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Abstract—We introduce a mathematical framework that
bridges a substantial gap between compressed sensing theory and
its current use in real-world applications. Although completely
general, one of the principal applications for our framework is
the Magnetic Resonance Imaging (MRI) problem. Our theory
provides a comprehensive explanation for the abundance of
numerical evidence demonstrating the advantage of so-called
variable density sampling strategies in compressive MRI. Be-
sides this, another important conclusion of our theory is that
the success of compressed sensing is resolution dependent. At
low resolutions, there is little advantage over classical linear
reconstruction. However, the situation changes dramatically once
the resolution is increased, in which case compressed sensing can
and will offer substantial benefits.

I. INTRODUCTION

In this paper we present a new mathematical framework
for overcoming the so-called coherence barrier in compressed
sensing1. Our framework generalizes the three traditional
pillars of compressed sensing—namely, sparsity, incoherence
and uniform random subsampling—to three new concepts:
asymptotic sparsity, asymptotic incoherence and multilevel
random subsampling. As we explain, asymptotic sparsity
and asymptotic incoherence are more representative of real-
world problems—e.g. imaging—than the usual assumptions
of sparsity and incoherence. For instance, problems in MRI
are both asymptotically sparse and asymptotically incoherent,
and hence amenable to our framework.

The second important contribution of the paper is an anal-
ysis of a novel and intriguing effect that occurs in asymptoti-
cally sparse and asymptotically incoherent problems. Namely,
the success of compressed sensing is resolution dependent.

As suggested by their names, asymptotic incoherence and
asymptotic sparsity are only truly witnessed for reasonably
large problem sizes. When the problem size is small, there
is little to be gained from compressed sensing over classical
linear reconstruction techniques. However, once the resolution
of the problem is sufficiently large, compressed sensing can
and will offer a substantial advantage.

The phenomenon, which we call resolution dependence, has
two important consequences for practitioners seeking to use

1This paper is part of a larger project on subsampling in applications.
Further details, as well as codes and numerical examples, can be found on
the project website http://subsample.org.

compressed sensing in applications:
(i) Suppose one considers a compressed sensing experiment

where the sampling device, the object to be recovered, the
sampling strategy and subsampling percentage are all fixed,
but the resolution is allowed to vary. Resolution dependence
means that a compressed sensing reconstruction done at high
resolutions (e.g. 2048× 2048) will yield much higher quality
when compared to full sampling than one done at a low
resolution (e.g. 256× 256). Hence a practitioner carrying out
an experiment at low resolution may well conclude that com-
pressed sensing imparts limited benefits. However, a markedly
different conclusion would be reached if the same experiment
were to be performed at higher resolution.

(ii) Suppose we conduct a similar experiment, but we
now use the same total number of samples N (instead of
the same percentage) at low resolution as we take at high
resolution. Intriguingly, the above result still holds: namely,
the higher resolution reconstruction will yield substantially
better results. This is true because the multilevel random
sampling strategy successfully exploits asymptotic sparsity and
asymptotic incoherence. Thus, with the same amount of total
effort, i.e. the number of measurements, compressed sensing
with multilevel sampling works as a resolution enhancer: it
allows one to recover the fine details of an image in a way
that is not possible with the lower resolution reconstruction.

On a broader note, resolution dependence and its conse-
quences suggest the following advisory: it is critical that sim-
ulations with compressed sensing be carried out with a careful
understanding of the influence of the problem resolution.
Naı̈ve simulations with standard, low-resolution test images
may very well lead to incorrect conclusions about the efficacy
of compressed sensing as a tool for image reconstruction.

An important application of our work is the problem of
MRI. This served as one of the original motivations for
compressed sensing, and continues to be a topic of substantial
research. Some of the earliest work on this problem—in
particular, the research of Lustig et al. [1]–[3]—demonstrated
that, due to high coherence, the standard random sampling
strategies of compressed sensing theory lead to substandard
reconstructions. Conversely, random sampling according to
some nonuniform density was shown empirically to lead
to substantially improved reconstruction quality. It is now



standard in MR applications to use a variable density strategy
to overcome the coherence barrier. See [2]–[5].

