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Stratified Sampling Based Compressed Sensing for
Structured Signals

Theresa Loss, Matthew J. Colbrook , and Anders C. Hansen

Abstract—Structured compressed sensing takes signal struc-
ture into account and thereby outperforms earlier compressed
sensing methods. However, results are usually based on sampling
in the Fourier domain, such as in Magnetic Resonance Imaging.
In the time domain, the benefits of structured compressed
sensing are still unknown. This paper introduces concepts that
incorporate the signal structure into both the acquisition and
reconstruction of compressed sensing in time and image domain
applications. First, a stratified-random sampling pattern is pro-
posed to improve the recovery of the dominant low-frequency
range of natural signals. A decay of primes criterion is developed
to evaluate the properties of the sensing matrix and is used
to optimize the sampling pattern. Second, the sparsity of the
Fourier transform as the representation domain is improved
by estimating the signal structure in a preprocessing step, and
then adapting the grid of the Fourier transform. In contrast
to existing methods, grid stretching is integrated into the fast
Fourier transform to reduce computational complexity. Both
structured acquisition and reconstruction are evaluated using
simulations, as well as two real-world applications: wireless
sensor networks in structural health monitoring and electron
microscopy. Results show that both reconstruction errors and
robustness can significantly be improved by incorporating struc-
ture into the acquisition and reconstruction. Our approach
highlights the importance of structure in time- and image-based
sensing applications and aims to trigger subsequent research
on the relevant mathematical background and applications to
engineering fields.

Index Terms—Structured compressed sensing, stratified ran-
dom sampling, electron microscopy, structural health monitoring

I. INTRODUCTION

TECHNOLOGICAL advances in physical and biological
sensing applications frequently result from the need to

overcome a restriction on the number of measurements taken
by the system. This may result from a limited power supply as
present in wireless sensor networks [1], limited measurement
time such as the duration of examination in Magnetic Res-
onance Imaging (MRI) [2], as well as restrictions in energy
dose on the subject in Electron Microscopy (EM) [3].

Apart from tackling the problem from the hardware side,
signal processing methods can be applied to reconstruct mea-
surements from far fewer samples then the Nyquist criterion
suggests. By exploiting the sparseness of the original signal,
compressed sensing (CS) has successfully been used in the
last 15 years to solve the underdetermined inverse problem
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of reconstruction in many applications [4]–[7]. Recently, ar-
tificial intelligence has also been used in sampling problems,
with neural networks (NNs) trained to optimally reconstruct
original signals from a limited number of measurements [8],
[9]. However, there are currently three drawbacks of this data-
based approach which should not be neglected:

1. The optimal trade-off between stability and accuracy of
NNs is mostly unexplored [10], and there is evidence that
many current AI technologies may be unstable [11]–[17].
For example, it has been shown that tiny perturbations or
structural changes in the image signal can lead to major
changes in NN reconstruction [16].

2. The problem of false negatives is important in clinical
practice. For example, Facebook and NYU’s 2019 FastMRI
challenge reported that networks that performed well in
terms of standard image quality metrics were prone to false
negatives and failing to reconstruct small, but physically
relevant image abnormalities [18]. The 2020 version of the
challenge subsequently focused on pathologies, noting the
problem of AI-generated hallucinations [19].

3. Reconstruction accuracy of a trained NN does not neces-
sarily increase (and may in fact decrease) with an increased
subsampling ratio. Typically, NNs need to be trained sep-
arately for varying subsampling ratios [16] (and on large
training sets), which is computationally very expensive.

These considerations are essential in medical and structural
diagnosis since inaccuracies in the measurement system can
mask or generate crucial events in the output signal. Therefore,
we focus on so-called structured CS, which takes the signal’s
sparse structure into account in both acquisition of measure-
ments and reconstruction of the original signal to increase
compression rates and robustness [20], [21].

Despite the success of structured CS [22]–[28], including an
abundance of elaborated theory, examples and applications are
mainly restricted to sensing conducted in the Fourier domain,
such as radio frequencies in MRI [29]. In applications where
measurements are conducted in the time or image domain, i.e.
subsampling from a time series with equidistant samples or
subsampling from an image with defined location of pixels,
there is a lack of CS-based strategies on how to incorporate
structure into acquisition reconstruction of measurements.

This work aims at bridging the gap between state-of-the-
art methods in compressed sensing and their application to
sensing in the time or image domain. Analogous to MRI,
in which structured sampling was implemented first and
mathematical proofs delivered subsequently, we follow an
engineering approach and focus on establishing structured CS
in time- and image-domain-based sensing applications. Results
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Fig. 1: Comparison of reconstruction results for the proposed method (“Structured” CS) and state-of-the-art CS (“Traditional”
CS). Reconstruction from 5.26% of samples for a piecewise linear function with sampling for both methods in the time domain
and reconstruction via the Fourier transform. Traditional CS uses uniform at random sampling in the time domain, whereas
Structured CS uses structured sampling in the time domain and reconstruction via an adapted Fourier transform. Methods are
presented in detail in the remainder of this paper (this example uses the model in §II-A with N=4000.)

are demonstrated by means of two applications, namely elec-
tron microscopy (EM) and the relatively new field of structural
health monitoring (SHM). However, methods are not limited
to those fields and shall provide benefits for time- and image-
domain-based sensing in many applications.

