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Abstract

Backward Error Analysis (BEA) has been a crucial tool when analyzing long-time behav-
ior of numerical integrators, in particular, one is interested in the geometric properties of the
perturbed vector field that a numerical integrator generates. In this article we present a new
framework for BEA on manifolds. We extend the previously known “exponentially close” es-
timates from Rn to smooth manifolds and also provide an abstract theory for classifications
of numerical integrators in terms of their geometric properties. Classification theorems of
type “symplectic integrators generate symplectic perturbed vector fields” are known to be
true in Rn. We present a general theory for proving such theorems on manifolds by looking
at the preservation of smooth k-forms on manifolds by the pull-back of a numerical integra-
tor. This theory is related to classification theory of subgroups of diffeomorphisms. We also
look at other subsets of diffeomorphisms that occur in the classification theory of numerical
integrators. Typically these subsets are anti-fixed points of group homomorphisms.

Dedicated to the memory of Jerrold E. Marsden.

1 Introduction

LetM be a smooth manifold, where, by smooth we throughout the paper mean C∞. A smooth
manifold is presumed to be finite-dimensional, while infinite-dimensional manifolds (when con-
sidered in Section 5) will always have the name “infinite”, when addressed. Let X(M) denote
the set of smooth vector fields and let X ∈ X(M). Consider the ordinary differential equation

d

dt
y(t) = Xy(t), y(t) ∈M. (1.1)

The flow map corresponding to X is denoted by θX : R×M→M. Also, we sometimes use the
notation

θ
(q)
X (t) = θX,t(q) = θX(t, q),

and if the vector field X is obvious we sometimes use θ instead of θX .
A numerical approximation to the solution of (1.1) can be found by constructing a family

of diffeomorphisms {Φh}h≥0 and then (for each fixed h) one can obtain a sequence {qh,n}n∈N,
often referred to as the numerical solution, satisfying qh,n+1 = Φh(qh,n). We will throughout the
paper denote the family {Φh}h≥0 by Φh. More formally we have the following:

Definition 1. An integrator is a one-parameter family Φh : M→M of diffeomorphisms that
is smooth in h and satisfies Φ0 = id (the identity mapping). If X ∈ X(M) and

d

dh

∣∣∣
h=0

Φh(p) = Xp, p ∈M,
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then Φh is called an integrator for X. If, for any chart (U,ϕ) onM, there exist a constant C > 0
such that, for Φ̂h = ϕ ◦ Φh ◦ ϕ−1 and sufficiently small h

‖Φ̂h(x)− θY,h(x)‖ ≤ Chp+1, x ∈ ϕ(U),

where Y is the vector field on ϕ(U) induced by ϕ, the integrator Φh is said to be consistent with
X of order p.

Remark 1 It follows immediately by smoothness and the Taylor theorem that if Φh is an
integrator for X then Φh is consistent with X of order one.

If Φh is an integrator for the vector field X then, under suitable assumptions on Φh, one can
guarantee that there is a metric d on M such that

d(qn, θX,nh(qo)) ≤ Chp, p ∈ N, C > 0,

at least for nh ≤ T for some T > 0 and sufficiently small h. The integer p is often referred to as
the order of the numerical integrator.

The idea of backward error analysis is the following. Supposing that we have a numerical
solution {qh,n} i.e. qh,n+1 = Φh(qh,n), could it be the case that the sequence {qh,n} is the
“solution” to a different differential equation i.e. does there exist a vector field X̃ ∈ X(M), a
perturbation of X, such that

qh,n = θ eX,nh(q0)? (1.2)

If such a vector field exists, one can analyze the flow map θ eX to gain information about the
behavior of {qh,n}. In most cases (1.2) may not be obtained, and one has to concentrate on
constructing a family of vector fields X̃(h), depending on the parameter h, such that

d(qh,n, θ eX(h),nh(q0)) ≤ f(h),

where f : R → R is continuous and f(h) → 0 as h → 0. Typically f could be f(h) = Chs for
some C > 0 and s ∈ N. Or even better f(h) = Ce−γ/h for some γ > 0. The construction of
the family of modified vector fields X̃(h) and the analysis of the corresponding flow map θ eX(h)

is known as Backward Error Analysis (BEA), and the family X̃(h) is often referred to as the
modified or perturbed vector field.