This work has culminated in the extremely successful ap-
plication of compressed sensing to MRI. However, a mathe-
matical theory addressing these sampling strategies is largely
lacking. Despite some recent work of Krahmer & Ward [6],
a substantial gap remains between the standard theorems of
compressed sensing and its implementation in such problems.
Our framework aims to bridge precisely this gap. In particular,
our theorems provide a mathematical foundation for com-
pressed sensing for coherent problems, and gives credence
to the above empirical studies demonstrating the success of
nonuniform density sampling.

Whilst the MR problem will serve as our main application,
we stress that our theory is extremely gen2‘eral in that it
holds for almost arbitrary sampling and sparsity systems. In
particular, standard compressed sensing results, such as those
of Candès, Romberg & Tao [7], Candès & Plan [8], are specific
instances of our main results.

For brevity, we shall provide only the most salient aspects of
our framework. A more detailed discussion and analysis, con-
taining proofs, further discussion and numerical experiments
can be found in the paper [9] and the website [10].

II. BACKGROUND

A. Compressed sensing
A typical setup in compressed sensing is as follows. Let

{ψj}Nj=1 and {ϕj}Nj=1 be two orthonormal bases of CN , the
sampling and sparsity bases respectively, and write

U = (uij)
N
i,j=1 ∈ CN×N , uij = 〈ϕj , ψi〉.

Note that U is an isometry. The coherence of U is given by

µ(U) = max
i,j=1,...,N

|uij |2 ∈ [N−1, 1]. (1)

We say that U is perfectly incoherent if µ(U) = N−1.
Let f ∈ CN be s-sparse in the basis {ϕj}Nj=1. In other

words, f =
∑N
j=1 xjϕj , and the vector x = (xj)

N
j=1 ∈ CN

satisfies |supp(x)| ≤ s, where

supp(x) = {j : xj 6= 0}.

Suppose now we have access to the samples

f̂j = 〈f, ψj〉, j = 1, . . . , N,

and let Ω ⊆ {1, . . . , N} be of cardinality m and chosen
uniformly at random. According to a result of Candès &
Plan [8] and Adcock & Hansen [11], f can be recovered
exactly with probability exceeding 1 − ε from the subset of
measurements {f̂j : j ∈ Ω}, provided

m & µ(U) ·N · s ·
(
1 + log(ε−1)

)
· logN. (2)

In practice, recovery is achieved by solving the convex opti-
mization problem:

min
η∈CN

‖η‖l1 subject to PΩUη = PΩf̂ , (3)

where f̂ = (f̂1, . . . , f̂N )>, and PΩ ∈ CN×N is the diagonal
projection matrix with jth entry 1 if j ∈ Ω and zero otherwise.

B. The coherence barrier

The key estimate (2) shows that the number of measure-
ments m required is, up to a log factor, on the order of the
sparsity s, provided the coherence µ(U) = O

(
N−1

)
. This is

the case, for example, when U is the DFT matrix; a problem
which was studied in some of the first papers on compressed
sensing [7] (this example is actually perfectly incoherent).

On the other hand, when µ(U) large, one cannot expect
to reconstruct an s-sparse vector f from highly subsampled
measurements, regardless of the recovery algorithm employed
[8]. We refer to this as the coherence barrier.

The MRI problem gives an important instance of this barrier.
If {ϕj}Nj=1 is a discrete wavelet and {ψj}Nj=1 corresponds to
the tows of the N×N discrete Fourier transform (DFT) matrix,
then the matrix U = DFT · DWT−1 satisfies µ(U) = O (1)
for any N [6], [12]. Hence, although signals and images are
typically sparse in wavelet bases, they cannot be recovered
from highly subsampled measurements using the standard
compressed sensing algorithm.

III. NEW CONCEPTS

In order to overcome the coherence barrier, we require three
new concepts.

A. Asymptotic incoherence

Consider the above example. It is known that, whilst the
global coherence µ(U) is O (1), the coherence decreases as
either the Fourier frequency or wavelet scale increases. We
refer to this property as asymptotic incoherence:

Definition 1. Let U ∈ CN×N be an isometry. Then U is
asymptotically incoherent if

lim
K,N→∞
K<N

µ(P⊥KU) = lim
K,N→∞
K<N

µ(UP⊥K ) = 0, (4)

where P⊥K : CN×N is the projection matrix corresponding to
the index set {K + 1, . . . , N}.

Note that, for the wavelet example discussed above, one has
µ(P⊥KU), µ(UP⊥K ) = O

(
K−1

)
[12].