A. Structure in Acquisition

Signals can exhibit structure in several domains such as
sharp localized edges in an image or distinct frequencies
in the Fourier domain. Therefore, the structure needs to be
considered during both acquisition and reconstruction. In this
paper, we point in both directions and show the relevance of
structure in time- and image-domain-based sensing.

Randomness of the sensing matrix has been one of the
main principles during early CS approaches. However, and
inevitably, structure in sensing matrices had to be explored
when trying to implement the sensing matrices in real-world
applications such as sensors and imaging hardware [30]. Hard-
ware restrictions concerning storage limitations for random
matrices and restriction of random acquisition have led to
various implementations such as the random demodulator,
the modulated wideband converter and random filtering [5].
Simultaneously, advances in mathematical theory have shown
by the so-called flip test that signal structure needs to be
incorporated into the sensing matrix to achieve optimal results
[20]. The introduction of structured block-based acquisition
has enabled the implementation of sensing matrices into
sampling devices. Nevertheless, results are usually based on
Fourier measurements [21].

To our knowledge, structured sensing has not yet been
applied to the acquisition of either single samples in the time
domain or single locations in an image. When reducing the
number of measurements, ideal randomness cannot be guar-
anteed. By establishing criteria for the design of optimal time-
and image-domain-based sensing, artefacts during reconstruc-
tion can be reduced. Additionally, real-world implementation
of sensing matrices can be evaluated by using such criteria.

B. Structure in Reconstruction

The structure of the original signal needs to be incorporated
into reconstruction methods to achieve optimal results. It is
important to note that even though a signal might be sparse in

an ideal representation basis, exactly determining that basis
may be infeasible in practice. The difference between the
ideal and the implemented representation basis, called grid
mismatch, can never be fully resolved since any fixed discrete
grid can not exactly match the physical parameters [31].
Several approaches have been suggested for resolving grid
mismatch such as dictionary parameter learning and sparse
signal estimation [32], dictionary learning with a restriction
on grid size [33], and bias correction estimation [34].

In our approach, we aim to reduce grid mismatch by
aligning the grid to the pre-estimated signal structure. By
using efficient implementations of the representation domain,
computation times shall be kept to a minimum while grid
mismatch is reduced and reconstruction accuracy is optimized.

C. Relevance

Our approach’s relevance is demonstrated through two
exemplary applications using time- and image-domain-based
sensing and reconstruction via the Fourier transform. First, our
approach is applied to the emerging field of SHM, in which
the condition of civil structures is frequently determined by
means of wireless sensor networks. Since those sensors are
often energy self-sufficient, CS is promising for reducing the
energy for measurements and data transfer [35]–[37].

Second, we demonstrate the benefits of our results in the
field of EM, which is used for imaging of fine-scale structures
such as organic tissues and nanofibres [38], [39]. Since high-
density sampling is needed to achieve high signal-to-noise
ratios (SNR) but increases the risk of damage to the sensitive
structures at the same time [40], CS holds high potential for
reducing the number of electrons and improving the SNR.

A demonstration of results shows a significant improvement
in reconstruction for structured CS (see Figure 1).

The remainder of this paper is organized as follows. §II
presents the problem statement, including a brief introduction
on CS theory and our signal model. §III includes the main
results for structure-based sensing and structure-based recon-
struction. Benefits of our approach are demonstrated in §IV
by applying methods to real data of SHM and of EM imaging.
§V summarizes results and relevance of proposed methods.
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II. PROBLEM STATEMENT

A. Background

Following, for example, [41], we consider the following
standard setup in CS. The original vector x ∈ CN is acquired
in a compressed form, y ∈ CM , via multiplication with the so-
called sensing matrix Φ ∈ CM×N , y = Φx. Here, M � N .
We assume that the measurement vector x is sparse in a
representation domain corresponding to the matrix Ψ ∈ CN×N
(so that X = Ψx is approximately sparse). If the measurement
matrix Φ and the sparse representation Ψ are incoherent [41],
then under suitable sparsity conditions, x can be recovered by
solving standard l1−regularization problems such as

argminx̃∈Cn ‖Ψx̃‖1 s.t. y = Φx̃, (1)
argminx̃∈Cn ‖Ψx̃‖1 s.t. ‖y − Φx̃‖2 ≤ ε, (2)

the latter being used in the presence of noise. In certain
applications, such as MRI and the DFT, one must consider
local coherences and structured compressed sensing [20].

