. Weber
Lawrence Livermore National Laboratory

J. Wark, A. Loveridge, A. Allen
University of Oxford

M. Meyers
University of California, San Diego

This presentation was reviewed and released as UCRL-PRES-143513-REV-2.
This work was performed under the auspices of the U.S. Department of Energy by University of California, Lawrence Livermore National Laboratory under Contract W-7405-Eng-48.
Outline of poster

• Material strength model
 • Elastic-plastic flow
 • Steinberg-Guinan and Steinberg-Lund models
• VISAR velocity measurement
 • Experiment
 • Model
• Diffraction
 • Experiment
 • Model
• Sample recovery
 • Experiment
 • Decay of shock strength
• Summary and future developments
The constituitive properties of metals is of general scientific interest

Laser experiments give us access to new regimes
 - High pressures
 - High strain rates
How materials deform at strain rates $> 10^8$/s is unknown
Relevant for impact of micrometeorites on space hardware

Diagnostics
 - VISAR
 - X-ray diffraction
Recovery
Infer properties such as EOS, K, G, Y
Moderate shocks show both elastic and plastic waves.

- **Pressure** $P-\sigma_{zz}$
 - Elastic
 - Plastic flow and work-hardening
 - Elastic release

- **Strain** $\theta-\varepsilon_{zz}$

- **Hugoniot**
 - Plastic
 - Elastic limit

- **Volume**

- **Pressure wave**
 - Plastic
 - Elastic

- **Distance**
We use a material strength package in our code

Newton’s law

\[
\rho \mathbf{w}_r = -\frac{\partial}{\partial r} (P - \sigma_{rr}) + \frac{\partial}{\partial z} \sigma_{rz} + \frac{1}{r} \left(2\sigma_{rr} + \sigma_{zz}\right)
\]

\[
\rho \mathbf{w}_z = -\frac{\partial}{\partial z} (P - \sigma_{zz}) + \frac{\partial}{\partial r} \sigma_{rz} + \frac{1}{r} \sigma_{rz}
\]

Definition of strain

\[
\theta = \frac{\partial v_r}{\partial r} + \frac{\partial v_z}{\partial z} + \frac{v_r}{r}
\]

\[
\varepsilon_{rr} = \frac{1}{3} \left(2 \frac{\partial v_r}{\partial r} - \frac{\partial v_z}{\partial z} - \frac{v_r}{r}\right)
\]

\[
\varepsilon_{zz} = \frac{1}{3} \left(2 \frac{\partial v_z}{\partial z} - \frac{\partial v_r}{\partial r} - \frac{v_r}{r}\right)
\]

\[
\varepsilon_{rz} = \frac{1}{2} \left(\frac{\partial v_r}{\partial z} + \frac{\partial v_z}{\partial r}\right)
\]

EOS with strain

\[
P = -K \theta - \mathbf{P}_\text{inelastic}
\]

\[
\sigma_{rr} = 2G \varepsilon_{rr} - \mathbf{\sigma}_{rr}^{\text{inelastic}} + 2\sigma_{rz} \omega + (\sigma_{zz} - \sigma_{rr})\omega^2
\]

\[
\sigma_{zz} = 2G \varepsilon_{zz} - \mathbf{\sigma}_{zz}^{\text{inelastic}} - 2\sigma_{rz} \omega - (\sigma_{zz} - \sigma_{rr})\omega^2
\]

\[
\sigma_{rz} = 2G \varepsilon_{rz} - \mathbf{\sigma}_{rz}^{\text{inelastic}} + 2(\sigma_{rr} - \sigma_{rz})\omega - 2\sigma_{rz} \omega^2
\]

\[
\omega = \frac{1}{2} \left(\frac{\partial v_r}{\partial z} - \frac{\partial v_z}{\partial r}\right)
\]
We use a von Mises yield criterion for the onset of plastic flow

Deviatoric strain invariant \(J = \sqrt{\frac{4}{3} \left(\sigma_{rr}^2 + \sigma_{zz}^2 + \sigma_{rz}^2 + \sigma_{rr} \sigma_{zz} \right)} \)

Effective pressure \(P_e = P - \frac{3}{\sqrt[3]{\left(\sigma_{rr} + \sigma_{zz} \right) \left(\sigma_{rz}^2 - \sigma_{rr} \sigma_{zz} \right)/16}} \)