B. Multilevel sampling

Asymptotic incoherence suggests a different subsampling
strategy should be used instead of standard random sampling.
High coherence in the first few rows of U means that important
information about the signal to be recovered may well be
contained in its corresponding low frequency measurements.
Hence to ensure good recovery we should fully sample these
rows. Once outside of this region, when the coherence starts
to decrease, we can begin to subsample. Thus, instead of sam-
pling uniform at random, we consider the following multilevel
random sampling scheme:

Definition 2. Let r ∈ N, N = (N1, . . . , Nr) ∈ Nr with 1 ≤
N1 < . . . < Nr, m = (m1, . . . ,mr) ∈ Nr, with mk ≤
Nk −Nk−1, k = 1, . . . , r, and suppose that

Ωk ⊆ {Nk−1 + 1, . . . , Nk}, |Ωk| = mk, k = 1, . . . , r,



are chosen uniformly at random, where N0 = 0. We refer to
the set Ω = ΩN,m := Ω1 ∪ . . . ∪ Ωr as an (N,m)-multilevel
sampling scheme.

Note that similar sampling strategies are found in most
empirical studies on compressive MRI [2]–[5]. Closely related
strategies were also considered in [12], as well as in [13].

C. Asymptotic sparsity in levels
In the case of perfect incoherence, the standard random

sampling strategies of compressed sensing are ideally suited
for sparse signals. However, in asymptotically incoherent
setting, the notion of sparsity can be substantially relaxed.

To explain this, let x = (xj)
N
j=1 be vector of coefficients of a

signal f in the basis {ϕj}j∈N. Suppose that x was very sparse
in its entries j = 1, . . . ,M1. Since the matrix U is highly
coherent in its corresponding rows, there is no way we can
exploit this sparsity to achieve subsampling. High coherence
forces us to sample fully the first M1 rows, otherwise we run
the risking of missing critical information about x.

This means that there is nothing to be gained from high
sparsity of x in its first few entries. However, we can expect to
achieve significant subsampling if x is asymptotically sparse:

Definition 3. For r ∈ N let M = (M1, . . . ,Mr) ∈ Nr with
1 ≤ M1 < . . . < Mr and s = (s1, . . . , sr) ∈ Nr, with
sk ≤Mk −Mk−1, k = 1, . . . , r, where M0 = 0. We say that
x ∈ l2(N) is (s,M)-sparse if, for each k = 1, . . . , r,

∆k := supp(x) ∩ {Mk−1 + 1, . . . ,Mk},

satisfies |∆k| ≤ sk.

As we next explain, signals possessing this sparsity
pattern—which we henceforth refer to as being asymptotically
sparse in levels—are ideally suited to multilevel sampling
schemes. Roughly speaking, the number of measurements mk

required in each band Ωk is determined by the sparsity of f
in the corresponding band ∆k and the asymptotic coherence.

This naturally leads to the question: which types of images
are asymptotically sparse? The answer is that most images
possess exactly this sparsity structure. Natural, real-life images
are asymptotically sparsity in wavelet bases. At coarse scales,
most images are not sparse, but sparsity rapidly increases with
refinement.

IV. MAIN RESULTS

For brevity, we consider only the case of a two-level
sampling strategy. The multilevel case is described in [9].

Write µK = µ(P⊥KU). We now have:

Theorem 4. Let U ∈ CN×N be an isometry and x ∈ CN be
(s,M)-sparse, where r = 2, s = (M1, s2), s = M1 + s2 and
M = (M1,M2) with M2 = N . Suppose that

‖P⊥N1
UPM1

‖ ≤ γ√
M1

, (5)

for some 1 ≤ N1 ≤ N and γ ∈ (0, 2/5], and that γ ≤
s2
√
µN1 . For ε > 0, let m ∈ N satisfy

m & (N −N1) · (log(sε−1) + 1) · µN1 · s2 · log (N) .

Let Ω = ΩN,m be a two-level sampling scheme, where N =
(N1, N2) and m = (m1,m2) with N2 = N , m1 = N1 and
m2 = m, and suppose that ξ ∈ CN is a minimizer of (3),
where f̂ = Ux. Then, with probability exceeding 1 − ε, ξ is
unique and ξ = x.