In our approach, we focus on the acquisition of measure-
ments in the time or image domain and on sparse representa-
tion via the Fourier transform. Throughout, Ψ is taken to be
the DFT so that

(Ψx)[k] = X[k] =

N−1∑
n=0

x[n]e
2πink
N , (3)

for k = 1, ..., N (see also §III-B for suitable adaptations). The
sensing matrix Φ is taken to be the orthogonal projection onto
span{ej}j∈Ω for some Ω ⊂ {0, ..., N−1} with |Ω| = M . The
set Ω is usually selected uniformly at random in CS, however,
our approach introduces structured CS for the selection of
Ω. Given an index set I , we let PI denote the orthogonal
projection onto the linear span of basis vectors indexed by I .

B. Signal Model

In physical and biological sensing applications, many sig-
nals exhibit significant structure and are dominated by the low
frequency range. Considering our two exemplary applications,
we find that a sensor in an SHM application will typically mea-
sure the fundamental frequency of an oscillation and multiples
thereof, complemented by the structure’s eigenfrequencies.
Also, EM images of materials and biological tissues exhibit
significant regularities as modeled in Figure 2.

We use S to denote the indices corresponding to non-zero
components of X . Our model assumption is that the signal X
is sparse (or approximately sparse) for frequencies k > K and
some positive K (i.e. dominated by the low-frequency range).
This signal model exhibits a clear structure, and it is beneficial
to take this into account in CS methods:

Structured signals need structured compressed sensing.

The importance of structure in CS has been demonstrated in
MRI sensing, where structured acquisition has significantly
improved reconstruction results [20]. Consequently, we exam-
ine the following question:

Is sampling uniformly at random optimal for reconstruc-
tion of structured signals at low sampling rates?

Structure in images Fourier transform, original Fourier transform, reduced 

Fig. 2: Exemplary structure of electron microscopy images in
image (left) and Fourier domain (middle, right). A magnified
section of the sparse Fourier coefficients of the original image
(middle) and a section of the image (right) is displayed.
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Fig. 3: Impact of window mismatch in the time domain (top)
on the sparsity of Fourier coefficients (bottom). Reconstruction
results are shown for a fundamental frequency of 0.083 Hz in
the case of window mismatch for a measurement period of
10 s. x̃ denotes the solution of the optimization problem in
Equation (1) and X̃ denotes the frequencies Ψx̃.

C. Structure in Acquisition

Unlike in the case of sensing in the Fourier domain, mathe-
matical principles on structured sampling in time- and image-
domain-based sensing problems have, to our knowledge, not
yet been developed. Since low frequencies dominate the sig-
nals in both applications, the following questions should be
addressed when designing the sensing matrix:

• What properties of the sensing matrix in the time and image
domain are related to capturing a certain frequency?

• How can we ensure that the dominant lower frequencies in
the signal are always captured?

• What properties does the sensing matrix need to fulfill to
allow for robust reconstruction?

Our answers in §III-A to these questions are used to improve
the design of the sensing matrix for a structured input signal.

D. Structure in Reconstruction

Additionally, the signal structure plays a major role in
the reconstruction of real-world discrete measurement signals.
When using the DFT as representation domain Ψ, the fast
Fourier transform (FFT) is widely used to rapidly compute
the Fourier transform of the discrete input signal. This leads
to two major implications:
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First, measurement devices are limited in terms of time
and memory, and only capture a section of the original
signal, which leads to discontinuities. Simultaneously, the FFT
assumes periodic continuation of the input signal, which may
lead to a mismatch between the measurement window and the
signal structure (see Figure 3, top). Second, window mismatch
also implies grid mismatch. The resolution R of the signal
is defined by the measurement window T with R = 1/T ,
T = tN − t1 and tn being the measurement time of samples
n ∈ {1, ..., N}. Hence, the alignment of the equally spaced
frequency grid of the DFT to the signal structure depends on
the measurement window as shown in Figure 2 and Figure
3 (bottom). A refinement of the discretization can help to
align the signal structure to the grid. However, the resulting
interpolation of the Fourier coefficients leads to decreased
sparsity and should be avoided.

Therefore, we aim to incorporate the signal structure into
reconstruction by answering the following questions:
• How can the structure of the signal be estimated from

compressed measurements?
• How can window and grid mismatch be addressed?
• What adaptions can be made to the FFT to increase recon-

struction accuracy while keeping computational costs low?
Our answers in §III-B to these questions are used to optimize
the sparse representation Ψ and improve reconstruction.

III. MAIN RESULTS

This section contains the main results on incorporating the
signal structure into the design of the sampling matrix during
acquisition (§III-A) and into the sparsifying transform during
the reconstruction of the signal (§III-B).

