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Abstract
We introduce a generalized framework for sampling and reconstruction in separable Hilbert spaces.

Specifically, we establish that it is always possible to stably reconstruct a vector in an arbitrary Riesz
basis from sufficiently many of its samples in any other Riesz basis. This framework can be viewed as
an extension of the well-known consistent reconstruction technique (Eldar et al). However, whilst the
latter imposes stringent assumptions on the reconstruction basis, and may in practice be unstable, our
framework allows for recovery in any (Riesz) basis in a manner that is completely stable.

Whilst the classical Shannon Sampling Theorem is a special case of our theorem, this framework
allows us to exploit additional information about the approximated vector (or, in this case, function),
for example sparsity or regularity, to design a reconstruction basis that is better suited. Examples are
presented illustrating this procedure.

Keywords: Sampling Theory; Stable Reconstruction; Shannon Sampling Theorem; Infinite Matrices;
Hilbert Space; Wavelets

1 Introduction
The Shannon Sampling Theorem, or the Nyquist–Shannon Sampling Theorem as it is also called (we will
refer to it as the NS-Sampling Theorem throughout the paper), is a mainstay in modern signal processing
and has become one of the most important theorems in mathematics of information [32]. The list of appli-
cations of the theorem is long, and ranges from Magnetic Resonance Imaging (MRI) to sound engineering.
We will in this paper address the question on whether or not the NS-Sampling Theorem can be improved.
In particular, given the same set of information, can one design a reconstruction of a function that would
be better than that provided by the NS-Sampling Theorem? The answer to such a question will obviously
depend on the type of functions considered. However, suppose that we have some extra information about
the functions to be reconstructed. One may, for example, have information about a basis that is partic-
ularly suited for such functions. Could this information be used to improve the reconstruction given by
the NS-Sampling Theorem, even if it is based on the same sampling procedure? Although such a ques-
tion has been posed before, and numerous extensions of the NS-Sampling Theorem have been developed
[7, 8, 15, 16, 33], the generalization we introduce in this paper is, to the best of our knowledge, a novel
approach for this problem.

The well known NS-Sampling Theorem [24, 26, 29, 30, 34] states that if

f = Fg, g ∈ L2(R),

where F is the Fourier transform and supp(g) ⊂ [−T, T ] for some T > 0, then both f and g can be
reconstructed from point samples of f . In particular, if ε ≤ 1

2T then

f(t) =
∞∑

k=−∞
f(kε)sinc

(
t + kε

ε

)
L2 and unif. convergence,
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Figure 1: The figure shows ΛN,ε,2(f) for f = Fg, N = 500 and ε = 0.5 (left) as well as g (right).

g(·) = ε
∞∑

k=−∞
f(kε)e2πiεk· L2 convergence.

The quantity 1
2T , which is the largest value of ε such that the theorem holds, is often referred to as the

Nyquist rate [29]. In practice, when trying to reconstruct f or g, one will most likely not be able to access
the infinite amount of information required, namely, {f(kε)}k∈Z. Moreover, even if we had access to all
samples, we are limited by both processing power and storage to taking only a finite number. Thus, a more
realistic scenario is that one will be given a finite number of samples {f(kε)}|k|≤N , for some N < ∞, and
seek to reconstruct f from these samples. The question is therefore: are the approximations

fN (·) =
N∑

k=−N

f(kε)sinc
(
·+ kε

ε

)
, gN (·) = ε

N∑

k=−N

f(kε)e2πiεk·

optimal for f and g given the information {f(kε)}|k|≤N ? To formalize this question consider the following.
For N ∈ N and ε > 0, let

ΩN,ε = {ξ ∈ C2N+1 : ξ = {f(kε)}|k|≤N , f ∈ L2(R) ∩ C(R)}, (1.1)

(C(R) denotes the set of continuous functions on R). Define the mappings (with a slight abuse of notation)

ΛN,ε,1 : ΩN,ε → L2(R), ΛN,ε,2 : ΩN,ε → L2(R),

ΛN,ε,1(f) =
N∑

k=−N

f(kε)sinc
(
·+ kε

ε

)
ΛN,ε,2(f) = ε

N∑

k=−N

f(kε)e2πiεk·. (1.2)

The question is, given a class of functions Θ ⊂ L2(R), could there exist mappings ΞN,ε,1 : ΩN,ε → L2(R)
and ΞN,ε,2 : ΩN,ε → L2(R) such that

‖ΞN,ε,1(f)− f‖L∞(R) < ‖ΛN,ε,1(f)− f‖L∞(R) ∀f, f = Fg, g ∈ Θ,

‖ΞN,ε,2(f)− g‖L2(R) < ‖ΛN,ε,2(f)− g‖L2(R) ∀f, f = Fg, g ∈ Θ.

As we will see later, the answer to this question may very well be yes, and the problem is therefore to find
such mappings ΞN,ε,1 and ΞN,ε,2.

As motivation for this work, consider the following reconstruction problem. Let g be defined by

g(t) =






1 t ∈ [0, 1/2)
−1 t ∈ [1/2, 1]
0 t ∈ R \ [0, 1].

This is the well-known Haar wavelet. Due to the discontinuity, there is no way one can exactly reconstruct
this function with only finitely many function samples if one insists on using the mapping ΛN,ε,2. We have
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visualized the reconstruction of g using ΛN,ε,2 in Figure 1. In addition to g not being reconstructed exactly,
the approximation ΛN,ε,2(g) is polluted by oscillations near the discontinuities of g. Such oscillations are
indicative of the well-known Gibbs phenomenon in recovering discontinuous signals from samples of their
Fourier transforms [23]. This phenomenon is a major hurdle in many applications, including image and
signal processing. Its resolution has, and continues to be, the subject of significant inquiry [31].

It is tempting to think, however, that one could construct a mapping ΞN,ε,2 that would yield a better
result. Suppose for a moment that we do not know g, but we do have some extra information. In particular,
suppose that we know that g ∈ Θ, where

Θ =

{
h ∈ L2(R) : h =

M∑

k=1

βkψk

}
, (1.3)

for some finite number M and where {ψk} are the Haar wavelets on the interval [0, 1]. Could we, based on
the extra knowledge of Θ, construct mappings ΞN,ε,1 : ΩN,ε → L2(R) and ΞN,ε,2 : ΩN,ε → L2(R) such
that

sup{‖ΞN,ε,1(f)− f‖L∞(R) : g ∈ Θ, f = Fg} < sup{‖ΛN,ε,1(f)− f‖L∞(R) : g ∈ Θ, f = Fg},
sup{‖ΞN,ε,2(f)− g‖L2(R) : g ∈ Θ, f = Fg} < sup{‖ΛN,ε,2(f)− g‖L2(R) : g ∈ Θ, f = Fg}?

Indeed, this is the case, and a consequence of our framework is that it is possible to find ΞN,ε,1 and ΞN,ε,2

such that

sup{‖ΞN,ε,1(f)− f‖L∞(R) : g ∈ Θ, f = Fg} = 0,

sup{‖ΞN,ε,2(f)− g‖L2(R) : g ∈ Θ, f = Fg} = 0,

provided N is sufficiently large. In other words, one gets perfect reconstruction. Moreover, the reconstruc-
tion is done in a completely stable way.

The main tool for this task is a generalization of the NS-Sampling Theorem that allows reconstructions
in arbitrary bases. Having said this, whilst the Shannon Sampling Theorem is our most frequent example,
the framework we develop addresses the more abstract problem of recovering a vector (belonging to some
separable Hilbert space H) given a finite number of its samples with respect any Riesz basis of H.

1.1 Organization of the Paper
We have organized the paper as follows. In Section 2 we introduce notation and idea of finite sections
of infinite matrices, a concept that will be crucial throughout the paper. In Section 3 we discuss existing
literature on this topic, including the work of Eldar et al [13, 14, 33]. The main theorem is presented and
proved in Section 4, where we also show the connection to the classical NS-Sampling Theorem. The error
bounds in the generalized sampling theorem involve several important constants, which can be estimated
numerically. We therefore devote Section 5 to discussions on how to compute crucial constants and func-
tions that are useful for providing error estimates. Finally, in Section 6 we provide several examples to
support the generalized sampling theorem and to justify our approach.

2 Background and Notation
Let i denote the imaginary unit. Define the Fourier transform F by

(Ff)(y) =
∫

Rd

f(x)e−2πix·y dx, f ∈ L1(Rd),

where, for vectors x, y ∈ Rd, x · y = x1y1 + . . . + xdyd. Aside from the Hilbert space L2(Rd), we now
introduce two other important Hilbert spaces: namely,

l2(N) =

{
α = {α1, α2, . . .} :

∑

k∈N
|α2

k| < ∞
}
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and

l2(Z) =

{
β = {. . . β−1, β0, β1 . . .} :

∑

k∈Z
|β2

k| < ∞
}

,

with their obvious inner products. We will also consider abstract Hilbert spaces. In this case we will use
the notation H. Note that {ej}j∈N and {ej}j∈Z will always denote the natural bases for l2(N) and l2(Z)
respectively. We may also use the notation H for both l2(N) and l2(Z) (the meaning will be clear from the
context). Throughout the paper, the symbol ⊗ will denote the standard tensor product on Hilbert spaces.