Note that if f is not exactly sparse, and if the measurements
f̂ = Ux+ z are corrupted by noise z satisfying ‖z‖ ≤ δ, then
one can also prove that under essentially the same conditions
the minimization

inf
η∈H
‖η‖l1 subject to ‖PΩUη − y‖ ≤ δ. (6)

recovers f exactly, up to an error depending only on δ and the
error of the best approximation σs,M(f) of x by an (s,M)-
sparse vector. We refer to [9] for details.

A. Discussion

Theorem 4 demonstrates that asymptotic incoherence and
two-level sampling overcomes the coherence barrier. To see
this, note the following:

(i) The condition ‖P⊥N1
UPM1

‖ ≤ 2
5
√
M1

(which is always
satisfied for some N1, since U is an isometry) implies that
fully sampling the first N1 measurements allows one to recover
the first M1 coefficients of f .

(ii) To recover the remaining s2 coefficients we require, up
to log factors, an additional

m2 & (N −N1) · µN1 · s2,

measurements, taken randomly from the range M1 +
1, . . . ,M2. In particular, if N1 is a fixed fraction of N ,
and if µN1 = O

(
N−1

1

)
, such as for wavelets with Fourier

measurements, then one requires only m2 & s2 additional
measurements to recover the sparse part of the signal.

(iii) When f is asymptotically sparse, such is the case for
natural images, then the relative size of s2 will become smaller
as M and N grow. In particular, the percentage

(
N1+m2

N

)
×100

of measurements required will decrease. Hence the subsam-
pling rate possible will improve as the problem resolution
becomes larger (see Section V).

We remark that it is not necessary to know the sparsity
structure, i.e. the values s and M, of the image f in order
to implement the multilevel sampling technique. Given a
multilevel scheme Ω = ΩN,m, the result of [9] governing
asymptotically compressible signals demonstrates that f will
be recovered exactly up to an error on the order of σs,M(f),
where s and M are determined implicitly by N, m and the
conditions of the theorem. Of course, some a priori knowledge
of s and M will greatly assist in selecting the parameters N
and m so as to get the best recovery results. However, this is
not necessary for implementing the method.

V. RESOLUTION DEPENDENCE AND NUMERICAL RESULTS

As explained, natural, real life images are not sparse at
coarse wavelet scales, nor is there substantial asymptotic
incoherence. Hence, regardless of how we choose to recover f ,
there is little possibility for substantial subsampling. On the



128 256 512 1024 2048 4096
0

10

20

30

40

50

60

M
in

 s
ub

−
sa

m
pl

in
g 

%
 fo

r 
su

cc
es

s

Resolution level

Fig. 1. The minimum subsampling percentage p.

other hand, asymptotic incoherence and asymptotic sparsity
both kick in when the resolution increases. Multilevel sam-
pling allows us to exploit these properties, and by doing so
we achieve far greater subsampling.

To illustrate this, consider the reconstruction of the 1D
image f(t) = e−tχ[0.2,0.8](t), t ∈ [0, 1], from its Fourier
samples using orthonormal Haar wavelets. We use a two-level
scheme with p/2% fixed samples and p/2% random samples,
where p is the total subsampling percentage, and search for the
smallest value of p such that the two-level sampling scheme
succeeds: namely, it gives an error than that obtained by taking
all possible samples of f .

In Figure 1 we plot p against the resolution level N .
The difference between low resolution (N = 128) and high
resolution (N = 4096) is clear and dramatic: the success of the
reconstruction is highly resolution dependent. For the former
we require nearly 60% of the samples, whereas with the latter
this figure is reduced to less than 10%.

Now consider a different experiment, where the total num-
ber of measurements is fixed and equal to 5122 = 262144,
but the sampling pattern is allowed to vary. Figure 2 displays
the image to be recovered, which is the analytic phantom in-
troduced by Guerquin–Kern, Lejeune, Pruessmann and Unser
in [14]. For the purposes of comparison, artificial fine details
were added to the image. In Figure 3 we display a segment
of the reconstruction. As is clear, compressed sensing with
multilevel sampling acts a resolution enhancer. By sampling
higher in the Fourier spectrum, one recovers a far better image
whilst taking the same amount of measurements.

For further numerical examples, as well as a comprehensive
discussion of the multilevel sampling strategy used in Figure
2, we refer to [9], [10].
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