A. Sampling Algorithm

Structured sampling is well understood when sensing in
the Fourier domain. However, this knowledge has not yet
been transferred to time- and image-domain-based sensing. In
the following, we design a sampling algorithm that takes the
structure of signals into account in those sensing applications.

1) Motivation: The naive sampling approach would be
to use uniform sampling with the sampling frequency fs
exceeding the highest dominant frequency fi = K in the
spectrum by at least twice for exact recovery (fs ≥ 2fi) [42].
Suppose that a = N/(2K) ∈ Z and that we select every ath
sample (so that Ω = {lN/(2K):l = 0, ..., 2K − 1}). Consider
two signals x1 and x2 such that the corresponding X1 and
X2 have Xj [k] = 0 if k 6= ij and i1 = r, i2 = 2K + r
(0 ≤ r < K) with X1[i1] = X2[i2]. It follows from a
straightforward calculation that y1 = y2 and consequently
reconstruction of compressed measurements fails.

This well-known problem is overcome to some degree by
using uniform at random (UAR) sampling (as practiced in
Fourier sensing). However, in this case, we do not have any
control over the distribution of the samples. If we reduce the
number of samples down to the number of samples suggested
by Nyquist, this may lead to large distances between any
two samples. The following experiment shows the effect of
large sample distances on the reconstruction error. An input
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Fig. 4: Reconstruction errors for simulated gaps in the UAR
sampling pattern. The signal is simulated for a randomly
selected frequency k ≤ K for K = 2, 6, 10. Vertical lines
represent one period of the input signal of length N/K. The
signal length is N = 4000 and 100 runs are simulated. Root-
mean-square errors (RMSE) displayed.

signal is created by using the inverse DFT of a randomly
selected frequency k ≤ K. CS is then simulated by UAR
sampling. When creating artificial gaps in the resulting UAR
pattern, the reconstruction error increases significantly as soon
as the maximum sampling distance exceeds a full period of
the input signal (see Figure 4). Therefore, the combination of
UAR sampling and the Nyquist criterion suggests stratified
random (SR) sampling as defined below.

2) Stratified Sampling: Since our signal model is domi-
nated by the low-frequency range, we focus on the recovery
of those frequencies. We propose a stratified sampling pattern,
in which the distance between adjacent samples is restricted.
To introduce this, we first discuss multilevel sampling.

Definition 1 (Multilevel subsampling [20]). Let N =
(N1, . . . , Nl) ∈ Zl≥0, where 0 ≤ N1 < · · · < Nl = N − 1

and m = (m1, . . . ,ml) ∈ Nl with mk ≤ Nk − Nk−1 for
k = 1, . . . , l, and N0 = 0. For each k = 1, . . . , l, let
Ik ⊂ {Nk−1 + 1, . . . , Nk} with |Ik| = mk. We refer to
I1 ∪ · · · ∪ Il as an (N,m)-multilevel subsampling scheme.

For equidistant batch length LB and a fixed number of
samples m per batch, we introduce stratified subsampling.

Definition 2 (Stratified subsampling). Let λ > 0, LB(K,λ) =
dN/(2Kλ)e (batch length) and l = dN/LB(K,λ)e (number
of batches). For k = 1, ..., l−1, set Nk = k ·LB(K,λ)−1 and
set Nl = N − 1. If m1 = m2 = ... = ml = m > 0, we refer
to an (N,m)-multilevel subsampling scheme as a stratified
subsampling scheme. We set M = m1 + ... + ml and denote
the set of such stratified subsampling schemes by Λ(K,λ,m).

The constant λ is a multiplier which shrinks the batch length
according to the number of samples in Ω ∈ Λ(K,λ,m). It has
been selected empirically in the following experiments with
a lower limit of λ = 1. We have also selected m = 2. In
the following, we seek a deterministic sampling pattern that
optimizes the positions of the samples within batches.

3) Optimization of the Sampling Pattern: Let Ω =
{s1, s2, ..., sm} ∈ Λ(K,λ,m) be a stratified sampling pat-
tern. The pairwise distances between elements in Ω can be
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Fig. 5: Decay of multiples of primes UK,m(p) for pairwise
distances DK,m for uniform sampling (uniform), coprime
sampling (coprime), uniform at random sampling (UAR), and
stratified sampling (SR). 5% sampling is used for N=4000.

calculated as DK,m = {di,j}, with di,j = sj − si for
j > i. We denote this list (which includes possible repeats) as
DK,m = {d1, ..., dLD}, where LD = m(m− 1)/2.

Let PN = {p1, p2, ..., pLP } be the collection of primes
smaller than N and define, for each prime p ∈ PN ,

UK,m(p): =
1

LD

LD∑
j=1

νj , νj =

{
1 if dj mod (p) = 0

0 else.
(4)

In other words, the decay of primes UK,m(p) tells the propor-
tion of elements of DK,m that are divisible by the prime p.