2 Open problems and novelty of the paper

BEA is very well understood when M = Rn, and modified vector fields X̃(h) are formally
expressed as an infinite series

X̃(h) = X1 + hX2 + h2X3 + . . . , (2.1)

where Xi is uniquely defined by Φh. Thus, it makes sense to talk about the modified (or
perturbed) vector field generated by Φh. There are several articles on the subject, Hairer and
Lubich [9], Calvo, Murua, and Sanz-Serna [4], Benettin and Giorgilli [3] and Reich [19]. The
question, however is: what if we are not longer working in Rn but with some abstract manifold,
can we still carry out the BEA? To illustrate the idea let us consider a simple example on an
abstract manifold, in particular a matrix Lie group G with its corresponding Lie algebra g (for
references on Lie group problems see [12] and the references therein). Consider the equation

Y ′(t) = AY (t), Y (0) = Y0, A ∈ g, (2.2)

and let Φh be an integrator for the vector field X ∈ X(G) defined by XY = AY. Then, it can be
shown (with some appropriate assumptions on Φh, see Chapter IX in [10]) that there exists a
sequence {Aj}j∈N ⊂ g such that we can define a vector field X̃(h) ∈ X(G) by

X̃(h)Y = (A1 + hA2 + h2A3 + . . .)Y, (2.3)

2



where the series converges in the matrix norm on g. Moreover, if Ỹ is a solution of

Ỹ ′(t) = (A1 + hA2 + h2A3 + . . .)Ỹ (t), Ỹ (0) = Y0,

then
Φnh(Y0) = Ỹ (nh), ∀n ∈ N, Ỹ (t) ∈ G, ∀ t ∈ R+.

There are two important observation and also questions to address:

(i) It is possible to construct a modified vector field whose flow map will interpolate the
numerical solution. However, the convergence in (2.3) is exceptional, and typically in the
general case one must truncate a formal series to get a well defined vector field. However,
how do we carry out the construction of such a series, and where do we truncate?

(ii) The solution of the modified equation shares a crucial property with the solution to the
original problem. Namely, they are both in G. In the general case we may ask the following:
if the flow map of the original vector field has a certain property, under which conditions
will the flow map of the modified vector field have the same properties?

The answers to these types of questions are the topic of this paper.

2.1 Extending estimates from Rn to manifolds

In the papers of Benettin and Giorgilli [3] , Hairer and Lubich [9] and Reich [19] the question
of closeness of the numerical solution and the solution to the modified equation is addressed. In
particular, it has been shown that for a suitable truncation of the series (2.1)

‖θ eX(h),h(q)− Φh(q)‖ ≤ Che−γ/h, q ∈ K, (2.4)

where C,γ > 0 and K ⊂ Rn is compact. A crucial assumption for the previous estimate to be
true is that both the vector field and the integrator Φh are analytic. In [9] Hairer and Lubich
take (2.4) even further and show that (with some extra assumptions) variants of (2.4) are true
even for multiple steps (not just one as (2.4) indicates). This ia a very powerful result as it
suggests that the numerical solution is close to the true solution of the modified equation. This
is all great, but what if Rn is replaced by a smooth manifold M?

First, we are faced with the problem of constructing modified vector fields (as in (2.1))
on the manifold. This has been done by Reich in [18], Hairer, Lubich, Wanner in [10] and
Hairer [8]. Although the techniques are different, they yield the same result. The technique
used in [18] is based an the assumption that M is embedded in Rn, and by using a tubular
neighborhood technique, one extends the original vector field and integrator to a neighborhood
around the manifold. By applying the standard technique from Rn to the extended vector field
and integrator, one obtains the modified vector field on the manifold M. The approach in [8] is
similar, however, one assumes that the vector field is already defined on a neighborhood of the
manifold. Hairer et al. [10] have a different strategy where the construction is done via charts
and no extension of the vectorfield is needed.