The concept of infinite matrices will be quite crucial to what follows, and also finite sections of such
matrices. We will consider infinite matrices as operators from both l2(N) to l2(Z) and l2(N) to l2(N). The
set of bounded operators from a Hilbert space H1 to a Hilbert space H2 will be denoted by B(H1,H2).
As infinite matrices are unsuitable for computations we must reduce any infinite matrix to a more tractable
finite-dimensional object. The standard means in which to do this is via finite sections. In particular, let

U =





...
...

... . .
.

u−1,1 u−1,2 u−1,3 . . .
u0,1 u0,2 u0,3 . . .
u1,1 u1,2 u1,3 . . .

...
...

...
. . .




, U ∈ B(l2(N), l2(Z)).

For n ∈ N, define Pn to be the projection onto span{e1, . . . , en} and, for odd m ∈ N, let P̃m be the
projection onto span{e−m−1

2
, . . . , em−1

2
}. Then P̃mUPn may be interpreted as





u−m−1
2 ,1 . . . u−m−1

2 ,n

...
...

...
um−1

2 ,1 . . . um−1
2 ,n



 ,

an m× n section of U . Finally, the spectrum of any operator T ∈ B(H) will be denoted by σ(T ).

3 Connection to Earlier Work
The idea of reconstructing signals in arbitrary bases is certainly not new and this topic has been subject to
extensive investigations in the last several decades. The papers by Unser and Aldroubi [7, 33] have been
very influential and these ideas have been generalized to arbitrary Hilbert spaces by Eldar [13, 14]. The
abstract framework introduced by Eldar is very powerful because of its general nature. Our framework
is based on similar generalizations, yet it incorporates several key distinctions, resulting in a number of
advantages.

Before introducing this framework, let us first review some of the key concepts of [14]. Let H be a sep-
arable Hilbert space and let f ∈ H be an element we would like to reconstruct from some measurements.
Suppose that we are given linearly independent sampling vectors {sk}k∈N that span a subspace S ⊂ H and
form a Riesz basis, and assume that we can access the sampled inner products ck = 〈sk, f〉, k = 1, 2 . . ..
Suppose also that we are given linearly independent reconstruction vectors {wk}k∈N that span a subspace
W ⊂ H and also form a Riesz basis. The task is to obtain a reconstruction f̃ ∈ W based on the sampling
data {ck}k∈N. The natural choice, as suggested in [14], is

f̃ = W (S∗W )−1S∗f, (3.1)

where the so-called synthesis operators S, W : l2(N) → H are defined by

Sx = x1s1 + x2s2 + . . . , Wy = y1w1 + y2w2 + . . . ,

and their adjoints S∗, W ∗ : H→ l2(N) are easily seen to be

S∗g = {〈s1, g〉, 〈s2, g〉, . . .}, W ∗h = {〈w1, h〉, 〈w2, h〉 . . .}.
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Note that S∗W will be invertible if and only if

H = W ⊕ S⊥.

Equation (3.1) gives a very convenient and intuitive abstract formulation of the reconstruction. However, in
practice we will never have the luxury of being able to acquire nor process the infinite amount of samples
〈sk, f〉, k = 1, 2 . . ., needed to construct f̃ . An important question to ask is therefore:

What if we are given only the first m ∈ N samples 〈sk, f〉, k = 1, . . . ,m? In this case we cannot
use (3.1). Thus, the question is, what can we do?

Fortunately, there is a simple finite-dimensional analogue to the infinite dimensional ideas discussed above.
Suppose that we are given m ∈ N linearly independent sampling vectors {s1, . . . , sm} that span a subspace
Sm ⊂ H, and assume that we can access the sampled inner products ck = 〈sk, f〉, k = 1, . . . ,m. Suppose
also that we are given linearly independent reconstruction vectors {w1, . . . , wm} that span a subspace
Wm ⊂ H. The task is to construct an approximation f̃ ∈ Wm to f based on the samples {ck}m

k=1. In
particular, we are interested in finding coefficients {dk}m

k=1 (that are computed from the samples {ck}m
k=1)

such that f̃ =
∑m

k=1 dkwk. The reconstruction suggested in [12] is

f̃ =
m∑

k=1

dkwk = Wm(S∗mWm)−1S∗mf, (3.2)

where the operators Sm, Wm : Cm → H are defined by

Smx = x1s1 + . . . + xmsm, Wmy = y1w1 + . . . + ymwm, (3.3)

and their adjoints S∗, W ∗ : H→ Cm are easily seen to be

S∗mg = {〈s1, g〉, . . . , 〈sm, g〉}, W ∗
mh = {〈w1, h〉, . . . , 〈wm, h〉}.

From this it is clear that we can express S∗mWm : Cm → Cm as the matrix



〈s1, w1〉 . . . 〈s1, wm〉

...
...

...
〈sm, w1〉 . . . 〈sm, wm〉



 . (3.4)

Also, S∗mWm is invertible if and only if and ([12, Prop. 3])

Wm ∩ S⊥m = {0}. (3.5)

Thus, to construct f̃ one simply solves a linear system of equations. The error can now conveniently be
bounded from above and below by

‖f − PWmf‖ ≤ ‖f − f̃‖ ≤ 1
cos(θWmSm)

‖f − PWmf‖,

where PWm is the projection onto Wm,

cos(θWmSm) = inf{‖PSmg‖ : g ∈Wm, ‖g‖ = 1},

is the cosine of the angles between the subspaces Sm and Wm and PSm is the projection onto Sm [12].
Note that if f ∈ Wm, then f̃ = f exactly – a feature known as perfect recovery. Another facet of

this framework is so-called consistency: the samples 〈sj , f̃〉, j = 1, . . . ,m, of the approximation f̃ are
identical to those of the original function f (indeed, f̃ , as given by (3.2), can be equivalently defined as the
unique element in Wm that is consistent with f ).

Returning to this issue at hand, there are now several important questions to ask:

(i) What if Wm ∩ S⊥m /= {0} so that S∗mWm is not invertible? It is very easy to construct theoretical
examples such that S∗mWm is not invertible. Moreover, as we will see below, such situations may
very well occur in applications. In fact, Wm ∩ S⊥m = {0} is a rather strict condition. If we have
that Wm ∩ S⊥m /= {0} does that mean that is is impossible to construct an approximation f̃ from the
samples S∗mf?
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Figure 2: This figure shows log10 ‖(S∗ε,mWm)−1‖ as a function of m and ε for m = 1, 2, . . . , 100. The
left plot corresponds to ε = 1, whereas the right plot corresponds to ε = 7/8 (circles), ε = 1/2 (crosses)
and ε = 1/8 (diamonds).

(ii) What if ‖(S∗mWm)−1‖ is large? The stability of the method must clearly depend on the quantity
‖(S∗mWm)−1‖. Thus, even if (S∗mWm)−1 exists, one may not be able to use the method in practice
as there will likely be increased sensitivity to both round-off error and noise.

Our framework is specifically designed to tackle these issues. But before we present our idea, let us
consider some examples where the issues in (i) and (ii) will be present.

Example 3.1. As for (i), the simplest example is to let H = l2(Z) and {ej}j∈Z be the natural basis (ej

is the infinite sequence with 1 in its j-th coordinate and zeros elsewhere). For m ∈ N, let the sampling
vectors {sk}m

k=−m and the reconstruction vectors {wk}m
k=−m be defined by sk = ek and wk = ek+1.

Then, clearly, Wm ∩ S⊥m = span{em+1}.

Example 3.2. For an example of more practical interest, consider the following. For 0 < ε ≤ 1 let
H = L2([0, 1/ε]), and, for odd m ∈ N, define the sampling vectors

{sε,k}(m−1)/2
k=−(m−1)/2, sε,k = e−2πiεk·χ[0,1/ε],

(this is exactly the type of measurement vector that will be used if one models Magnetic Resonance Imag-
ing) and let the reconstruction vectors {wk}m

k=1 denote the m first Haar wavelets on [0, 1] (including the
constant function, w1 = χ[0,1]). Let Sε,m and Wm be as in (3.3), according to the sampling and recon-
struction vectors just defined. A plot of ‖(S∗ε,mWm)−1‖ as a function of m and ε is given in Figure 2. As
we observe, for ε = 1 only certain values of m yield stable reconstruction, whereas for the other values of
ε the quantity ‖(S∗ε,mWm)−1‖ grows exponentially with m, making the problem severely ill-conditioned.
Further computations suggest that ‖(S∗ε,mWm)−1‖ increases exponentially with m not just for these values
of ε, but for all 0 < ε< 1.