When \(J > Y(P_e) \), the elastic limit is exceeded and plastic flow begins

Uniaxial strain equations

\[
\rho \frac{\partial}{\partial z} \left(-P + \sigma_{zz} \right)
\]

\[
\theta^e = \frac{\partial v_z}{\partial z}
\]

\[
\sigma_{zz} = \frac{2}{3} \frac{\partial v_z}{\partial z}
\]

\[
P^e = -K \theta^e - P^{\text{inelastic}}
\]

\[
\sigma_{zz} = 2G \sigma_{zz} - \sigma_{zz}^{\text{inelastic}}
\]

\[
P_e = P - \frac{1}{4} \sigma_{zz}
\]

\[
J = |\sigma_{zz}|
\]

Sound speed \(c_{11} = \sqrt{(K + \frac{4}{3} G)/\rho} \)
Steinberg-Guinan Model

\[G(P, T) = G_0 \left(1 + \frac{1}{G_0} \frac{\partial G}{\partial P} \frac{P}{\eta^{1/3}} - \frac{1}{G_0} \frac{\partial G}{\partial T} (T - 300) \right) \]

\[Y = Y_0 f(\varepsilon_p) \frac{G(P, T)}{G_0} \]

\[Y_0 f(\varepsilon_p) = Y_0 \left(1 + \beta (\varepsilon_p + \varepsilon_i) \right)^n \leq Y_{\text{max}} \]

\[T_{\text{melt}} = T_0 \exp \left(2a \left(1 - \frac{1}{\eta} \right) \eta^{2(\gamma_0 - a - 1/3)} \right), \quad \eta = \frac{\rho}{\rho_0} \]

D.J. Steinberg, UCRL-MA-106439 (1991)
Steinberg-Lund Model

\[Y = \{Y_T(\varepsilon_p, T) + Y_{A_f}(\varepsilon_p)\}G(P, T)/G_0 \]

\[\varepsilon_p = \left\{ \frac{1}{C_1} \exp\left[\frac{2U_K}{kT} \left(1 - \frac{Y_T}{Y_p} \right)^2 \right] + \frac{C_2}{Y_T} \right\}^{-1} \]

\[Y_{A_f}(\varepsilon_p) = Y_A \left(1 + \beta(\varepsilon_p + \varepsilon_i) \right)^n \leq Y_{\text{max}} \]

\[Y_T \leq Y_P \]

VISAR measures the surface velocity history

- An optical laser pulse is reflected from the free surface of the foil and injected into an interferometer
- The phase of the fringe is proportional to the velocity of the free surface
- Spatial resolution of the VISAR system provides data on the rear-surface motion with and without the LiF window
VISAR measurement of elastic-plastic wave breakout in Al-6061

- 195 µm Al-6061, LiF over half of the rear surface
- Omega shot #21382 - 19 J on target
The wave profile shows a pull-back at higher drive pressure

- 195 µm Al-6061, LiF over half of the rear surface
- Omega shot #21384 - 33 J on target
We use VISAR data to determine the shear modulus, bulk modulus and yield strength.

\[
\begin{align*}
\nu_e &= \frac{2P_e}{U_e \rho_0} = \frac{YU_e}{G} \\
t_e &= \frac{L_1}{u_e} + t_1 \\
t_p &= \frac{L_2}{u_p} + t_2 \\
U_e^2 &= \frac{K + \frac{4}{3}G}{\rho_0} \\
U_p^2 &= \frac{K}{\rho_e}
\end{align*}
\]
Shocks lose strength as they propagate

\[
\left(\frac{dP}{dx}\right)_{\text{shock}} = -\left(\frac{dP}{dx}\right)_{\text{rarefaction}} \left(\frac{u_{\text{material}} + c_s}{U_{\text{shock}}} - 1\right)
\]
The shear modulus, bulk modulus and yield strength affect the rise time and velocity of the VISAR data.

Change shear modulus

\[G = 276 \text{ kb} \]
\[380 \text{ kb} \]

Change bulk modulus

\[K = 722 \text{ kb} \]
\[849 \text{ kb} \]

Change yield strength

\[Y = 2.9 \text{ kb} \]
\[5.4 \text{ kb} \]
The shock strength decreases more rapidly with increasing yield strength.

![Graph showing pressure and maximum pressure against distance (µm) with different yield strengths (0, 3.34 kb, 6.8 kb).]
We can match rise times and velocities by varying bulk modulus, shear modulus and yield strength.

\[G = 320, \ K = 866, \ Y = 3.34 \text{ kb} \]

VISAR, shot 21382

\[G = 320, \ K = 794, \ Y = 4.27 \text{ kb} \]

VISAR, shot 21384

Velocity (\(\mu\text{m/ns}\))

Strain rate = 4\times10^6

Time (ns)

Data

Simulation

Free surface

With LiF
The Steinberg-Guinan model by itself gives a spall time that is too late compared to the data.