Second, with the modified vector field established, do results of type (2.4) automatically follow
(with the norm substituted by a metric of course)? (Note that this question is not addressed
in [18, 10, 8]). This is a delicate question. It is tempting to try to use the already established
techniques in Rn, and typically for the long time estimates, the results of Hairer and Lubich [9].
However, to do so we must transform our problem to Rn. One way to do this would be to follow
the idea of Reich, via the tubular neighborhood, to obtain an extended vector field and integrator
on a neighborhood of the manifoldM. Although tempting, this approach has a serious obstacle.
Note that analyticity is crucial for results a la (2.4). The problem is that the mappings used in
the extension approach are only C∞, and hence analyticity is lost. Discouraged by that fact, one
may try to emulate the ideas of Hairer et al. What if we simply use charts and do the analysis
locally in Rn? This would work because, by assuming that the manifold is analytic, the charts
would be analytic. However, it is not enough to use charts and just quote the results by Hairer
and Lubich [9] and deduce long term estimates on the manifold. The problem is that analysis
in charts will only be local. To illustrate this issue we have chosen the following example:
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Example 2.1. Let M = S2 ⊂ R3, where S2 denotes the two sphere in R3. This is a compact
manifold that can be given an analytic structure, however, it cannot be covered by only one chart.
Suppose that we have an analytic vector field X on S2 and that Φh is an analytic integrator
for X with corresponding modified vector field X̃(h) (to simplify the notation we will use the
notation X̃). Let {qn}n∈Z+ denote the numerical solution (e.g. qn+1 = Φh(qn)). Suppose that
our task is to show that there is a metric d on S2 and constants C, γ > 0 such that

d(θ eX,nh(q0), qn) ≤ Ce−γ/h, (2.5)

however, we insist on using local charts and the techniques from Hairer and Lubich [9] directly
(in those charts). We start by finding a chart (U,ϕ) such that q0 ∈ U. Now suppose that qn ∈ U
for n ≤ K for some K > 0. Now let Φ̂h : ϕ(U)→ ϕ(U) be defined by Φ̂h = ϕ ◦Φh ◦ϕ−1, and let
Y and Ỹ be the vector fields on ϕ(U) induced by ϕ and X and X̃ respectively, e.g. Y = ϕ∗X

and Ỹ = ϕ∗X̃ (see Section 3 for notation). Suppose that we have been able to show (using the
vector space techniques in [9]) the existence of C, γ > 0 such that

‖θeY ,nh(q̂0)− q̂n‖R2 ≤ Ce−γ/h, n ≤ K, (2.6)

(where q̂n = ϕ(qn)) however, for N = K + 1 then qK+1 /∈ U. This forces us to change charts. So
suppose that we can find a chart (V, ψ) such that qK ∈ U∩V and qn ∈ V for K ≤ n ≤ L for some
L > K. Let Φ̃h, Z and Z̃ be induced by (V, ψ) and Φh, X, X̃ (similarly as above). To continue
the analysis we first need to establish a bound on ‖θeZ,Kh(q̃0)− q̃K‖R2 (where q̃n = ψ(qn)). The
only way we can do that is to use the already established (2.6). In particular, we have

‖θeZ,Kh(q̃0)− q̃K‖R2 = ‖ψ ◦ ϕ−1(θeY ,Kh(q̂0))− ψ ◦ ϕ−1(q̂K)‖R2 ,

however, to be able to use (2.6) we must establish that ψ ◦ ϕ−1 is Lipschitz continuous and a
bound on the Lipschitz constant, say Cψ◦ϕ−1 . By invoking (2.6) we then get

‖θeZ,Kh(q̃0)− q̃K‖R2 ≤ Cψ◦ϕ−1Ce−γ/h.

The problem now is that when continuing the analysis in the chart (V, ψ) we must take into
account the accumulated error from the previous chart that depends on Cψ◦ϕ−1 (and of course
this constant may be greater than one). In fact, every time we would have to change charts
we would get a contribution from the Lipschitz constant of the composite mapping. As we
are interested in long term behavior we cannot restrict ourselves to the assumption that the
numerical solution only changes charts finitely many times. And if we cannot do that, the type
of analysis suggested in this example would yield estimates a la (2.5), however, with a constant C
that grows every time the numerical solution changes chart. Such a result would be substantially
less than optimal.

This leaves us with the following open question. How do we extend results a la (2.4) to
manifolds? This question (and the answer) is one of the main themes of this paper. As we will
see, abstractions of the ideas by Hairer and Lubich [9] and Reich [19, 18] will be crucial.