The key idea is the following. If UK,m(pi) > UK,m(pi+1)
and pi+1 > pi, then subgroups of distances can be prevented;
thereby, robustness of the sampling pattern and optimal recon-
struction can be ensured. The motivation for this is the result
of [7] that states that a signal can be reconstructed exactly
from partially known Fourier coefficients Ω ( ZN if N is a
prime integer. Therefore, we introduce the following quantity:

Dc(Ω): =
1

LP

LP−1∑
j=1

max

{
0,
UK,m(pj+1)− UK,m(pj)

UK,m(pj)

}
.

(5)
The corresponding algorithm is shown in Algorithm 1. We
then seek to solve the following optimization problem:

min
Ω∈Λ(K,λ,m)

Dc(Ω). (6)

Solving such an optimization problem, i.e. constructing a
deterministic stratified pattern Ω with minimum overall decay
Dc(Ω), is a highly non-trivial task. We use a Monte Carlo
simulation to create a large number of stratified sampling
patterns and select the pattern with minimum overall decay
Dc (see Algorithm 2). In the simulation, stratified patterns are
created by distributing samples uniformly at random per batch.
This is referred to as stratified-random (SR) sampling in the
following. Accordingly, the optimized pattern is denoted as
stratified-random-minimized (SRM) pattern.

As an example, the decay Dc(Ω) is analyzed for four
different sampling patterns in Figure 5. In the case of UAR and
SR sampling, one can note a smooth decay with UK,m(pi) >
UK,m(pi+1). On the other hand, uniform sampling results
in two distinct peaks at p = 2 and p = 5. Additionally,
co-prime sampling, which has successfully been used in the
field of array sensing to find the optimal placement of single

Algorithm 1 Minimize multiples in SR pattern

function FINDDECAY(pattern)
N = length(pattern)
idx = find(pattern==1) . index of sample locations
D = [];
for i = 1:N . get all distances

for j = idx(i):N
D = [D,idx(j)-idx(i)]

end for
end for
P = primes(N) . all primes till length of pattern
for i = 1:length(P)

U(i) = find(D==n P(i)), n∈ Z . find multiples
end for
decay = diff(U)/U; . decay function
Dc = sum(decay) for decay >0 . overall decay

return Dc

Algorithm 2 Pattern creation by using Monte Carlo simulation

function MINIMIZEMULTIPLESSRPATTERN(K,M)
runs = 1000 . how many patterns to test
decayMIN = 100 . initialize
for i = 1:runs

pattern = getPattern(K,M) . SR pattern, §III-A2
Dc = findDecay(pattern)
if Dc ≤ decayMIN

patternOPT = pattern
decayMIN = Dc

end if
end for

return patternOPT

measurements [43]–[45], is analyzed but results in an increase
in multiples for the two distances p = 41 and p = 43.

4) Numerical Evaluation: In order to recover x from y, the
matrix A = PΩΨ∗PS must be injective. A useful quantity in
this regard is the condition number κ(C) with C = A∗A.

We simulate three different signal models with (i) exactly
one non-zero frequency with S = {K}, (ii) non-zero frequen-
cies k ≤ K with S = {1, ..,K} and (iii) low frequencies with
two additional frequencies S = {1, ..,K, N4 ,

N
2 }. The sensing

matrix PΩ is generated for UAR, SR and SRM sampling.
Results show that condition numbers are significantly

smaller for SRM sampling than for UAR sampling (see
Figure 6). Applying `1-reconstruction as in Equation (1) for
all sampling patterns supports those findings. Figure 7 shows a
worst-case scenario of SR sampling, for which reconstruction
is significantly improved by using SRM sampling. An overall
evaluation of sampling patterns for all three signal models
demonstrates a reduction of reconstruction errors for SRM
sampling in comparison to UAR sampling (see Figure 8).
Consequently, our proposed SRM sampling method can be
used to improve the reconstruction results of structured signals
at low sampling rates.
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Fig. 6: Condition number κ(C) visualized. Shaded areas, solid
and dashed lines represent maximum, mean and mean with
additional standard deviation of respective κ(C) for 1000
realizations each. Results are shown for UAR, SR and SRM
sampling with different percentages of samples q= M

N and sig-
nal length N=1000. The low frequency range is set to K=8.
Three different signal models are simulated, Top: S = {8},
Middle: S={1, .., 8}, Bottom: S={1, .., 8, 500, 2000}.

5) Main Findings: Our findings on the design of a struc-
tured sampling pattern for adapting signal acquisition to the
structure of the input signal can be summarized as follows:

• The direct transfer of structured sampling approaches in
Fourier sensing to sensing in time or image domain is
impossible. Independent of the signal structure, the sampling
pattern needs to show a smooth decay of prime occurrences
for optimal reconstruction.