Example 3.3. Another example can be made by replacing the Haar wavelet basis with the basis consisting
of Legendre polynomials (orthogonal polynomials on [−1, 1] with respect to the Euclidean inner product).

In Figure 3 we plot the quantity ‖(S∗ε,mWm)−1‖. Unlike in the previous example, this quantity now
grows exponentially and monotonically in m. Whilst this not only makes the method highly susceptible to
round-off error and noise, it can also prevent convergence of the approximation f̃ (as m →∞). In essence,
for convergence to occur, the error ‖f−PWmf‖must decay more rapidly than the quantity ‖(S∗ε,mWm)−1‖
grows. Whenever this is not the case, convergence is not assured. To illustrate this shortcoming, in Figure
3 we also plot the error ‖f − f̃‖, where f(x) = 1

1+16x2 . The complex singularity at x = ± 1
4 i limits the

convergence rate of ‖f − PWmf‖ sufficiently so that f̃ does not converge to f . Note that this effect is
well documented as occurring in a related reconstruction problem, where a function defined on [−1, 1] is
interpolated at m equidistant pointwise samples by a polynomial of degree m−1. This is the famous Runge
phenomenon. The problem considered above (reconstruction from m Fourier samples) can be viewed as a
continuous analogue of this phenomenon.

Actually, the phenomenon illustrated in Examples 3.2 and 3.3 is not hard to explain if one looks at the
problem from an operator-theoretical point of view. This is the topic of the next section.
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Figure 3: The left figure shows log10 ‖(S∗ε,mWm)−1‖ as a function of m for m = 2, 4, . . . , 50 and ε =
1, 7

8 , 1
2 , 1

8 (squares, circles, crosses and diamonds respectively). The right figure shows log10 ‖f −PWmf‖
(squares) and log10 ‖f − f̃‖ (circles) for m = 2, 4, 6, . . . , 100, where f(x) = 1

1+16x2 .

3.1 Connections to the Finite Section Method
To illustrate the idea, let {sk}k∈N and {wk}k∈N be two sequences of linearly independent elements in a
Hilbert space H. Define the infinite matrix U by

U =





u11 u12 u13 . . .
u21 u22 u23 . . .
u31 u32 u33 . . .
...

...
...

. . .




, uij = 〈si, wj〉. (3.6)

Thus, by (3.4) the operator S∗mWm is simply the m×m finite section of U . In particular

S∗mWm = PmUPm|Pml2(N),

where PmUPm|Pml2(N) denotes the restriction of the operator PmUPm to the range of Pm (i.e. the m×m
finite section of U ). The finite section method has been studied extensively over the last several decades
[9, 18, 19, 27]. It is well known that even if U is invertible then PmUPm|Pml2(N) may never be invertible
for any m. In fact one must have rather strict conditions on U for PmUPm|Pml2(N) to be invertible with
uniformly bounded inverse (such as positive self-adjointness, for example [27]). In addition, even if U :
l2(N) → l2(N) is invertible and PmUPm|Pml2(N) is invertible for all m ∈ N, it may be the case that, if

x = U−1y, x, y ∈ l2(N), xm = (PmUPm|Pml2(N))−1Pmy,

then
xm ! x, m →∞.

Suppose that {sk}k∈N and {wk}k∈N are two Riesz bases for closed subspaces S and W of a separable
Hilbert space H. Define the operators S, W : l2(N) → H by

Sx = x1s1 + x2s2 + . . . , Wy = y1w1 + y2w2 + . . . . (3.7)

Suppose now that (S∗W )−1 exists. For m ∈ N, let the spaces Sm,Wm and operators Sm, Wm : Cm → H
be defined as in Section 3 according to the vectors {sk}m

k=1 and {wk}m
k=1 respectively. As seen in the

previous section, the following scenarios may well arise:

(i) W ∩ S⊥ = {0}, yet
Wm ∩ S⊥m /= {0}, ∀m ∈ N.

(ii) ‖(S∗W )−1‖ < ∞ and the inverse (S∗mWm)−1 exists for all m ∈ N, but

‖(S∗mWm)−1‖ −→ ∞, m →∞.

(iii) (S∗mWm)−1 exists for all m ∈ N, however

Wm(S∗mWm)−1S∗mf ! f, m →∞,

for some f ∈W .
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Thus, in order for us to have a completely general sampling theorem we must try to extend the frame-
work described in this section in order to overcome the obstacles listed above.

4 The New Approach
4.1 The Idea
One would like to have a completely general sampling theory that can be described as follows:

(i) We have a signal f ∈ H and a Riez basis {wk}k∈N that spans some closed subspace W ⊂ H, and

f =
∞∑

k=1

βkwk, βk ∈ C.

So f ∈W (we may also typically have some information on the decay rate of the βks, however, this
is not crucial for our theory).

(ii) We have sampling vectors {sk}k∈N that form a Riez basis for a closed subspace S ⊂ H, (note that
we may not have the luxury of choosing such sampling vectors as they may be specified by some
particular model, as is the case in MRI) and we can access the sampling values {〈sk, f〉}k∈N.

Goal: reconstruct the best possible approximation f̃ ∈ W based on the finite subset {〈sk, f〉}m
k=1 of the

sampling information {〈sk, f〉}k∈N.
We could have chosen m vectors {w1, . . . , wm} and defined the operators Sm and Wm as in (3.3)

(from {w1, . . . , wm} and {s1, . . . , sm}) and let f̃ be defined by (3.2). However, this may be impossible as
S∗mWm may not be invertible (or the inverse may have a very large norm), as discussed in Examples 3.2
and 3.3.

To deal with these issues we will launch an abstract sampling theorem that extends the ideas dis-
cussed above. To do so, we first notice that, since {sj} and {wj} are Riesz bases, there exist constants
A, B,C, D > 0 such that

A
∑

k∈N
|αk|2 ≤

∥∥∥∥∥
∑

k∈N
αkwk

∥∥∥∥∥

2

≤ B
∑

k∈N
|αk|2

C
∑

k∈N
|αk|2 ≤

∥∥∥∥∥
∑

k∈N
αksk

∥∥∥∥∥

2

≤ D
∑

k∈N
|αk|2, ∀ {α1, α2, . . .} ∈ l2(N).

(4.1)

Now let U be defined as in (3.6). Instead of dealing with PmUPm|Pml2(N) = S∗mWm we propose to choose
n ∈ N and compute the solution {β̃1, . . . , β̃n} of the following equation:

A





β̃1

β̃2
...

β̃n




= PnU∗Pm





〈s1, f〉
〈s2, f〉

...
〈sm, f〉




, A = PnU∗PmUPn|PnH, (4.2)

provided a solution exists (later we will provide estimates on the size of n, m for (4.2) to have a unique
solution). Finally we let

f̃ =
n∑

k=1

β̃kwk. (4.3)

Note that, for n = m this is equivalent to (3.2), and thus we have simply extended the framework discussed
in Section 3. However, for m > n this is no longer the case. As we later establish, allowing m to range
independently of n is the key to the advantage possessed by this framework.

Before doing so, however, we first mention that the framework proposed above differs from that dis-
cussed previously in that it is inconsistent. Unlike (3.2), the samples 〈sj , f̃〉 do not coincide with those
of the function f . Yet, as we shall now see, by dropping the requirement of consistency, we obtain a
reconstruction which circumvents the aforementioned issues associated with (3.2).
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4.2 The Abstract Sampling Theorem
The task is now to analyze the model in (4.2) by both establishing existence of f̃ and providing error
bounds for ‖f − f̃‖. We have

Theorem 4.1. Let H be a separable Hilbert space and S,W ⊂ H be closed subspaces such that W ∩
S⊥ = {0}. Suppose that {sk}k∈N and {wk}k∈N are Riesz bases for S and W respectively with constants
A, B,C, D > 0. Suppose that

f =
∑

k∈N
βkwk, β = {β1, β2, . . . , } ∈ l2(N). (4.4)

Let n ∈ N. Then there is an M ∈ N (in particular M = min{k : 0 /∈ σ(PnU∗PkUPn|PnH)}) such that,
for all m ≥ M , the solution {β̃1, . . . , β̃n} to (4.2) is unique. Also, if f̃ is as in (4.3), then

‖f − f̃‖H ≤
√

B(1 + Kn,m)‖P⊥
n β‖l2(N), (4.5)

where
Kn,m =

∥∥(PnU∗PmUPn|PnH)−1PnU∗PmUP⊥
n

∥∥ . (4.6)

The theorem has an immediate corollary that is useful for estimating the error. We have

Corollary 4.2. With the same assumptions as in Theorem 4.1 and fixed n ∈ N,
∥∥(PnU∗PmUPn|PnH)−1

∥∥ −→
∥∥(PnU∗UPn|PnH)−1

∥∥ ≤
∥∥(U∗U)−1

∥∥ ≤ 1
AC

, m →∞. (4.7)

In addition, if U is an isometry (in particular, when {wk}k∈N, {sk}k∈N are orthonormal) then it follows
that

Kn,m −→ 0, m →∞.