2.2 Extending classification theory from Rn to manifolds

A very important question to ask is: when will the flow map of the modified vector field have the
same geometric properties as the original flow map? A typical question of this type would be:
will the flow map of the modified vector field be symplectic provided that the original flow map
is symplectic? The answer is yes, if the integrator is symplectic. Several other results regarding
geometric properties of modified vector field can be found in [7], [10]. However, all these results
are so far only valid when considering ODEs in Rn, and we may therefore ask the same question
as before: What if Rn is replaced by a manifold M. There are some results in [10], however,
these techniques work only for quite specific cases and are not suited for the general problems
that we will consider here.
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Now consider a very basic example. Let ρ : M → M be a diffeomorphism on a smooth
manifold M and denote the mapping

Ψ 7→ ρ ◦Ψ ◦ ρ−1, Ψ ∈ Diff(M),

by σ. Note that this is a homomorphism on Diff(M) (the set of diffeomorphisms on M, a more
thorough definition follows below) since σ(Ψ ◦ Φ) = σ(Ψ) ◦ σ(Φ), for Ψ,Φ ∈ Diff(M). Suppose
that X ∈ X(M) is a vector field with flow map θX,t with the property that

σ(θX,t) = θ−1
X,t = θX,−t. (2.7)

Suppose that we have an integrator Φh for X and that Φh satisfies σ(Φh) = Φ−1
h . The question

is then: Will the flow map θ eX(h),t of the modified vector field X̃(h) satisfy

σ(θ eX(h),t) = θ−1eX(h),t
= θ eX(h),−t? (2.8)

This has been considered in the Rn case when ρ(x) = Tx, x ∈ Rn and T is a linear operator in
[7] and [19]. However, even the simplest case whenM is a sphere and T is a unitary involution is
not covered by the theory in [7] and [19]. One can off course ask a more general question: what
if σ simply is a homomorphism such that (2.7) is satisfied? Would (2.8) follow? The existing
theory is quite far from covering such a general question, even in Rn, and of course not in the
general setting.

Consider another basic example. Let µ be a volume form on a smooth manifold M and
suppose that X ∈ X(M) is a vector field whose flow map θX,t satisfy

θ∗X,tµ = µ,

(the notation θ∗X,t denotes the standard pull back). Given an integrator Φh for X with the
property that Φ∗hµ = µ. Does it follow that the flow map θ eX(h),t of the modified vector field

X̃(h) satisfy
θ∗eX(h),t

µ = µ?

This question has been investigated in [7] and [19], however, only in the Rn case, and even the
simplest example of a sphere will not be covered by the existing theory. The examples above
are just two basic examples of what is not covered by the existing theory, and, in fact, there is a
quite long list of open questions: Let X ∈ X(M), with flow map θX,t, for some smooth manifold
M. Suppose that Φh is an integrator for X with corresponding modified vector field X̃(h) and
flow map θ eX(h),t.

(i) Let ω be a symplectic 2-form on M. Suppose θX,t,Φh ∈ S1 = {ϕ ∈ Diff(M) : ϕ∗ω = ω}.
Does it follow that θ eX(h),t ∈ S1?

(ii) Let ω be a symplectic 2-form on M. Suppose θX,t,Φh ∈ S2 = {ϕ ∈ Diff(M) : ϕ∗ω =
cω , c ∈ R}. Does it follow that θ eX(h),t ∈ S2?

(iii) Let µ be a volume form on M. Suppose θX,t,Φh ∈ S3 = {ϕ ∈ Diff(M) : ϕ∗µ = µ}. Does
it follow that θ eX(h),t ∈ S3?

(iv) Let µ be a volume form onM. Suppose θX,t,Φh ∈ S4 = {ϕ ∈ Diff(M) : ϕ∗µ = cµ , c ∈ R}.
Does it follow that θ eX(h),t ∈ S4?

(v) Let α be a contact form. Suppose θX,t,Φh ∈ S5 = {ϕ ∈ Diff(M) : (ϕ∗α)p = cϕ(p)αp , cϕ ∈
C∞(M)}. Does it follow that θ eX(h),t ∈ S5?

(vi) Let f ∈ C∞(M). Suppose θX,t,Φh ∈ S6 = {ϕ ∈ Diff(M) : f ◦ ϕ = f}. Does it follow that
θ eX(h),t ∈ S6?
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(vii) Let σ : Diff(M)→ Diff(M) be a homomorphism. Suppose θX,t,Φh ∈ S7 = {ϕ ∈ Diff(M) :
σ(ϕ) = ϕ−1}. Does it follow that θ eX(h),t ∈ S7?