• Signal structure can be considered by using stratified sam-
pling, which restricts distances between adjacent samples.

• If the signal structure is dominated by the low-frequency
range as occurring in many applications, SRM sampling can
be used to significantly increase reconstruction accuracy.

B. Structured Reconstruction

1) Estimation of Signal Structure: While a general knowl-
edge of the signal structure is sufficient to design a suitable
sampling pattern, e.g. focusing on the recovery of low frequen-
cies, knowledge of the location of those frequencies improves
reconstruction. Several approaches have been proposed for
iteratively adapting the DFT via dictionary learning [32], [33].
However, this leads to a non-uniform grid, for which a fast im-
plementation via the FFT is impractical. Our approach focuses
on a feasible implementation for real-world applications based
on the FFT as an implementation of the DFT, thereby reducing
computational effort and memory consumption.

The signal structure can be estimated from under-sampled
measurements y = PΩx by optimizing the representation Y
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Fig. 7: Exemplary worst case scenario for SR sampling in
comparison to SRM sampling. Top: Original signal with S=
{1, .., 8}, N = 4000, 2% of samples used, i.e. M = 80. The
decay Dc is also shown. Bottom: Reconstruction error ‖x−x̃‖
on a logarithmic scale, where x̃ is reconstructed by using (i)
SR sampling and (ii) SRM sampling.

resulting from Y = ΨN̂y, where

(ΨN̂y)[k] = Y [k] =

N−1∑
n=0

(PΩx)[n]e
2πink

N̂ =
∑
n∈Ω

y[n]e
2πink

N̂ ,

(7)
with N̂ ≥ N being the size of the DFT. Let ε > 0 be a
hard threshold and let I1 denote the indices corresponding to
coefficients of Y greater in magnitude than ε and I0 be the
complementary indices. For an ideal sparse representation, we
expect the following sparsity measure χ to be large,

χ
(
N̂
)

: =

1
|I1|
∑
j∈I1 |Yj |

1
|I0|
∑
j∈I0 |Yj |

. (8)

We can therefore select a DFT size which seeks to maximize
χ over a suitable range of sizes

maxχ(N̂). (9)

In many applications, prior knowledge on the signal structure
is available based on simulations, construction plans,
experiments, physical, chemical or biological properties etc.
and can replace or support structure estimation in Equation (9).

2) Implementation: We now discuss how to implement the
optimization problem with regard to the DFT size N̂ . The
optimization problem can be interpreted in two different ways:

(i) If N̂ = cN with c ∈ N, the optimization problem
corresponds to c-fold subsampling. Subsampling can be used
to adapt the DFT to the signal structure but is only successful
if a large c is chosen. However, this comes along with
increased computational effort and storage consumption while
decreasing sparsity. Therefore, subsampling should not be used
as a method on its own but can be used to complement
structure estimation.
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Fig. 8: Comparison of reconstruction results for UAR, SR and
SRM sampling and different percentages of samples q = M

N ,
N=4000. Solid lines, dashed lines and shaded areas represent
the mean, the mean plus standard deviation and the maximum
of root-mean-square errors (RMSE) in the time domain for
1000 realizations each. The three signal models are the same
as described in Figure 6.

(ii) If N̂ = θ−1N with θ−1 ∈ (1, 2), the optimization
problem corresponds to stretching of the fixed grid of the DFT
by a factor θ:∑

n∈Ω

x[n]e
2πink

N̂ =
∑
n∈Ω

x[n]e2πiθ kN n. (10)

In case of a harmonic signal model, i.e. S = {f0, 2f0, 3f0, ...},
the size of the DFT can be estimated as

N̂ =

⌈
fs

f̂0

⌈
Nc

f̂0

fs

⌉⌉
(11)

with fs, f̂0 being the sampling frequency and the estimated
fundamental frequency, respectively.
(iii) A combination of stretching and subsampling can be
implemented by selecting cN < N̂ < (c+1)N for c ∈ N, e.g.
to account for a harmonic signal model with a small number
of higher non-harmonics, such as S = {f0, 2f0, 3f0, fi1, fi2}.

Simulation results in Figure 9 show that reconstruction
errors can significantly be reduced by both stretching and
subsampling. Lowest reconstruction errors are achieved by
combining the two methods of bin stretching and subsampling.
In doing so, grid mismatch is reduced for harmonics by
grid stretching and for non-harmonics by subsampling. The
computational effort remains small due to using the FFT.

3) Main Findings:
• The signal structure can be estimated by maximizing a

sparsity measure. Estimation can be complemented by prior
knowledge in many applications.