Proof of Theorem 4.1. Let U be as in as in (3.6). Then (4.4) yields the following infinite system of equa-
tions: 



〈s1, f〉
〈s2, f〉
〈s3, f〉

...




=





u11 u12 u13 . . .
u21 u22 u23 . . .
u31 u32 u33 . . .
...

...
...

. . .









β1

β2

β3
...




. (4.8)

Note that U must be a bounded operator. Indeed, let S and W be as in (3.7). Since

〈S∗Wej , ei〉 = 〈si, wj〉, i, j ∈ N,

it follows that U = S∗W . However, from (4.1) we find that both W and S are bounded as mappings from
l2(N) onto W and S respectively, with ‖W‖ ≤

√
B, ‖S‖ ≤

√
D, thus yielding our claim. Note also that,

by the assumption that W ∩ S⊥ = {0}, (4.8) has a unique solution. Indeed, since W ∩ S⊥ = {0} and by
the fact that {sk}k∈N and {wk}k∈N are Riesz bases, it follows that inf‖x‖=1 ‖S∗Wx‖ /= 0. Hence U must
be injective.

Now let ηf = {〈s1, f〉, 〈s1, f〉, . . .}. Then (4.8) gives us that

PnU∗Pmηf = PnU∗PmU
(
Pn + P⊥

n

)
β. (4.9)

Suppose for a moment that we can show that there exists an M > 0 such that PnU∗PmUPn|PnH is
invertible for all m ≥ M . Hence, we may appeal to (4.9), whence

(PnU∗PmUPn|PnH)−1PnU∗Pmηf = Pnβ + (PnU∗PmUPn|PnH)−1PnU∗PmUP⊥
n β, (4.10)

and therefore, by (4.9) and (4.1),
∥∥∥∥∥f −

n∑

k=1

β̃kwk

∥∥∥∥∥
H

≤
√

B
∥∥(PnU∗PmUPn|PnH)−1PnU∗Pmηf − β

∥∥
l2(N)

=
√

B
∥∥(P⊥

n − (PnU∗PmUPn|PnH)−1PnU∗PmUP⊥
n )β

∥∥
l2(N)

≤
√

B (1 + Kn,m)
∥∥P⊥

n β
∥∥

l2(N)
,
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where
Kn,m =

∥∥(PnU∗PmUPn|PnH)−1PnU∗PmUP⊥
n

∥∥ .

Thus, (4.5) is established, provided we can show the following claim:
Claim: There exists an M > 0 such that PnU∗PmUPn|PnH is invertible for all m ≥ M . Moreover,

∥∥(PnU∗PmUPn|PnH)−1
∥∥ −→

∥∥(PnU∗UPn|PnH)−1
∥∥ ≤

∥∥(U∗U)−1
∥∥ , m →∞.

To prove the claim, we first need to show that PnU∗UPn|Pnl2(N) is invertible for all n ∈ N. To
see this, let Θ : B(l2(N)) → C denote the numerical range. Note that U∗U is self-adjoint and invert-
ible. The latter implies that there is a neighborhood ω around zero such that σ(U∗U) ∩ ω = ∅ and the
former implies that the numerical range Θ(U∗U) ∩ ω = ∅. Now the spectrum σ(PnU∗UPn|Pnl2(N)) ⊂
Θ(PnU∗UPn|Pnl2(N)) ⊂ Θ(U∗U). Thus,

σ(PnU∗UPn|Pnl2(N)) ∩ ω = ∅, ∀n ∈ N,

and therefore, PnU∗UPn|Pnl2(N) is always invertible. Now, make the following two observations

PnU∗PmUPn =
m∑

j=1

(Pnξj)⊗ (Pnξ̄j), ξj = U∗ej ,

PnU∗UPn =
∞∑

j=1

(Pnξj)⊗ (Pnξ̄j),

(4.11)

where the last series converges at least strongly (it converges in norm, but that is a part of the proof). The
first is obvious. The second observation follows from the fact that PmU → U strongly as m → ∞. Note
that

‖Pnξj‖2 = 〈Pnξj , Pnξj〉 = 〈UPnU∗ej , ej〉.

However, U∗PnU must be trace class since ran(Pn) is finite-dimensional. Thus, by (4.11) we find that

‖PnU∗PmUPn − PnU∗UPn‖ ≤
∞∑

j=m+1

∥∥(Pnξj)⊗ (Pnξ̄j)
∥∥

≤
∞∑

j=m+1

〈UPnU∗ej , ej〉 −→ 0, m →∞.

(4.12)

Hence, the claim follows (the fact that
∥∥(PnU∗UPn|PnH)−1

∥∥ ≤
∥∥(U∗U)−1

∥∥ is clear from the observation
that U∗U is self-adjoint), and we are done.

Proof of Corollary 4.2. Note that the claim in the proof of Theorem 4.1 yields the first part of (4.7), and
the second part follows from the fact that U = S∗W (where S, W are also defined in the proof of Theorem
4.1) and (4.1). Thus, we are now left with the task of showing that Kn,m → 0 as m → ∞ when U is an
isometry. Note that the assertion will follow, by (4.6), if we can show that

∥∥PnU∗PmUP⊥
n

∥∥ −→ 0, m −→∞.

However, this is straightforward, since a simple calculation yields
∥∥PnU∗PmUP⊥

n

∥∥ ≤ ‖U‖(‖PnU∗PmUPn − PnU∗UPn‖)1/2, (4.13)

which tends to zero by (4.12). To see why (4.13) is true, we start by using the fact that U is an isometry we
have that

‖PnU∗P⊥
mUPn‖ = ‖PnU∗PmUPn − PnU∗UPn‖,

and therefore
‖P⊥

mUPn‖ ≤ (‖PnU∗PmUPn − PnU∗UPn‖)1/2. (4.14)
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And, by again using the property that U is an isometry we have that
∥∥PnU∗PmUP⊥

n

∥∥ = sup
‖ξ‖≤1,‖η‖≤1

|〈PnU∗PmUP⊥
n ξ, η〉| = sup

‖ξ‖≤1,‖η‖≤1
|〈PnU∗P⊥

mUP⊥
n ξ, η〉|

= sup
‖ξ‖≤1,‖η‖≤1

|〈UP⊥
n ξ, P⊥

mUPnη〉| ≤ ‖U‖‖P⊥
mUPn‖.

Hence, (4.13) follows from (4.14).

Remark 4.3 Note that the trained eye of an operator theorist will immediately spot that the claim in the
proof of Theorem 4.1 and Corollary 4.2 follows (with an easy reference to known convergence properties
of finite rank operators in the strong operator topology) without the computations done in our exposition.
However, we feel that the exposition illustrates ways of estimating bounds for

∥∥∥(PnU∗PmUPn|PnH)−1
∥∥∥ ,

∥∥PnU∗PmUP⊥
n

∥∥ ,

which are crucial in order to obtain a bound for Kn,m. This is demonstrated in Section 5.

Remark 4.4 Note that S∗W (and hence also U ) is invertible if and only if H = W ⊕ S⊥, which is
equivalent to W ∩ S⊥ = {0} and W⊥ ∩ S = {0}. This requirement is quite strong as we may very
well have that W /= H and S = H (e.g. Example 3.2 when ε < 1). In this case we obviously have that
W⊥ ∩ S /= {0}. However, as we saw in Theorem 4.1, as long as we have f ∈W we only need injectivity
of U , which is guaranteed when W ∩ S⊥ = {0}.

If one wants to write our framework in the language used in Section 3, it is easy to see that our recon-
struction can be written as

f̃ = Wn(W ∗
nSmS∗mWn)−1W ∗

nSmS∗mf, (4.15)

where the operators Sm : Cm → H and Wn : Cn → H are defined as in (3.3), and Sm and Wn corresponds
to the spaces

Sm = span{s1, . . . , sm}, Wn = span{w1, . . . , wn}, (4.16)

where {wk}k∈N and {sk}k∈N are as in Theorem 4.1. In particular, we get the following corollary:

Corollary 4.5. Let H be a separable Hilbert space and S,W ⊂ H be closed subspaces such that W ∩
S⊥ = {0}. Suppose that {sk}k∈N and {wk}k∈N are Riesz bases for S and W respectively. Then, for each
n ∈ N there is an M ∈ N such that, for all m ≥ M , the mapping W ∗

nSmS∗mWn : Cn → Cn is invertible
(with Sm and Wn defined as above). Moreover, if f̃ is as in (4.15), then

∥∥P⊥
Wn

f
∥∥
H ≤ ‖f − f̃‖H ≤ (1 + Kn,m)

∥∥P⊥
Wn

f
∥∥
H ,

where PWn is the orthogonal projection onto Wn, and

Kn,m =
∥∥Wn(W ∗

nSmS∗mWn)−1W ∗
nSmS∗mP⊥

Wn

∥∥ .