It seems to be a dearth of literature on these basic questions and we therefore consider it an
important task to develop an abstract framework that can handle these issues. Before embarking
on such a challenge let us ask the question: Can we build this on the existing frameworks?
The novel ideas by Reich [19] are of a very abstract nature and are well suited for further
developments. It is the notion of the “Tangent Space at the Identity” of Diff(M) that is the
crucial tool that can be used in an abstract framework . As we will see in Example 6.2 and
Remark 5 the framework in [19] is not complete, even in Rn, however, it can be completed and
made abstract. In order to do the abstraction we feel it is natural to go to the source of such
techniques, namely, the work by Ebin and Marsden [6] on infinite-dimensional manifolds, in
particular, infinite-dimensional subgroups of Diff(M). Our framework is very much inspired by
their work.

The theory in this paper may seem involved at first glance, and it may be appropriate to
ask: are such technical abstractions really necessary? A question like that must be viewed in the
light of the questions we are asking. Note that the questions in (i)-(vii) above are very general,
in particular (vii). As in most cases in mathematics, general questions may have to be treated
with abstract framework (that may happen to be involved). To answer the initial question, the
answer is yes, as the Remark 7 shows.

3 Background and notation

We will first introduce some notation. If M and N are smooth manifolds and F : M → N is
a smooth map, we will adopt the notation from [13] and denote the derivative, or the tangent
mapping TpF : TpM → TpN , by F∗ e.g. for x ∈ TpM we let F∗x = TpFx. The derivative of
a function F : Rn → Rm will be denoted by DF, and similarly derivatives of higher order will
be denoted by DrF. As usual we identify DrF (x) with Lrsym(Rn,Rm), the set of symmetric r
linear mappings from Rn × · · · × Rn (r-times) to Rm. The set of smooth k-forms on M will be
denoted by Ωk(M).

Given a vector field X with corresponding flow map θX : I ×M →M, where I is an open
interval of R, we will allow slight misuse of notation by letting θX(t, s, p) denote the flow of X
at time t that takes the value p at time s. We also adopt the Einstein summation convention,
meaning that

∑
i x

iEi will be denoted by xiEi, hence omitting the summation sign.
Throughout this section M = Rn and we will review some of the well known results that

will be crucial for our developments in the upcoming sections. Let Φh be an integrator on Rn,
and suppose that Φh is consistent of order p with X ∈ X(Rn). As discussed in the introduction,
the idea is to look for a family of vector fields X̃(h) such that Φh ≈ θ eX(h),h and thus the study
of the numerical solution reduces to the study of the flow θ eX(h). The family of modified vector

fields X̃(h) is formally defined in terms of an asymptotic expansion in the step size h; i.e.,

X̃(h) = X1 + hX2 + h2X3 + . . .

The infinite sequence of vector fields {Xi}i=1,...,∞ can be obtained by using the Taylor series
expansion of the one-step method Φh i.e.,

Φh = id+ hΦ1 + h2Φ2 + . . . ,

where id is the identity map and the Φjs are smooth mappings, and then compare this series
with the expansion of the flow map θh, eX(h). The vector fields Xi are chosen such that these two
series coincide term by term. We will follow the recursive approach by Reich [19] when defining
the vector fields Xi, as this approach is advantageous when one wants to study the geometric
properties of the modified vector field as done in Section 5.
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The recursive construction is as follows. Let Φh be an integrator for the smooth vector field
X. Suppose that we have obtained {Xj}ij=1, and we want to determine Xi+1. Let

Yi(h) =
i∑

j=1

hj−1Xj .

Suppose that {Xj}ij=1 has been chosen such that the distance between Φh(q) and θh,Yi(h)(q) is
O(hi+1) for all q ∈ Rn. Now define

Yi+1(h) = Yi(h) + hiXi+1, Xi+1(q) = lim
h→0

Φh(q)− θh,Yi(h)(q)
hi+1

, q ∈ Rn. (3.1)

Note that the limit exists by the choice of Yi(h). This definition of Yi+1(h) generates a flow map
that is O(hi+2) away from Φh. Indeed, by Taylor’s theorem and the definition of Yi+1(h) we get

θh,Yi+1(h)(q)− θh,Yi(h)(q) = hi+1Xi+1(q) +O(hi+2)

and
θh,Yi(h)(q)− Φh(q) = hi+1Xi+1(q) +O(hi+2).