• Window and grid mismatch can be addressed by adapting
the representation matrix Ψ to the model of the signal by
using a combination of stretching and subsampling.

original stretching subsampling stretch.+subsampl.
10
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10
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10
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Comparison of reconstruction methods

  

Fig. 9: Reconstruction results for original (c= 1), stretching
(1 ≤ c < 2), subsampling (c = 3) , strech.+subsampl. (3 ≤
c < 4) for an input signal of length N = 4000 and size of
DFT N̂=cN . If c comprises a range, the N̂ maximizing χ is
picked. The input signal consists of {f0, 2f0, 3f0, fi, fj} with
randomly selected 0.1 ≤f0≤ 0.2 Hz and 10 ≤fi,fj≤ 20 Hz.
Reconstruction computed for 10% of samples, SRM sampling
with low frequency range K=10 used. Mean µ and standard
deviation σ of root-mean-square errors (RMSE) displayed.

• To keep computational effort at bay, the FFT is used to
compute Ψ. The number of frequency points is moderately
increased up to the best match of estimated signal model
and frequency grid.

IV. APPLICATIONS

In the following, our findings are demonstrated by means
of two applications. First, structured CS is applied to the
emerging field of SHM, in which measurements are conducted
in the time domain (§IV-A). Second, structure is incorporated
into CS of EM images which are acquired using time- and
image-domain-based sensing (§IV-B).

A. Structural Health Monitoring

In the field of SHM, sensor networks are widely used
to continuously monitor the condition of civil structures.
Since sensors often operate wirelessly and depend on energy
harvesting methods, CS is promising to reduce the energy
needed for measurements as well as for wireless data transmis-
sion [35]–[37]. Even though vibration measurements in SHM
applications are highly structured, signal structure is still being
neglected in the vast majority of CS approaches.

In our example, we focus on CS in the field of wind turbines,
in which continuous monitoring is essential to increase the
safety and competitiveness of wind energy. By measuring
vibrations of the turbine blades, blade damage can be detected
and turbine settings can be optimized to reduce load and forces
acting on the blades [46], [47].

The vibrational response of a turbine blade was measured in
operation of the turbine by mounting triaxial accelerometers
on the blade tip as described in [48]. To reduce the impact
of noise at high rotation frequencies, only measurements at
low rotation frequencies (f0 ≤ 0.15 Hz) were evaluated.
Also, the following analysis is based on measurements in x-
direction of the sensor, which experienced the lowest noise
levels. Acceleration was measured at 400 Hz for a duration
of 10 s. The sampling matrix has not been integrated into
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Fig. 10: Original and reconstructed acceleration, 10% of sam-
ples used. Comparison of (i) traditional CS (UAR sampling
and reconstruction with original resolution, N̂ = N ) and
(ii) structured CS (SRM sampling for a low frequency range
of K = 10 and reconstruction with stretching and threefold
subsampling, 3N≤N̂≤4N ).
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Fig. 11: Reconstruction errors for 100 acceleration measure-
ment campaigns. Comparison of (i) traditional CS (UAR
sampling, reconstruction with original resolution, N̂ = N ) and
(ii) structured CS (SRM sampling for a low frequency range
of K = 10 and reconstruction with stretching and threefold
subsampling, 3N ≤ N̂ ≤ 4N ). 10% of samples are used and
the mean µ, standard deviation σ and maximum of root-mean-
square errors (RMSE) are displayed.

the prototype sensor yet; therefore, compressed measurements
are simulated and are selected from the set of measurements
according to the sampling matrix.

Figure 10 shows original and reconstructed acceleration for
traditional CS and structured CS where 10% of samples are
used for both sampling methods. One can clearly note that
the measured signal is dominated by the fundamental rotation
frequency, which does not coincide with the measurement
window. Consequently, window mismatch and resulting grid
mismatch lead to poor reconstruction results for traditional CS.
When using structured CS instead, the fundamental frequency
is incorporated into reconstruction and, thereby, reconstruction
accuracy at the boundaries of the measurement interval is
improved significantly.

Next, the overall reconstruction accuracy is evaluated by
calculating the following errors in the frequency domain:
E1: Low-frequency error for k ≤ 10 in the frequency domain.
E2: Overall error across all frequencies.
E3: Noise error: Distinct peaks in the original spectrum are

identified. The error is then computed for all remaining
frequencies to assess the number of falsely created peaks.

E4: Peak error for the 10 peaks with largest amplitude.
Results for 100 measurement campaigns are depicted in
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Fig. 12: Variability of reconstruction errors for traditional CS
(UAR sampling, reconstruction with N̂=N ) in comparison to
structured CS (fixed SRM sampling, structured reconstruction
with N ≤ N̂ ≤ 3N ). 20 one-dimensional images simulated
(piecewise linear functions, signal length N = 4000) with
100 UAR patterns tested per image. 5% of samples used and
root-mean-square errors (RMSE) displayed.

Figure 11. Reconstruction errors for all error measures are
reduced by using structured CS. To summarize, incorporating
the signal structure into CS algorithms is beneficial in SHM
applications such as monitoring of wind turbine blades.