Moreover, when {sk} and {wk} are orthonormal bases, then, for fixed n, Cn,m → 0 as m →∞.

Proof. The fact that W ∗
nSmS∗mWn : Cn → Cn is invertible for large m follows from the the observation

that W ∩ S⊥ = {0} and the proof of Theorem 4.1, by noting that S∗mWn = PmUPn, where U is as in
Theorem 4.1. Now observe that

W ∗
nSmS∗mf = W ∗

nSmS∗m(PWnf + P⊥
Wn

f)

= W ∗
nSmS∗mWn(W ∗

nWn)−1W ∗
nf + W ∗

nSmS∗mP⊥
Wn

f.
(4.17)

Note also that W ∗
nWn : Cn → Cn is clearly invertible, since {wk}n

k=1 are linearly independent. Now
(4.17) yields

Wn(W ∗
nSmS∗mWn)−1W ∗

nSmS∗mf = PWnf + Wn(W ∗
nSmS∗mWn)−1W ∗

nSmS∗mP⊥
Wn

f.

Thus,
‖f − f̃‖H ≤

∥∥P⊥
Wn

−Wn(W ∗
nSmS∗mWn)−1W ∗

nSmS∗mP⊥
Wn

∥∥
H

∥∥P⊥
Wn

f
∥∥
H ,

which gives the first part of the corollary. The second part follows from similar reasoning as in the proof
of Corollary 4.2.
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Remark 4.6 The framework explained in Section 3 is equivalent to using the finite section method. Al-
though this may work for certain bases, it will not in general (as Example 3.2 shows). Computing with
infinite matrices can be a challenge since the qualities of any finite section may be very different from the
original infinite matrix. The use of uneven sections (as we do in this paper) of infinite matrices seems to
be the best way to combat these problems. This approach stems from [20] where the technique was used
to solve a long standing open problem in computational spectral theory. The reader may consult [17, 21]
for other examples of uneven section techniques.

When compared to the method of Eldar et al, the framework presented here has a number of important
advantages:

(i) It allows reconstructions in arbitrary bases and does not need extra assumptions as in (3.5).

(ii) The conditions on m (as a function of n) for PnU∗PmUPn|PnH to be invertible (such that we have
a unique solution) can be numerically computed. Moreover, bounds on the constant Kn,m can also
be computed efficiently. This is the topic in Section 5.

(iii) It is numerically stable: the matrix A = PnU∗PmUPn|PnH has bounded inverse (Corollary 4.2) for
all n and m sufficiently large.

(iv) The approximation f̃ is quasi-optimal (in n). It converges at the same rate as the tail ‖P⊥
n β‖l2(N),

in contrast to (3.2) which converges more slowly whenever the parameter 1
cos(θWmSm ) grows with

n = m.

As mentioned, this method is inconsistent. However, since {sj} is a Riesz basis, we deduce that

m∑

j=1

|〈sj , f − f̃〉|2 ≤ c‖f − f̃‖2,

for some constant c > 0. Hence, the departure from consistency (i.e. the left-hand side) is bounded by a
constant multiple of the approximation error, and thus can also be bounded by ‖P⊥

n β‖l2(N).

4.3 The Generalized (Nyquist-Shannon) Sampling Theorem
In this section, we apply the abstract sampling theorem (Theorem 4.1) to the classical sampling problem of
recovering a function from samples of its Fourier transform. As we shall see, when considered in this way,
the corresponding theorem, which we call the generalized (Nyquist–Shannon) Sampling Theorem, extends
the classical Shannon theorem (which is a special case) by allow reconstructions in arbitrary bases.

Proposition 4.7. Let F denote the Fourier transform on L2(Rd). Suppose that {ϕj}j∈N is a Riesz basis
with constants A, B (as in (4.1)) for a subspace W ⊂ L2(Rd) such that there exists a T > 0 with
supp(ϕj) ⊂ [−T, T ]d for all j ∈ N. For ε > 0, let ρ : N → (εZ)d be a bijection. Define the infinite matrix

U =





u11 u12 u13 . . .
u21 u22 u23 . . .
u31 u32 u33 . . .
...

...
...

. . .




, uij = (Fϕj)(ρ(i)).

Then, for ε ≤ 1
2T , we have that U : l2(N) → l2(N) is bounded and invertible on its range with ‖U‖ ≤√

ε−dB and ‖(U∗U)−1‖ ≤ εdA−1 . Moreover, if {ϕj}j∈N is an orthonormal set, then εd/2U is an
isometry.

Theorem 4.8. (The Generalized Sampling Theorem) With the same setup as in Proposition 4.7, set

f = Fg, g =
∞∑

j=1

βjϕj ∈ L2(Rd),

12



and let Pn denote the projection onto span{e1, . . . , en}. Then, for every n ∈ N there is an M ∈ N such
that, for all m ≥ M , the solution to

A





β̃1

β̃2
...

β̃n




= PnU∗Pm





f(ρ(1))
f(ρ(2))

...
f(ρ(m))




, A = PnU∗PmUPn|PnH,

is unique. Also, if

g̃ =
n∑

j=1

β̃jϕj , f̃ =
n∑

j=1

β̃jFϕj ,

then
‖g − g̃‖L2(Rd) ≤

√
B(1 + Kn,m)‖P⊥

n β‖l2(N), β = {β1, β2, . . .}, (4.18)

and
‖f − f̃‖L∞(Rd) ≤ (2T )d/2

√
B(1 + Kn,m)‖P⊥

n β‖l2(N), (4.19)

where Kn,m is given by (4.6) and satisfies (4.7). Moreover, when {ϕj}j∈N is an orthonormal set, we have

Kn,m −→ 0, m →∞,

for fixed n.

Proof of Proposition 4.7. Note that

uij =
∫

Rd

ϕj(x)e−2πiρ(i)·x dx =
∫

[−T,T ]d
ϕj (x) e−2πiρ(i)·x dx.

Since ρ : N → (εZ)N is a bijection, it follows that the functions {x 3→ εd/2e−2πiρ(i)·x}i∈N form an
orthonormal basis for L2([−(2ε)−1, (2ε)−1]d) ⊃ L2([−T, T ]d). Let

〈·, ·〉 = 〈·, ·〉L2([−(2ε)−1,(2ε)−1]d),

denote a new inner product on L2([−(2ε)−1, (2ε)−1]d). Thus, we are now in the setting of Theorem 4.1
and Corollary 4.2 with C = D = εd. It follows by Theorem 4.1 and Corollary 4.2 that U is bounded
and invertible on its range with ‖U‖ ≤

√
ε−dB and ‖(U∗U)−1‖ ≤ εdA−1. Also, εd/2U is an isometry

whenever A = B = 1, in particular when {ϕk}k∈N is an orthonormal set.

Proof of Theorem 4.8. Note that (4.18) now automatically follows from Theorem 4.1. To get (4.19) we
simply observe that, by the definition of the Fourier transform and using the Cauchy–Schwarz inequality,

sup
x∈Rd

∣∣∣∣∣∣
f(x)−

n∑

j=1

β̃jFϕj(x)

∣∣∣∣∣∣
≤

∫

[−T,T ]d

∣∣∣∣∣∣
g(y)−

n∑

j=1

β̃jϕj(y)

∣∣∣∣∣∣
dy

≤ (2T )d/2

∥∥∥∥∥∥
g −

n∑

j=1

β̃jϕj

∥∥∥∥∥∥
L2(Rd)

≤ (2T )d/2
√

B(1 + Kn,m)‖P⊥
n β‖l2(N),

where the last inequality follows from the already established (4.18). Hence we are done with the first part
of the theorem. To see that Kn,m → 0 as m → ∞ when {ϕj}j∈N is an orthonormal set, we observe that
orthonormality yields A = B = 1 and hence (since we already have established the values of C and D)
εd/2U must be an isometry. The convergence to zero now follows from Theorem 4.1.

Note that the bijection ρ : N → (εZ)d is only important when d > 1 to obtain an operator U : l2(N) →
l2(N). However, when d = 1, there is nothing preventing us from avoiding ρ and forming an operator
U : l2(N) → l2(Z) instead. The idea follows below. Let F denote the Fourier transform on L2(R), and let
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f = Fg for some g ∈ L2(R). Suppose that {ϕj}j∈N is a Riesz basis for a closed subspace in L2(R) with
constants A, B > 0, such that there is a T > 0 with supp(ϕj) ⊂ [−T, T ] for all j ∈ N. For ε > 0, let

Û =





...
...

... . .
.

u−1,1 u−1,2 u−1,3 . . .
u0,1 u0,2 u0,3 . . .
u1,1 u1,2 u1,3 . . .