Thus,

θh,Yi+1(h)(q)− Φh(q) = θh,Yi(h)(q) + hi+1Xi+1(q)− Φh(q) +O(hi+2)

= O(hi+2).
(3.2)

Letting X1 = X the construction is complete. Note that it is easy to see that Xi = 0 for
i = 2, . . . , p when Φh is of order p.

As mentioned above there are several important results regarding BEA in Rn, and for an
excellent review we refer to [10]. Some of the results in [19] are of crucial importance for the
following arguments and we will give a short summary. Let Br(x) ⊂ Cn be the open complex
ball of radius r around x ∈ Rn. Let also ‖ · ‖ denote the max norm on Cn. Let K ⊂ Rn be a
compact subset and define, for Z ∈ X(Rn) and r > 0 ,

‖Z‖r = sup
x∈BrK

‖Zx‖, where BrK =
⋃
x0∈K

Br(x0).

Lemma 3.1. (Reich) Let Φh be an integrator for X ∈ X(Rn). Suppose that the vector field X
is real analytic in an open set U ⊂ Rn and that there is a compact subset K ⊂ U and constants
K, R > 0 such that ‖X‖R ≤ K. Suppose also that the mapping h 7→ Φh(x) is real analytic for
all x ∈ U . Then there exist M ≥ K such that

‖Φτ − id‖αR ≤ |τ |M ≤ (1− α)R for |τ | ≤ (1− α)R
M

,

where α ∈ [0, 1).

Theorem 3.2. (Reich) Let the assumptions of Lemma 3.1 be satisfied and let Φh be consistent
of order p with X . Then, the family {Xi} defined in (3.1) is analytic and, for all integers
m ≥ p+ 1, there exists C > 0, such that, for X̃(h)m = X1 + hX2 + h2X3 + . . .+ hm−1Xm, we
have

sup
x∈K
‖Φh(x)− θ eXm,h

(x)‖ ≤ Ch
(h(m− p+ 1)M

R

)m
,

where Xj is defined as in (3.1). Also,

sup
x∈K
‖Xj(x)‖ ≤ C

(
(j − p)M

R

)j−1

, j ≥ p+ 1.

Remark 2 Note that Theorem 3.2 is not quoted directly as stated in [19], but the bounds
presented here come from equation (4.17) and (4.13) in the proof of Theorem 2 in [19]. Note
that the results in Lemma 3.1 and Theorem 3.2 are stated in Rn, however, they will be useful
in the proofs below as we will use these estimates in local coordinates.
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4 Backward error analysis on manifolds

This section is devoted to answering the questions posed in Section 2.1. The following theorem
is a generalization of Theorem 2 in [19] and Theorem 1 in [9].

Theorem 4.1. Let M be a smooth manifold, X ∈ X(M) and let Φh be an integrator that is
consistent with X of order p. Then there exists a family of smooth vector fields {Xj}j∈N on M,
where each Xj is uniquely determined by Φh, with the following properties:

(i) There is a metric d on M such that if K ⊂ M is a compact subset and for any N ∈ N
such that X̃N (h) = X1 + hX2 + . . . hN−1XN there exists a CN > 0, depending on N, such
that for sufficiently small h > 0 we have

d(θ eXN ,h
(q),Φh(q)) ≤ CNhN+1, q ∈ K,

where θ eXN
is the flow map of X̃N (h).

(ii) IfM, X are analytic and h 7→ Φh(q) is analytic for q in compact K ⊂M, then there exists
an integer k (depending on h) and C, γ > 0 such that for X̃(h) = X1 + hX2 + . . . hk−1Xk

it follows that, for sufficiently small h,

d(Φh(q), θ eX,h(q)) ≤ Che−γ/h, (4.1)

for all q ∈ K, where d is the same metric as in (i). Also, there exists a finite collection F
of charts on M, covering K, and a constant C > 0 such that if (U,ϕ) ∈ F and Y , Ỹ (h)
are the vector field induced by ϕ and X, X̃(h) respectively then

sup
x∈ϕ(U)

‖Y (x)− Ỹ (h)(x)‖ ≤ Chp, sup
x∈ϕ(U)

‖DY (x)−DỸ (h)(x)‖ ≤ Chp. (4.2)

