Scattering of internal gravity waves

S.B. Dalziel*, B.R. Sutherland†

s.dalziel@damtp.cam.ac.uk

* DAMTP, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA, ENGLAND
† Department of Mathematical & Statistical Sciences, University of Alberta

EGS – AGU – EUG Joint Assembly
Nice
April 2003
Motivation

Internal waves reflecting from boundaries with geometric features comparable with wavelength of incident waves.
Apparatus

Tank: 1666×173×490mm (fill to ~400mm)
Salt stratification: \(N \sim 1.96 \) rad/s
Cylinder: 49 mm
Bottom: flat and 90° saw-tooth (10mm and 20mm amplitudes)
Synthetic schlieren
\[
\frac{d^2 \xi}{dy^2} = \left[1 + \left(\frac{d\xi}{dy} \right)^2 + \left(\frac{d\zeta}{dy} \right)^2 \right] \frac{1}{n} \frac{\partial n}{\partial x}
\]

\[
\frac{d^2 \zeta}{dy^2} = \left[1 + \left(\frac{d\xi}{dy} \right)^2 + \left(\frac{d\zeta}{dy} \right)^2 \right] \frac{1}{n} \frac{\partial n}{\partial z}
\]

\[
\Delta \xi = \frac{1}{2} W(W + 2B) \frac{1}{n_0} \frac{\partial n'}{\partial x}
\]

\[
\Delta \zeta = \frac{1}{2} W(W + 2B) \frac{1}{n_0} \frac{\partial n'}{\partial z}
\]

In salt water

\[
\beta = \frac{\rho_0}{n_0} \frac{dn}{d\rho} \approx 0.184
\]
Qualitative mode

Look for differences between current image and reference image: \[\text{diff} = \gamma |P_{ij}(t) - Q_{ij}|, \]
Quantitative mode

Interpolation

Dot tracking

Pattern matching
interpolation

- Lines or 2D features
- Pixel gives integral of light over area
- Mid-point rule \Leftrightarrow quadratic interpolation

$$P = Q_0 + \frac{1}{2}(Q_1 - Q_{-1})\Delta_\zeta + \frac{1}{2}(Q_1 - 2Q_0 + Q_{-1})\Delta_\zeta^2 = 0$$

- Solve for Δ_ζ
- Binomial expansion with consistent order

$$\Delta_\zeta = \left[\frac{(P - Q_0)(P - Q_{-1})}{(Q_1 - Q_0)(Q_1 - Q_{-1})} - \frac{(P - Q_0)(P - Q_1)}{(Q_{-1} - Q_0)(Q_{-1} - Q_1)} \right] s$$

- Shift image if out of Δ_ζ exceeds one pixel
Interpolation

\[x \text{ gradient} \]

\[z \text{ gradient} \]
pattern matching

Similar to PIV

Difference between window contents

\[F(P_{ij}, Q_{ij}, \delta) \]
Many choices

\[F(P_{ij}, Q_{ij}, \delta) = \sum_{k=i-w}^{i+w} \sum_{l=j-w}^{j+w} |P(k + \delta_i, l + \delta_j) - Q(k, l)| \]

PIV normally uses cross-correlation function.

Find \(\delta = \Delta \) (integer) that minimises \(F(\cdot) \).

Fit surface near \(\delta = \Delta \) to improve estimate.

Noisey, especially if \(\Delta \ll \text{pixel} \).

\textit{A problem in nonlinear optimisation.}

Aim: to calculate the distortion to the image pair.

\[F(\delta; x) = \int_W W(x' - x, \delta) f(P(x'), Q(x'), \delta) \, dx' \]

\[\Delta(x) = \{ \delta : \min_\delta F(\delta; x) \} \]

\[f(P, Q, \delta) = \text{diff}(P(x + \alpha \delta), Q(x - (1 - \alpha) \delta)) \]

The measure of the difference, \textit{diff}, could take many forms.
BUT, we do not know $P(x + \alpha \delta)$, etc., except at integer spacing. We also do not know δ except at discrete locations.

Solution:

◊ Interpolate δ

◊ Distort P, Q or both

◊ Use interpolation when calculating $\text{diff}(..)$ for non-integer δ
Waves from oscillating cylinder
Cross-beam structure at $r/R = 8$
Flat bottom

Movie
Large amplitude saw-tooth

Movie

Linear reflection possibilities
Nonlinear reflection

Also effect of boundary layers and shedding from crests
As superposition of waves
RMS amplitude

Flat bottom

20mm saw-tooth
Cross-beam structure

Flat bottom 20mm saw-tooth

Difference movie

DAMTP, University of Cambridge

EGS, Nice, April 2003
Spectral development

Expt 22: Flat bottom

Expt 21: Saw tooth (20mm)
Amplitude dependence

Spectra

Expt 22: Flat bottom

Expt 18: Saw tooth (10mm)

Key:
- Incident x gradient
- Reflected x gradient
- Incident y gradient
- Reflected y gradient

DAMTP, University of Cambridge

EGS, Nice, April 2003
Expt 22: Flat bottom

Expt 21: Saw tooth (20mm)

DAMTP, University of Cambridge
EGS, Nice, April 2003
Conclusions

Preliminary experiments
◊ Increased energy at high wavenumbers
◊ Reflection back along incident wave beam
◊ Enhanced dissipation & diffusion
◊ Back reflection → steepening
◊ Other nonlinear effects → frequency doubling, mixing

Synthetic schlieren
◊ Benefit from higher resolution digital video

http://www.damtp.cam.ac.uk/lab/digiflow/