...
...

...
. . .




, ui,j = (Fϕj)(iε). (4.20)

Thus, as argued in the proof of Theorem 4.8, Û ∈ B(l2(N), l2(Z)), provided ε ≤ 1
2T . Next, let Pn ∈

B(l2(N)) and, for odd m, P̃m ∈ B(l2(Z)) be the projections onto

span{e1, . . . , en}, span{e−m−1
2

, . . . , em−1
2
}

respectively. Define {β̃1, . . . , β̃n} by (this is understood to be for sufficiently large m)

Â





β̃1

β̃2

β̃3
...

β̃n




= PnÛ∗Pm





f(−m−1
2 )

...
f(0)

...
f(m−1

2 )




, Â = PnÛ∗PmÛPn|PnH. (4.21)

By exactly the same arguments as in the proof of Theorem 4.8, it follows that, if g =
∑∞

j=1 βjϕj , g̃ =
∑n

j=1 β̃jϕj , f = Fg and f̃ =
∑n

j=1 β̃jFϕj , then

‖g − g̃‖L2(R) ≤
√

B(1 + Kn,m)‖P⊥
n β‖l2(N), β = {β1, β2, . . .},

‖f − f̃‖L∞(R) ≤
√

2T
√

B(1 + Kn,m)‖P⊥
n β‖l2(N),

(4.22)

where Kn,m is as in (4.6).

Remark 4.9 Note that (as the proof of the next corollary will show) the classical NS-Sampling Theorem
is just a special case of Theorem 4.8.

Corollary 4.10. Suppose that f = Fg and supp(g) ⊂ [−T, T ]. Then, for 0 < ε ≤ 1
2T we have that

g(·) = ε
∞∑

k=−∞
f(kε)e2πiεk· L convergence.

f(t) =
∞∑

k=−∞
f(kε)sinc

(
t + kε

ε

)
L and unif. convergence.

Proof. Define the basis {ϕj}j∈N for L2([−(2ε)−1, (2ε)−1]) by

ϕ1(x) =
√

εχ[− 1
2ε , 1

2ε ](x), ϕ2(x) =
√

εe2πiεxχ[− 1
2ε , 1

2ε ](x),

ϕ3(x) =
√

εe2πiε(−1)xχ[− 1
2ε , 1

2ε ](x),

ϕ4(x) =
√

εe2πiε2xχ[− 1
2ε , 1

2ε ](x),

ϕ5(x) =
√

εe2πiε(−2)xχ[− 1
2ε , 1

2ε ](x),

ϕ6(x) =
√

εe2πiε3xχ[− 1
2ε , 1

2ε ](x) etc.
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Letting Û = {uk,l}k∈Z,l∈N, where uk,l = (Fϕl)(kε), an easy computation shows that

Û =





...
...

...
...

... . .
.

0 0 0 0 1√
ε

. . .

0 0 1√
ε

0 0 . . .
1√
ε

0 0 0 0 . . .

0 1√
ε

0 0 0 . . .

0 0 0 1√
ε

0 . . .
...

...
...

...
...

. . .





.

By choosing m = n in (4.21), we find that β̃1 =
√

εf(0), β̃2 =
√

εf(ε), β̃3 =
√

εf(−ε), etc and that
Kn,m = 0 in (4.22). The corollary then follows from (4.22).

Remark 4.11 Returning to the general case, recall the definition of ΩN,ε from (1.1), the mappings ΛN,ε,1,
ΛN,ε,2 from (1.2) and Θ from (1.3). Define ΞN,ε,1 : ΩN,ε → L2(R) and ΞN,ε,2 : ΩN,ε → L2(R) by

ΞN,ε,1(f) =
N∑

j=1

β̃jFϕj(·), ΞN,ε,2(f) =
N∑

j=1

β̃jϕj(·),

where β̃ = {β̃1, . . . , β̃N} is the solution to (4.21) with N = m. Then, for n > M (recall M from the
definition of Θ (1.3)), and

m = m(γ) = min{k ∈ N : ‖(PnÛ∗PkÛPn|PnH)−1‖ ≤ εγ}, γ > 1,

it follows that

‖ΞN,ε,1(f)− f‖L∞(R) = 0 < ‖ΛN,ε,1(f)− f‖L∞(R)∀f, f = Fg, g ∈ Θ,

‖ΞN,ε,2(f)− g‖L2(R) = 0 < ‖ΛN,ε,2(f)− g‖L2(R)∀f, f = Fg, g ∈ Θ.

Hence, under the aforementioned assumptions on m and n, both f and g are recovered exactly by this
method, provided g ∈ Θ. Moreover, the reconstruction is done in a stable manner, where the stability
depends only on the parameter γ.

To complete this section, let us sum up several of the key features of Theorem 4.8. First, whenever m
is sufficiently large, the error incurred by g̃ is directly related to the properties of g with respect to the
reconstruction basis. In particular, as noted above, g is reconstructed exactly under certain conditions.
Second, for fixed n, by increasing m we can get arbitrarily close to the best approximation to g in the
reconstruction basis whenever the reconstruction vectors are orthonormal (i.e. we get arbitrary close to
the projection onto the first n elements in the reconstruction basis). Thus, provided an appropriate basis is
known, this procedure allows for near-optimal recovery (getting the projection onto the first n elements in
the reconstruction basis would of course be optimal). The main question that remains, however, is how to
guarantee that the conditions of Theorem 4.8 are satisfied. This is the topic of the next section.

5 Norm Bounds
5.1 Determining m

Recall that the constant Kn,m in the error bound in Theorem 4.1 (recall also U from the same theorem) is
given by

Kn,m =
∥∥(PnU∗PmUPn|PnH)−1PnU∗PmUP⊥

n

∥∥ .

It is therefore of utmost importance to estimate Kn,m. This can be done numerically. Note that we
already have established bounds on ‖U‖ depending on the Riesz constants in (4.1) and since we obvi-
ously have that Kn,m ≤ ‖(PnU∗PmUPn|PnH)−1‖‖U‖2, we only require an estimate for the quantity
‖(PnU∗PmUPn|PnH)−1‖.
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Figure 4: The figure shows Kn,m,M for n = 75, m = 350 and M = n + 1, . . . , 6000 (left) and Kn,m,M

for n = 100, m = 400 and M = n + 1, . . . , 6000 (right) for the Haar wavelets on [0, 1].

Recall also from Theorem 4.1 that, if U is an isometry up to a constant, then Kn,m → 0 as m →∞. In
the rest of this section we will assume that U has this quality. In this case we are interested in the following
problem: given n ∈ N, θ ∈ R+, what is the smallest m ∈ N such that Kn,m ≤ θ? More formally, we wish
to estimate the function Φ : U(l2(N))× N× R+ → N,

Φ(U, n, θ) = min
{
m ∈ N :

∥∥(PnU∗PmUPn|PnH)−1PnU∗PmUP⊥
n

∥∥ ≤ θ
}

, (5.1)

where
U(l2(N)) =

{
U ∈ B(l2(N)) : U∗U = cI, c ∈ R+

}
.

Note that Φ is well defined for all θ ∈ R+, since we have established that Kn,m → 0 as m →∞.

5.2 Computing Upper and Lower Bounds on Kn,m

The fact that UP⊥
n has infinite rank makes the computation of Kn,m a challenge. However, we may

compute approximations from above and below. For M ∈ N, define

Kn,m,M =
∥∥(PnU∗PmUPn|PnH)−1PnU∗PmUP⊥

n PM

∥∥ ,

K̃n,m =
∥∥(PnU∗PmUPn|PnH)−1PnU∗Pm

∥∥ .

Then, for L ≥ M ,

Kn,m,M = sup
ξ∈PMH,‖ξ‖=1

∥∥(PnU∗PmUPn|PnH)−1PnU∗PmUP⊥
n PMξ

∥∥

≤ sup
ξ∈PLH,‖ξ‖=1

∥∥(PnU∗PmUPn|PnH)−1PnU∗PmUP⊥
n PLξ

∥∥

≤ sup
ξ∈H,‖ξ‖=1

∥∥(PnU∗PmUPn|PnH)−1PnU∗PmUP⊥
n ξ

∥∥ = Kn,m.

Clearly, Kn,m ≤ ‖U‖K̃n,m and, since PMξ → ξ as M → ∞ for all ξ ∈ H, and by the reasoning above,
it follows that

Kn,m,M ≤ Kn,m ≤ ‖U‖K̃n,m, Kn,m,M ↗ Kn,m, M →∞.

Note that
(PnU∗PmUPn|PnH)−1PnU∗PmUP⊥

n PM : PMH→ PnH

has finite rank. Therefore we may easily compute Kn,m,M . In Figure 4 we have computed Kn,m,M for
different values of n, m,M . Note the rapid convergence in both examples.

