skip to content

Department of Applied Mathematics and Theoretical Physics

Research interests:

  • Inverse problems and Bayesian inverse problems
  • Uncertainty quantification
  • Applications in engineering and medicine

Please find more information on Jonas' webpage.

Publications

Classification and image processing with a semi‐discrete scheme for fidelity forced Allen–Cahn on graphs
J Budd, Y van Gennip, J Latz
– GAMM Mitteilungen
(2021)
44,
Multilevel Sequential Importance Sampling for Rare Event Estimation
F Wagner, J Latz, I Papaioannou, E Ullmann
– SIAM Journal on Scientific Computing
(2020)
42,
a2062
On the well-posedness of Bayesian inverse problems
J Latz
– SIAM-ASA Journal on Uncertainty Quantification
(2020)
8,
451
Multilevel Adaptive Sparse Leja Approximations for Bayesian Inverse Problems
I-G Farcas, J Latz, E Ullmann, T Neckel, H-J Bungartz
– SIAM Journal on Scientific Computing
(2020)
42,
A424
Bayesian Parameter Identification in Cahn--Hilliard Models for Biological Growth
C Kahle, KF Lam, J Latz, E Ullmann
– SIAM/ASA Journal on Uncertainty Quantification
(2019)
7,
526
Fast sampling of parameterised Gaussian random fields
J Latz, M Eisenberger, E Ullmann
– Computer Methods in Applied Mechanics and Engineering
(2019)
348,
978
Multilevel Sequential${}^2$ Monte Carlo for Bayesian Inverse Problems
J Latz, I Papaioannou, E Ullmann
– Journal of Computational Physics
(2018)
368,
154
Analysis of Stochastic Gradient Descent in Continuous Time
J Latz
A practical example for the non-linear Bayesian filtering of model parameters
M Bulté, J Latz, E Ullmann
Certified and fast computations with shallow covariance kernels
D Kressner, J Latz, S Massei, E Ullmann
  • 1 of 2
  • >

Research Group

Cambridge Image Analysis

Personal homepage