Dr Johannes Hofmann

Career

  • 2018-date: College Lecturer and Director of Studies in Mathematics, Peterhouse, University of Cambridge (UK)
  • 2015-2018: Research Fellow, Theory of Condensed Matter Group, Cavendish Laboratory, and Gonville and Caius College, University of Cambridge (UK)
  • 2013-2015: Postdoctoral Research Associate, Condensed Matter Theory Center, University of Maryland (USA)

Publications

list of arXiv preprints: http://arxiv.org/a/hofmann_j_1

  1. High-temperature expansion of the viscosity in interacting quantum gases
    J. Hofmann
    [arXiv:1905.05133].
  1. Quantum oscillations in Dirac magnetoplasmons
    J. Hofmann
    [arXiv:1904.01583].
  1. Tunable surface plasmons in Weyl semimetals TaAs and NbAs
    G. Chiarello, J. Hofmann, Z. Li, V. Fabio, L. Guo, X. Chen, S. Das Sarma, and A. Politano
    Phys. Rev. B 99, 121401(R) (2019) [arXiv:1811.04639].
  1. Collective modes of an imbalanced unitary Fermi gas
    J. Hofmann, F. Chevy, O. Goulko, and C. Lobo
    Phys. Rev. A 97, 033613 (2018) [arXiv:1712.02181].
  1. Mesoscopic pairing without superconductivity
    J. Hofmann
    Phys. Rev. B 96, 220508(R) (2017) [arXiv:1707.05791].
    Selected as an Editors' Suggestion
  1. Deep inelastic scattering on ultracold gases
    J. Hofmann and W. Zwerger
    Phys. Rev. X 7, 011022 (2017) [arXiv:1609.06317].
  1. Surface plasmon polaritons in topological Weyl semimetals
    J. Hofmann and S. Das Sarma
    Phys. Rev. B 93, 241402(R) (2016) [arXiv:1601.07524].
    News coverage: A warm welcome for Weyl physics
             A closer look at Weyl physics
  1. Non-Markovian quantum friction of bright solitons in superfluids
    D. Efimkin, J. Hofmann, and V. Galitski
    Phys. Rev. Lett. 116, 225301 (2016) [arXiv:1512.07640].
    News coverage: Ultra-cold atoms may wade through quantum friction
  1. Parity effect in a mesoscopic Fermi gas
    J. Hofmann, A. M. Lobos, and V. Galitski
    Phys. Rev. A 93, 061602(R) (2016) [arXiv:1508.05947].
  1. Optical evidence for a Weyl semimetal state in pyrochlore Eu2Ir2O7
    A. B. Sushkov, J. B. Hofmann, G. S. Jenkins, J. Ishikawa, S. Nakatsuji, S. Das Sarma, and H. Dennis Drew
    Phys. Rev. B 92, 241108(R) (2015) [arXiv:1507.01038].
  1. Efimov correlations in strongly interacting Bose gases
    M. Barth and J. Hofmann
    Phys. Rev. A 92, 062716 (2015) [arXiv:1506.06751].
  1. Many-body effects and ultraviolet renormalization in 3D Dirac materials
    R. E. Throckmorton, J. Hofmann, E. Barnes, and S. Das Sarma
    Phys. Rev. B 92, 115101 (2015) [arXiv:1505.05154].
  1. Plasmon signature in Dirac-Weyl liquids
    J. Hofmann and S. Das Sarma
    Phys. Rev. B 91, 241108(R) (2015) [arXiv:1501.04636].
  1. Excitonic and Nematic Instabilities on the Surface of Topological Kondo Insulators
    B. Roy, J. Hofmann, V. Stanev, J. D. Sau, and V. Galitski
    Phys. Rev. B 92, 245431 (2015) [arXiv:1410.1868].
  1. Interacting Dirac liquid in three-dimensional semimetals
    J. Hofmann, E. Barnes, and S. Das Sarma
    Phys. Rev. B 92, 045104 (2015) [arXiv:1410.1547].
  1. Why does graphene behave as a weakly interacting system?
    J. Hofmann, E. Barnes, and S. Das Sarma
    Phys. Rev. Lett. 113, 105502 (2014) [arXiv:1405.7036].
  1. Coarsening dynamics of binary Bose condensates
    J. Hofmann, S. S. Natu, and S. Das Sarma
    Phys. Rev. Lett. 113, 095702 (2014) [arXiv:1403.1284].
  1. Pairing effects in the non-degenerate limit of the two-dimensional Fermi gas
    M. Barth and J. Hofmann
    Phys. Rev. A 89, 013614 (2014) [arXiv:1309.6573].
  1. Short-distance properties of Coulomb systems
    J. Hofmann, M. Barth, and W. Zwerger
    Phys. Rev. B 87, 235125 (2013) [arXiv:1304.2891].
  1. Quantum anomaly, universal relations and breathing mode of a two-dimensional Fermi gas
    J. Hofmann
    Phys. Rev. Lett. 108, 185303 (2012) [arXiv:1112.1384].
    Selected as an Editors' Suggestion
  1. Current response, structure factor and hydrodynamic quantities of a two- and three-dimensional Fermi gas from the operator-product expansion
    J. Hofmann
    Phys. Rev. A 84, 043603 (2011) [arXiv:1106.6035].
  1. Dimensional reduction in quantum field theories at finite temperature and density
    J. Hofmann
    Phys. Rev. D 82, 125027 (2010) [arXiv:1009.4071].