Data
- Steinberg-Guinan
- Steinberg-Lund
- SG+Steinberg-Tipton failure model

\[\varepsilon_{\text{max}} = 0.25, \quad (\rho/\rho_0)_{\text{min}} = 0.9665 \]
Steinberg-Tipton Failure Model

Damage ranges from 0 to 1

Broken material: $Y_b < P$, $G_b/G_0 = Y_b/Y_0$

$$\{P,G,Y\} = \text{damage}\cdot\{P_0,G_0,Y_0\} + (1-\text{damage})\cdot\{P_b,G_b,Y_b\}$$

$$\frac{d}{dt}\text{Damage} = \begin{cases} \frac{RC_s}{\Delta X_\text{zone}} & \sum_i \max(0, \frac{f_i}{f_{\text{max}_i}})^2 > 1 \\ 0 & \sum_i \max(0, \frac{f_i}{f_{\text{max}_i}})^2 < 1 \end{cases}$$

$$C_s = \sqrt{\frac{4G_0}{3\rho}}$$

$$f_i = \{\text{eps}, \rho/\rho_0-1, P, \sigma, \Delta\sigma\}$$
Parameters

• Steinberg-Guinan
 • $p_{\text{min}} = -30 \text{ kb}$
 • $\rho / \rho_0 = 0.9665$
 • $K = 940 \text{ kb}$
 • $G_0 = 325 \text{ kb}$
 • $Y = 3.335 \text{ kb}$
 • $\epsilon_{\text{max}} = 2.0$

• Steinberg-Tipton
 • $\rho / \rho_0 - 1 = -.0335$
 • $\epsilon = .25$
 • $R = 10^{20}$

• Steinberg-Lund
 • $Y = 1.5 \text{ kb}$
 • $c_1 = .71$
 • $c_2 = .12$
 • $u_k = .31$
 • $y_{\text{prl}} = 1.9 \text{ kb}$
Dynamic x-ray diffraction measures density and crystal structure

- In situ x-ray diffraction allows us to probe the material state by providing information on the lattice under compression
- Technique applied on laser experiments at Nova and elsewhere (Janus, Vulcan, Trident, OMEGA) and powder and gas gun facilities

Diffraction from shock compressed Si has been demonstrated on Nova

- Low intensity square laser pulse generates a single shock drive
- Displacement of the diffraction signal indicates a compression of the lattice spacing

![Graph showing lattice compression and time vs. shock breakout for Si (111) at 130 kbar and 320 kbar. The graph displays the change in lattice compression, d/d_0, over time (ns rel. shock breakout).]
Diffraction from orthogonal lattice planes provides information on the transition to plasticity

- Simultaneous measurements are made of compression of orthogonal lattice planes
- Shock compression above the HEL for Si and Cu show very different behavior on the ns time scale\(^1\)
 - Si responds uniaxially
 - Cu shows plastic deformation

Simultaneous measurements of orthogonal planes indicate Si responds uniaxially on a ns time scale

- Si shock compressed along (400); probed along (400), (040)
- $P = 115-135$ kbar; HEL = 84 kbar, 40 μm thick Si
- Simultaneous measurements of Bragg and Laue diffraction

1-D compression in Si is due to high Peierls barrier
X-ray diffraction of 40 \(\mu \text{m} \) Si shows density features that vary with drive temperature.
Molecular dynamic simulations show that the Si longitudinal stiffness increases with pressure.

\[C_{11} = K + \frac{4}{3} G = pr + 1650 \]

Simulation done by D. J. Roundy
The density structure depends in a complicated way on the drive temperature.

Temperature (eV)

- Time (ns)
 - 0
 - 2
 - 4

Mass per density interval

- Density (g/cc)
 - 2.4
 - 2.5
 - 2.6
By increasing the drive, we can match part of the data.
We have recovered samples to study the residual effects due to these high strain rate laser experiments.

- Single crystal Cu samples were shocked by direct laser irradiation and captured in a foam-filled cavity.
- Preliminary tests done at OMEGA; shock pressure is >1 Mbar, decays to ~50 kbar at the rear surface.
We see spall on a Cu sample driven by Janus
Shock strength falls roughly as distance$^{-3/4}$ in Cu

Power (GW)

- Time (ns)

Maximum pressure (kb)

- z (µm)

Strain rate decreases from 7×10^7 to 9×10^5
Summary and future work

• VISAR provides free surface velocity history
 • Gives shear modulus, bulk modulus and yield strength
 • Gives information on fracture model and spall
• X-ray diffraction provides information about lattice deformation

• Future work
 • Correlate VISAR with x-ray diffraction
 • Relate VISAR with post-shock recovery and residual deformation of structure