5.3 Wavelet bases
Whilst in the general case Φ(U, n, θ) must be computed numerically, in certain cases we are able to derive
explicit analytical bounds for this quantity. As an example, we now describe how to obtain bounds for
bases consisting of compactly supported wavelets. Wavelets and their various generalizations present an
extremely efficient means in which to represent functions (i.e. signals) [10, 11, 28]. Given their long list of
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applications, the development of wavelet-based reconstruction methods using the framework of this paper
is naturally a topic of utmost importance.

Let us review the basic wavelet approach on how to create orthonormal subsets {ϕk}k∈N ⊂ L2(R)
with the property that L2([0, a]) ⊂ cl(span{ϕk}k∈N) for some a > 0. Suppose that we are given a mother
wavelet ψ and a scaling function φ such that supp(ψ) = supp(φ) = [0, a] for some a ≥ 1. The most
obvious approach is to consider the following collection of functions:

Ωa = {φk, ψj,k : j ∈ Z+, k ∈ Z, supp(φk)o ∩ [0, a] /= ∅, supp(ψj,k)o ∩ [0, a] /= ∅},

where
φk = φ(·− k), ψj,k = 2

j
2 ψ(2j ·−k).

(The notation Ko denotes the interior of a set K ⊂ R.) Then we will have that

L2([0, a]) ⊂ cl(span{ϕ : ϕ ∈ Ωa}) ⊂ L2[−T, T ],

where T > 0 is such that [−T, T ] contains the support of all functions in Ωa. However, the inclusions may
be proper (but not always, as is the case with the Haar wavelet.) It is easy to see that

ψj,k /∈ Ωa ⇐⇒
a + k

2j
≤ 0, a ≤ k

2j
,

φk /∈ Ωa ⇐⇒ a + k ≤ 0, a ≤ k.

Hence we get that

Ωa = {φk : |k| = 0, . . . , 8a9 − 1} ∪{ ψj,k : j ∈ Z+, k ∈ Z,−8a9+ 1 ≤ k ≤ 2j8a9 − 1},

and we will order Ωa as follows:

{φ, φ1, . . . ,φ)a*−1, φ−1, . . . ,φ−)a*+1, ψ0,0, ψ0,1, . . . ,ψ0,)a*−1, ψ0,−1, . . ., ψ0,−)a*+1, ψ1,0, . . .}. (5.2)

We will in this section be concerned with compactly supported wavelets and scaling functions satisfying

|Fφ(w)| ≤ C

|w|p , |Fψ(w)| ≤ C

|w|p , ω ∈ R \ {0}, (5.3)

for some
C > 0, p ∈ N.

Before we state and prove bounds on Φ(U, n, θ) in this setting, let us for convenience recall the result from
the proof of Theorem 4.1. In particular, we have that

‖PnU∗PmUPn − PnU∗UPn‖ ≤
∞∑

j=m+1

〈UPnU∗ej , ej〉, m →∞. (5.4)

Theorem 5.1. Suppose that {ϕl}l∈N is a collection of functions as in (5.2) such that supp(ϕl) ⊂ [−T, T ]
for all l ∈ N and some T > 0. Let U be defined as in Proposition 4.7 with 0 < ε ≤ 1

2T and let the bijection
ρ : N → εZ defined by ρ(1) = 0, ρ(2) = ε, ρ(3) = −ε, ρ(4) = 2ε, . . .. For θ > 0, n ∈ N define Φ(U, n, θ)
as in (5.1). Then, if φ, ψ satisfy (5.3), we have that

Φ(U, n, θ) ≤
(

4ε1−2p8a9C2

f(θ)

) 1
2p−1

(
1 +

(
4pn2p − 1

4p − 1

)) 1
2p−1

= O
(
n

2p
2p−1

)
, n →∞,

where f(θ) = (
√

1 + 4θ2 − 1)2/(4θ2).

Proof. To estimate Φ(U, n, θ) we will determine bounds on

Ψ(U, n, θ) = min
{
m ∈ N :

∥∥(PnU∗PmUPn|PnH)−1
∥∥∥∥PnU∗PmUP⊥

n

∥∥ ≤ θ
}

.
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Note that if r < 1 and ‖PnU∗PmUPn − PnU∗UPn‖ ≤ r, then ‖(PnU∗PmUPn|PnH)−1‖ ≤ ε/(1 − εr)
(recall that U∗U = ε−1I and that ε ≤ 1). Also, recall (4.13), so that

∥∥(PnU∗PmUPn|PnH)−1
∥∥∥∥PnU∗PmUP⊥

n

∥∥ ≤ θ,

when r and m are chosen such that
√

εr

1− εr
≤ θ, ‖PnU∗PmUPn − PnU∗UPn‖ ≤ r,

(note that ‖U‖ = 1/
√

ε). In particular, it follows that

Ψ(U, n, θ) ≤ min{m : ‖PnU∗PmUPn − PnU∗UPn‖ ≤ ε−1(
√

1 + 4θ2 − 1)2/(4θ2)}. (5.5)

To get bounds on Ψ(U, n, θ) we will proceed as follows. Since φ, ψ have compact support, it follows that
Fφ,Fψ are bounded. Moreover, by assumption, we have that

|Fφ(w)| ≤ C

|w|p , |Fψ(w)| ≤ C

|w|p , ω ∈ R \ {0}.

And hence, since
Fψj,k(w) = e−2πi2−jkw2

−j
2 Fψ(2−jw),

we get that

|Fψj,k(w)| ≤ 2
−j
2

C

|2−jw|p , ω ∈ R. (5.6)

By the definition of U it follows that
∞∑

j=m+1

〈UPnU∗ej , ej〉 =
∞∑

s=m+1

n∑

t=1

|Fϕt(ρ(s))|2.

And also, by (5.6) and (5.2) we have, for s > 0,

n∑

t=1

|Fϕt(ρ(s))|2 ≤ 28a9|Fφ(ρ(s))|2 +
+log2(n),∑

j=0

2j)a*−1∑

k=−)a*+1

|Fψj,k(ρ(s))|2

≤ 28a9C2

|ρ(s)|2p
+
+log2(n),∑

j=0

2j)a*−1∑

k=−)a*+1

2−j C2

|2−2jρ(s)2|p = 28a9



 C2

|ρ(s)|2p
+
+log2(n),∑

j=0

C2

|2−2jρ(s)2|p





≤ 28a9C2

|ρ(s)|2p

(
1 +

4pn2p − 1
4p − 1

)
,

thus we get that
∞∑

s=m+1

n∑

t=1

|Fϕt(ρ(s))|2 ≤ 28a9C2

(
1 +

4pn2p − 1
4p − 1

) ∞∑

s=m+1

1
|ρ(s)|2p

≤ 2ε−2p28a9C2

(
1 +

4pn2p − 1
4p − 1

) ∞∑

s=m+1

1
s2p

≤ 4ε−2p8a9C2

m2p−1

(
1 +

4pn2p − 1
4p − 1

)
.

(5.7)

Therefore, by using (5.4) we have just proved that

‖PnU∗PmUPn − PnU∗UPn‖ ≤
4ε−2p8a9C2

m2p−1

(
1 +

4pn2p − 1
4p − 1

)
,

and by inserting this bound into (5.5) we obtain

Ψ(U, n, θ) ≤
(

4ε1−2p8a9C2

f(θ)

) 1
2p−1

(
1 +

(
4pn2p − 1

4p − 1

)) 1
2p−1

,

which obviously yields the asserted bound on Φ(U, n, θ).
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Figure 5: The figure shows sections of the graphs of Ψ̃(U, ·, 1) (left) and Ψ̃(U, ·, 2) (right) together with the
functions (in black) x 3→ 4.9x (left) and x 3→ 4.55x. In this case U is formed by using the Haar wavelets
on [0, 1].

The theorem has an obvious corollary for smooth compactly supported wavelets.

Corollary 5.2. Suppose that we have the same setup as in Theorem 5.1, and suppose also that φ, ψ ∈
Cp(R) for some p ∈ N. Then

Φ(U, n, θ) = O
(
n

2p
2p−1

)
, n →∞.

5.4 A Pleasant Surprise
Note that if ψ is the Haar wavelet and φ = χ[0,1] we have that

|Fφ(w)| ≤ 2
|w| , |Fψ(w)| ≤ 2

|w| , ω ∈ R.