B. 2D Imaging

CS is promising in imaging methods such as electron
microscopy (EM), in which samples are acquired according to
fixed positions in the image domain. By reducing the number
of measurements, the risk of damaging sensitive structures
can be reduced. Different variants of EM have incorporated
CS methods, such as fluorescence microscopy [49], atomic
force microscopy [50], random-beam scanning transmission
EM [51] and scanning line probe imaging [52]. Even though
the implementation of the sensing matrix was optimized and
adapted in a few approaches [50], [53], no specific attention
has been paid to the design of the sensing matrix itself.

In the following, two experiments are performed for evalu-
ating the benefit of structured CS for EM.

1) Experiment 1 - 1D Evaluation of structured CS: First,
the variability of UAR sampling in traditional CS is evaluated
against fixed SRM sampling in structured CS. To reduce
computational complexity, one-dimensional (1D) test signals
are created by using piecewise linear functions and 100 UAR
patterns are tested per signal. Results show that reconstruction
errors for structured CS are smaller than for traditional CS
for all test signals (see Figure 12). Additionally, errors for
traditional CS are highly variable both within and between
test signals, with the maximum error of structured CS being
10 times smaller than the maximum error of traditional CS.

2) Experiment 2 - 2D Test images: Next, the benefit of
structured CS in EM is evaluated. When moving from 1D to
2D test signals, the design of the sampling matrix needs to
be extended to two dimensions. For this, the concept of 1D
batches in stratified subsampling is extended to 2D batches and
the pairwise distance between elements in Ω are calculated as
Euclidean distances di,j = (d2

i + d2
j )

1
2 . In addition, the signal

structure is estimated by adapting the size [N̂1, N̂2] of the
two-dimensional DFT.
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Test 1, original Test 1, trad. CS Test 1, struct. CS

Test 2, original Test 2, trad. CS Test 2, struct. CS

Test 3, original Test 3, trad. CS Test 3, struct. CS

Fig. 13: Image reconstruction by using traditional CS, i.e. UAR
sampling, and structured CS, i.e. SRM sampling designed for
K = 10 and structured reconstruction with 3N ≤ N̂ ≤ 4N .
10% samples used. From left to right: (i) original images
of size 200 x 200, (ii) traditional CS and (iii) structured CS
reconstruction. Top row: test image with 2% noise, relative L2
error 0.36 / 0.10 and PSNR 19.2 dB / 30.2 dB for traditional
and structured CS, respectively. Middle row: EM image of
animal cells, snippet from [54], rel. L2 error 0.16 / 0.13 and
PSNR 17.5 dB / 19.3 dB. Bottom row: EM image of animal
cells, snippet from [55], rel. L2 error 0.47 / 0.42 and PSNR
15.1 dB / 16.1 dB.

In order to demonstrate our method, one highly structured
test image and two EM images of animal cells are tested (see
Figure 13). For the test image (Image 1), reconstruction accu-
racy can be increased significantly by 71.3%. Also, the peak
signal-to-noise ratio (PSNR) can be increased significantly
by 11.0 dB. For the real-world EM images, structure is not
as prominent as for the 1D SHM application. Consequently,
reconstruction accuracy is increased by 15.6% and 9.3%, and
PSNRs are increased by 1.8 dB and 1.0 dB for Image 2 and
Image 3, respectively, by using structured CS.

As for the 1D case, structured CS is expected to increase
robustness but either needs computationally costly Monte
Carlo simulations or profound mathematical elaboration to
be verified. This exceeds the scope of this paper and will
be covered in future work. One needs to note that in our
applications images are sampled by picking single locations
as needed in EM. This is a different task than in many image
reconstruction problems, in which Fourier sensing is paired
with reconstruction by using wavelets. Therefore, results can
not be compared to those reconstruction problems one-by-one.

V. CONCLUSION

Even though structured CS is state-of-the-art in Fourier
sensing applications, structure is still neglected in most time-
and image-domain-based sensing applications. In this paper,
we developed a method to incorporate structure into both
the acquisition of samples and the reconstruction of signals,
thereby significantly reducing reconstruction errors in such
applications. The sensing matrix was designed via stratified
random sampling with the sample intervals being related to
the largest frequency being captured. Also, a measure for
optimizing the sampling pattern was proposed to increase
the robustness of reconstruction. Additionally, we propose
structured reconstruction for reducing grid mismatch of the
Fourier transform while keeping computational costs low.

Simulation results show that structured CS significantly
reduces reconstruction errors and increases robustness. Struc-
tured CS also successfully reduces reconstruction errors in
an SHM application. Error reduction was smaller in 2D EM
and we propose further research on the estimation of signal
structure in 2D images in the future. Our approach represents
first steps from structured Fourier sensing to time- and image-
domain-based sensing, and we hope that it will initiate further
work on structured sampling and how it can be generalized.
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