Proof. The construction of {Xj} is as follows: For any chart (U,ϕ), let Φ̂h = ϕ ◦ Φh ◦ ϕ−1 and
let Y be the vector field induced by ϕ. Doing the calculations in (3.1) and (3.2) with Φ̂h and θY
we obtain a family of smooth vector fields {Yj} on ϕ(U), and hence also a family {ϕ−1

∗ Yj} on U.
It is easy to see, using the fact that Yj is uniquely defined by Φ̂h, that {ϕ−1

∗ Yj} is independent
of the choice of charts. Thus, we obtain a family of global smooth vector fields {Xj} from the
local construction. Also, each Xj is uniquely determined by Φh. (This construction can also be
found in Theorem 5.1 Chap. IX.5 in [10]).

To show (i), note that, by compactness of K, consistency of Φh and the fact that θX,0 = Φ0 =
id, we can find a finite collection F = {(Uj , ϕj)} of charts such that there are open sets Vj ⊂ Uj
and h0 > 0, such that θX,h(Vj) ⊂ Uj and Φh(Vj) ⊂ Uj , for h < h0 (for some h0 > 0) and {Vj}
covers K. We may also assume without loss of generality that ϕ−1

j is defined on ϕj(Uj).
To get the desired metric and bound that we asserted, we use the Whitney Embedding

Theorem to obtain a diffeomorphism F : M → N ⊂ Rm for some m ≥ 2n, where N is an
embedded submanifold and n = dim(M). By the choice of F above we have that if p ∈ K then
q = ϕ(p) for some (U,ϕ) ∈ F , and, by letting X̃N = X0 + hX1 + . . . hNXN and by a little
manipulation and the calculation in (3.1) and (3.2), we get that

‖F ◦ Φh(p)− F ◦ θ eXN ,h
(p)‖ = ‖F ◦ ϕ−1(Φ̂h(q))− F ◦ ϕ−1(θỸN ,h

(q))‖ ≤ CNhN (4.3)

where CN bounds the Lipschitz’s constant of all F ◦ϕ−1 and ỸN (h) = Y +hY1 + . . . hNYN . Note
that F ◦ϕ−1 is Lipschitz by smoothness and since ϕ(U) is compact and can be assumed without
loss of generality to be convex. Also, since N is embedded, it has the subspace topology and
hence it inherits a metric from Rm which again leads to a metric d on M induced by F .

To show (ii), notice that we may, by arguing as in the proof of (i) and possibly changing F ,
where F is as in the proof of (i), assume that for each (U,ϕ) ∈ F there is an rϕ > 0 such that
Brϕ

(0) is properly contained in ϕ(U),

θX,h(ϕ−1(Brϕ
(0))) ⊂ U, Φh(ϕ−1(Brϕ

(0))) ⊂ U, h ≤ h0,
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and
⋃

(U,ϕ)∈F ϕ
−1(Brϕ

(0)) is an open cover of K. Let (U,ϕ) ∈ F and let Y be the induced vector

field on V = ϕ(U) of X by ϕ, and let K̃ = Brϕ
(0). From the previous discussion it follows that

there exists an Rϕ > 0 such that the complexification of Y is defined on BRϕ
K̃ and by continuity

‖Y ‖Rϕ ≤ Kϕ for some Kϕ > 0. Now consider the integrator on V defined by Φ̃h = ϕ ◦Φh ◦ϕ−1.
We can now apply Lemma 3.1 and Theorem 3.2 to obtain constants Mϕ, Cϕ > 0 such that

Ỹm = Y1 + hY2 + h2Y3 + . . .+ hm−1Ym, m ≥ p+ 1,

where Yj is the vector field on ϕ(U) induced by Xj and ϕ. We have the estimates

‖Φ̂h(x)− θỸm,h
(x)‖ ≤ Cϕh

(h(m− p+ 1)Mϕ

Rϕ

)m
, x ∈ K̃, (4.4)

‖Yj(x)‖ ≤ Cϕ
(

(j − p)Mϕ

Rϕ

)j−1

, x ∈ K̃, j ≥ p+ 1. (4.5)

To get the metric and the desired bounds, let

M = max{Mϕ : ϕ ∈ F}, C = max{Cϕ : ϕ ∈ F}, R = min{Rϕ : ϕ ∈ F}.