Thus, if we used the Haar wavelets on [0, 1] as in Theorem 5.1 and used the technique in the proof of
Theorem 5.1 we would get that

min{m : ‖PnU∗PmUPn − PnU∗UPn‖ = ε−1(
√

1 + 4θ2 − 1)2/(4θ2)} = O
(
n2

)
, n →∞. (5.8)

It is tempting to check numerically whether this bound is sharp or not. Let us denote the quantity in (5.8)
by Ψ̃(U, n, θ), and observe that this can easily be computed numerically. Figure 5 shows Ψ̃(U, n, θ) for
θ = 1, 2, where U is defined as in Proposition 4.7 with ε = 0.5. Note that the numerical computation
actually shows that

Ψ̃(U, n, θ) = O (n) , (5.9)

which is indeed a very pleasant surprise. In fact, due to the ‘staircase growth shown in Figure 5, the growth
is actually better than what (5.9) suggests. The question is whether this is a particular quality of the Haar
wavelet, or that one can expect similar behavior of other types of wavelets. The answer to this question
will be the topic of future work.

Note that Figure 5 is interpreted as follows: provided m ≥ 4.9n, for example, we can expect this
method to reconstruct g to within an error of size (1 + θ)‖P-

n β‖, where θ = 1 in this case. In other
words, the error is only two times greater than the best approximation to g from the finite-dimensional
space consisting of the first n Haar wavelets.

Having described how to determine conditions which guarantee existence of a reconstruction, in the
next section we apply this approach to a number of example problems. First, however, it is instructive to
confirm that these conditions do indeed guarantee stability of the recontruction procedure. In Figure 6 we
plot ‖(εÂ)−1‖ against n (for ε = 0.5), where Â is formed via (4.21) using Haar wavelets with parameter
m = 84.9n9. As we observe, the quantity remains bounded, indicating stability. Note the stark contrast to
the severe instability documented in Figure 2.

6 Examples
In this final section, we consider the application of the generalized sampling theorem to several examples.
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Figure 6: The quantity ‖(εÂ)−1‖ against n = 2, 4, . . . , 360.

6.1 Reconstruction from the Fourier Transform
In this example we consider the following problem. Let f ∈ L2(R) be such that

f = Fg, supp(g) ⊂ [−T, T ].

We assume that we can access point samples of f , however, it is not f that is of interest to us, but rather g.
This is a common problem in applications, in particular MRI. The NS Sampling Theorem assures us that
we can recover g from point samples of f as follows:

g = ε
∞∑

n=−∞
f(nε) e2πinε·, ε =

1
2T

,

where the series converges in L2 norm. Note that the speed of convergence depends on how well g can be
approximated by the functions e2πinε·, n ∈ Z. Suppose now that we consider the function

g(t) = cos(2πt)χ[0.5,1](t).

In this case, due to the discontinuity, forming

gN = ε
N∑

n=−N

f(nε) e2πinε·, ε =
1
2
, N ∈ N, (6.1)

may be less than ideal, since the convergence gN → g as N →∞ may be slow.
This is, of course, not an issue if we can access all the samples {f(nε)}n∈Z. However, such an assump-

tion is infeasible in applications. Moreover, even if we had access to all samples, we are limited by both
processing power and storage to taking only a finite number.

Suppose that we have a more realistic scenario: namely, we are given the finite collection of samples

ηf = {f(−Nε), f((−N + 1)ε), . . . , f((N − 1)ε), f(Nε)}, (6.2)

with N = 900 and ε = 1
2 . The task is now as follows: construct the best possible approximation to g

based on the vector ηf . We can naturally form gN as in (6.1). This approximation can be visualized in
the diagrams in Figure 7. Note the rather unpleasant Gibbs oscillations that occur, as discussed previously.
The problem is simply that the set {e2πinε·}n∈Z is not a good basis to express g in. Another basis to use
may be the Haar wavelets {ψj} on [0, 1] (we do not claim that this is the optimal basis, but at least one that
may better capture the discontinuity of g). In particular, we may express g as

g =
∞∑

j=1

βjψj , β = {β1, β2, . . .} ∈ l2(N).

We will now use the technique suggested in Theorem 4.8 to construct a better approximation to g based on
exactly the same input information: namely, ηf in (6.2). Let Û be defined as in (4.20) with ε = 1/2 and let
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Figure 7: The upper figures show gN (left), g̃n,m (middle) and g (right) on the interval [0, 1]. The lower
figures show gN (left), g̃n,m (middle) and g (right) on the interval [0.47, 0.57].
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Figure 8: The figure shows Re(f) (left) and Im(f) (right) on the interval [−5000, 5000].

n = 500 and m = 1801. In this case
∥∥∥∥
(
PnÛ∗PmÛPn|PnH

)−1
∥∥∥∥ ≤ 0.6169,

∥∥∥∥
(
PnÛ∗PmÛPn|PnH

)−1
PnÛ∗Pm

∥∥∥∥ ≤ 0.7854

Define β̃ = {β̃1, . . . , β̃n} by equation (4.21), and let g̃n,m =
∑n

j=1 β̃jψj . The function g̃n,m is visualized
in Figure 7. Although, the construction of gN and g̃n,m required exactly the same amount of samples of
f , it is clear from Figure 7 that g̃n,m is favorable. In particular, approximating g by g̃n,m gives roughly
four digits of accuracy. Moreover, had both n and m been increased, this value would have decreased. In
contrast, the approximation gN does not converge uniformly to g on [0, 1].

6.2 Reconstruction from Point Samples
In this example we consider the following problem. Let f ∈ L2(R) such that

f = Fg, g(x) =
K∑

j=1

αjψj(x) + sin(2πx)χ[0.3,0.6](x),

for K = 400, where {ψj} are Haar wavelets on [0, 1], and {αj}K
j=1 are some arbitrarily chosen real

coefficients in [0, 10]. A section of the graph of f is displayed in Figure 8. The NS Sampling Theorem
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Figure 9: The figure shows the error |f − fN | (left) and |f − f̃ | (right) on the interval [−5000, 5000].

yields that

f(t) =
∞∑

k=−∞
f

(
k

2

)
sinc(2t− k),

where the series converges uniformly. Suppose that we can access the following pointwise samples of f :

ηf = {f(−Nε), f((−N + 1)ε), . . . , f((N − 1)ε), f(Nε)},

with ε = 1
2 and N = 600. The task is to reconstruct an approximation to f from the samples ηf in the best

possible way. We may of course form

fN (t) =
N∑

k=−N

f

(
k

2

)
sinc(2t− k), N = 600.

However, as Figure 9 shows, this approximation is clearly less than ideal as f(t) is approximated poorly
for large t. It is therefore tempting to try the reconstruction based on Theorem 4.8 and the Haar wavelets
on [0, 1] (one may of course try a different basis). In particular, let

f̃ =
n∑

j=1

β̃jFψj , n = 500,

where
Âβ̃ = PnÛ∗Pmηf , Â = PnÛ∗PmÛPn|PnH,

with m = 2N + 1 = 1201 and Û is defined in (4.20) with ε = 1/2. A section of the errors |f − fN | and
|f − f̃ | is shown in Figure 9. In this case we have

∥∥∥∥
(
PnÛ∗PmÛPn|PnH

)−1
∥∥∥∥ ≤ 0.9022,

∥∥∥∥
(
PnÛ∗PmÛPn|PnH

)−1
PnÛ∗Pm

∥∥∥∥ ≤ 0.9498.

In particular, the reconstruction f̃ is very stable. Figure 9 displays how our alternative reconstruction is
favorable especially for large t. Note that with the same amount of sampling information the improvement
is roughly by a factor of ten thousand.

7 Concluding Remarks
The framework presented in this paper has been studied via the examples of Haar wavelets and Legendre
polynomials. Whilst the general theory is now well developed, there remain many questions to answer
within these examples. In particular,
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(i) What is the required scaling of m (in comparison to n) when the reconstruction basis consists of
Legendre polynomials, and how well does the resulting method compare with more well-established
approaches for overcoming the Gibbs phenomenon in Fourier series? Whilst there have been some
previous investigations into this particular approach [22, 25], we feel that the framework presented
in this paper, in particular the estimates proved in Theorem 4.1, are well suited for understanding this
problem. We are currently investigating this possibility, and will present our results in future papers
(see [2, 3, 4, 5]).

(ii) Whilst Haar wavelets have formed been the principal example in this paper, there is no need to
restrict to this case. Indeed, Theorem 5.1 provides a first insight into using more sophisticated
wavelet bases for reconstruction. Haar wavelets are extremely simple to work with, however the use
of other wavelets presents a number of issues. In particular, it is first necessary to devise a means to
compute the entries of the matrix U in a more general setting.

In addition, within the case of the Haar wavelet, there remains at least one open problem. The
computations in Section 5.1 suggest that n 3→ Φ(U, n, θ) is bounded by a linear function in this case,
meaning that Theorem 5.1 is overly pessimistic. This must be proven. Moreover, it remains to be
seen whether a similar phenomenon holds for other wavelet bases.

(iii) The theory in this paper has concentrated on linear reconstruction techniques with full sampling. A
natural question is whether one can apply non-linear techniques from compressed sensing to allow
for subsampling. Note that, due to the infinite dimensionality of the problems considered here, the
standard finite-dimensional techniques are not sufficient (see [1, 6]).
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