Turbulent transition in a high Reynolds number, Rayleigh-Taylor unstable plasma flow

Lawrence Livermore National Laboratory
Livermore, California 94550

Presented at the 8th Meeting of the International Workshop on the Physics of Compressible Turbulent Mixing
Pasadena, CA
December 9-14, 2001

This work was performed under the auspices of the U. S. Department of Energy by the University of California, Lawrence Livermore National Laboratory under Contract No. W-7405-Eng-48.
Summary

• The transition to turbulence in a high Reynolds number, Rayleigh-Taylor unstable plasma flow is studied.

• 1D numerical simulations (HYADES) are used to determine the plasma flow parameters \((P, \rho, T, Z)\) from which the kinematic viscosity is then determined.

• The Reynolds number is determined using the experimentally measured perturbation amplitude and growth rate together with the plasma kinematic viscosity determined from the 1D numerical simulations.

• It is observed that the Reynolds number is sufficiently greater than the mixing transition threshold of Dimotakis (i.e. \(Re >> 2 \times 10^4\)) for much of the experiment, yet the flow has not transitioned to turbulence.

• An extension of the Dimotakis mixing transition to non-stationary flows of short time-duration is presented.
Outline

• Experimental setup and results of Omega laser experiment

• Results from 1D HYADES simulation of the experiment

 Basic plasma flow parameters (P, ρ, T, Z)
 Derived flow parameters (ν, D)
 Estimation of the Reynolds number

• Extension of Dimotakis mixing transition to non-stationary flows of short time-duration

• Conclusions
The experiments are conducted on the Omega laser in a very small Beryllium shock tube

The target has a radiographic tracer strip which is density matched to the surrounding material

Schematic of target

3D CAD rendering of target

Face-on view of target

1.42 g/cm³ CH (4.3%Br) tracer

1.41 g/cm³ polyimide
Multiple beams of the Omega laser are used to both drive the strong shock and diagnose the interaction.

Drive beams
10 beams @ 500J
~ 600 µm spot

Side-on backlighter beams

Target support stalk

Beryllium shock tube

Ti backlighter foil (2.5 mm² x 12 µm)
The evolution of a 2D single-mode perturbation ($\lambda=50\mu m$, $a_0=2.5\mu m$) is observed with x-ray radiography.

Radiographic images obtained with 4.7keV Ti He-α x-rays imaged onto a gated x-ray framing camera.
Results from 1D numerical simulation of the experiment

The effect of decompression of the interface has been taken into account
Outline

• Experimental setup and results of Omega laser experiment

• Results from 1D HYADES simulation of the experiment

 Basic plasma flow parameters (P, p, T, Z)
 Derived flow parameters (ν, D)
 Estimation of the Reynolds number

• Extension of Dimotakis mixing transition to non-stationary flows of short time-duration

• Conclusions
Time dependent values of the basic flow parameters (pressure, density, temperature, and degree of ionization)
Time dependent values of related flow quantities (Atwood number, adiabatic index, and Mach number)

\[A^* = \frac{\rho_1^* - \rho_2^*}{\rho_1^* + \rho_2^*} \]

\[\gamma = \frac{\partial \ln(P)}{\partial \ln(\rho)} \]

\[M = \frac{K_{bubble - spike}}{\sqrt{\gamma P/\rho}} \]
Time dependent values of the plasma coupling parameter, Γ

The plasma coupling parameter is in the “uncomfortable” range, i.e. neither weakly coupled ($\Gamma \ll 1$) where kinetic theory applies nor strongly coupled ($\Gamma \gg 1$) where molecular dynamics simulations can provide rigorous transport properties.

$$\Gamma = \frac{Z^2 e^2}{k_B T \lambda_i}, \quad \lambda_i = \left(\frac{3}{4 \pi N_i}\right)^{1/3}$$
Time dependent values of the kinematic viscosity, ν

- The kinematic viscosity is relatively constant throughout the experiment
- The value differs by more than a factor of 2 across the interface
- The Braginskii and Clerouin models show significant differences

Time dependent values of the Reynolds number

The Reynolds number exceeds the mixing transition threshold of Dimotakis* ($Re_{\text{crit}} = 2 \times 10^4$) on both sides of the interface for $t > 5\text{ns}$.

The binary mass diffusivity at the interface and the Schmidt number have been calculated as well.

Binary mass diffusivity calculation follow the method outlined in:

From the kinematic viscosity ν and mass diffusivity D, the Rayleigh-Taylor growth rate dispersion curve can be calculated from Duff, Harlow, and Hirt, “Effects of diffusion on interface instability between gases”, Phys. Fluids 5(4), 417 (1962).

The Rayleigh-Taylor dispersion curve is:

$$\eta_{v,D} = \frac{Akg}{\sqrt{\psi(k,t)}} + \nu^2 k^4 - (\nu + D) k^2$$

where $\psi(k,t)$ is the growth rate reduction factor due to a finite density gradient and is found as the solution of the following eigenvalue equation:

$$\frac{d}{dz} \left(\rho \frac{dw}{dz} \right) = w k^2 \left(\rho - \frac{\psi}{Ak} \frac{d\rho}{dz} \right)$$

The Rayleigh-Taylor dispersion curve is:

- Inviscid case
- Plastic foam
- Foam
A sufficient range of Rayleigh-Taylor unstable scales exists to populate a turbulent spectrum.

- The initially imposed perturbation has wavelength $\lambda = 50 \ \mu m$, or $k = 0.126 \ rad/\mu m$.

- At $t = 20$ ns, perturbations with $k > 8 \ rad/\mu m$ ($\lambda < 1.3 \ \mu m$) are completely stabilized.

- At $t = 20$ ns, the peak growth rate occurs at $k = 2.5 \ rad/\mu m$ ($\lambda = 2.5 \ \mu m$)

- A sufficient range of scales exists, subject to RT instability which can populate a turbulent spectrum.
Outline

- Experimental setup and results of Omega laser experiment

- Results from 1D HYADES simulation of the experiment

 Plasma flow parameters \((P, \rho, T, Z)\)
 Derived flow parameters \((v, D)\)
 Estimation of the Reynolds number

- Extension of Dimotakis mixing transition to non-stationary flows of short time-duration

- Conclusions
Dimotakis has identified a critical Reynolds number at which a rather abrupt transition to a well mixed state occurs.

This mixing transition at $Re \approx 2 \times 10^4$ is observed to occur in a very wide range of stationary flows.

All figures from P.E. Dimotakis, *JFM* 409, 69 (2000)
This transition is co-incident with the appearance of a range of scales decoupled from both large-scale and viscous effects.

Figure 19. Reynolds number dependence of spatial scales for a turbulent jet

Figure 19 from P.E. Dimotakis, JFM 409, 69 (2000)
In high Re flows of short time duration, the Taylor microscale may not have sufficient time to reach its asymptotic value.

The Taylor microscale (for stationary, homogeneous, isotropic flows) depends on the integral scale δ and the Reynolds number Re as:

$$\lambda_T \sim \delta \frac{Re}{\delta}$$

This dependence is analogous to the development of a laminar viscous boundary layer on a flat plate:

$$\lambda_v \sim x \frac{Re}{x}$$

For an impulsively accelerated plate, however, the boundary layer development will initially grow as:

$$\lambda_v(t) \sim \sqrt{\nu t}$$

We propose a modification to the mixing transition as the time at which the smaller of the Taylor microscale and the viscous diffusion scale exceeds the dissipation scale (50 x Kolmogorov scale):

$$\text{Min}(\sqrt{\nu t}, \lambda_T) > 50 \lambda_K$$
For the present experiment, the viscous diffusion scale is less than the Taylor microscale for the entire duration of the flow. Therefore the viscous diffusion scale sets the time for a time-dependent mixing transition.
A comparison of viscous length scales shows the appearance of a decoupled range of scales for $t > 17$ ns

- The red dot indicates the Dimotakis criterion for transition in a stationary flow. This occurs at $t \approx 5.5$ ns or $Re \approx 2 \times 10^4$.

- The green dot indicates the present criterion for transition in a temporally-limited flow. This occurs at $t \approx 17$ ns or $Re \approx 10^5$.
This method has been applied to estimate the turbulent transition time in the LANL gas curtain experiment.*

Current and future work on Omega will focus on the role of modal content and dimensionality of the initial perturbation.
Conclusions

The transition to turbulence in a high Reynolds number, Rayleigh-Taylor unstable plasma flow has been studied experimentally.

The following observations are made:

- The Reynolds number exceeds the mixing transition threshold of Dimotakis (i.e. $Re > 2 \times 10^4$) for much of the experiment, yet no transition to turbulence is observed.

- An extension of the Dimotakis mixing transition to non-stationary flows of short time-duration is presented. This method illustrates that the temporal duration of the present flow is insufficient to allow for the appearance of a mixing transition.