To show (4.1), we can now use the same approach as in (i) and apply (4.4) to get

d(Φh(q), θ eXm,h
(q)) ≤ C̃h

(h(m− p+ 1)M
R

)m
, q ∈ K,

where C̃ is a constant depending on C and the Lipchitz constants of F ◦ϕ−1. (F is here as in the
proof of (i)). To get the desired bound we choose m to be the integer part of µ = R

hMe + p− 1.
Hence, we get

d(Φh(q), θ eXm,h
(q)) ≤ C̃he−m

≤ C̃he−µ+1

≤ C̃he−pe−γ/h, q ∈ K,

where γ = R/(Me).
To show (4.2), note that by analyticity and Cauchy’s integral formula, it follows by (4.5) (by

possibly changing C) that

max (‖Yj(x)‖, ‖DYj(x)‖) ≤ C
(

(j − p)M
R

)j−1

, x ∈ K̃, j ≥ p+ 1.

Thus, since Φh is of order p

max(‖Yj(x)− Ỹj(h)(x)‖,‖DYj(x)−DỸj(h)(x)‖)

≤ C
m∑

j=p+1

(
hM(j − p)

R

)j−1

= C

(
hM

R

)p m∑
j=p+1

(j − p)p
(
hM(j − p)

R

)j−1−p

≤ C
(
hM

R

)p m∑
j=p+1

(j − p)p

ej−p−1

(
j − p

m− p+ 1

)j−1−p

≤ C
(
hM

R

)p
dpK,

(4.6)

where dp bounds (j−p)p

ej−p−1 and K bounds
∑m
j=p+1

(
j−p

m−p+1

)j−1−p
. Also, in the second to last

inequality we have used the fact that

h ≤ R

Me(m− p+ 1)
.

The theorem follows.
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Remark 3 The computation in (4.6) is almost word for word taken from the last computations
in the proof of Theorem 2 in [19].

The idea is now to use this result and follow the ideas in the proof of Corollary 2 (p. 444) in
[9] applied to a general manifold setting. This corollary is using Lady Widermere’s fan, and
that technique requires vector space operations. Hence, unfortunately, the corollary cannot be
applied directly, but after a series of preparations we can follow the analysis in [9] closely.

Let us first recall some basic facts from differential geometry that will be useful in the
following argument. By the normal space to an embedded submanifold M⊂ Rn at x we mean
the subspace NxM⊂ TRn consisting of all vectors that are orthogonal to TxM with respect to
the Euclidean dot product. The normal bundle of M is the subset NM⊂ TRn defined by

NM =
∐
x∈M

NxM = {(x, v) ∈ TRn : x ∈M, v ∈ NxM}.

Define a map E : NM→ Rn by
E(x, v) = x+ v, (4.7)

where we have done the usual identification. A tubular neighborhood of M is a neighborhood
U of M in Rn that is the diffeomorphic image under E of an open subset V ⊂ NM of the form

V = {(x, v) ∈ NM : |v| < δ(x)}

for some positive continuous function δ :M→ R. A useful fact that will come in handy in the
next theorem is that every embedded submanifold of Rn has a tubular neighborhood.

Theorem 4.2. LetM be a smooth manifold and X ∈ X(M) with flow map θX that exists for all
t ∈ R and all p ∈M. Let Φh be an integrator that is consistent of order r with X. Let {qh,n}n∈Z+

be the numerical solution produced by Φh recursively and let {Xi} be the family of vector fields
from Theorem 4.1. Suppose that there is a compact set K ⊂ M, h0 > 0 and T ≤ ∞ such that
{qh,n}n≤T/h ⊂ K for all h ≤ h0. For any integer s ≥ r + 1, let X̃(h) = X1 + hX2 + . . . hs−1Xs.
Suppose also that ⋃

t≤T,h≤h0,s<∞

θ eX(h),t({qh,n}n≤T/h) ⊂ K, (4.8)

and that for any finite collection F of charts covering K then θX,t has uniformly bounded spacial
derivatives for all |t| ≤ T in any charts belonging to F . (To simplify notation we will simply
denote qh,n by qn.)

(i) Then there are constants L > 0 and Cs > 0 (depending on s) such that

d(θ eX(h),nh(q0), qn) ≤ hs+1Cs

(
eLh

r+1n − 1
eLhr+1 − 1

)
, nh ≤ T.

(ii) If M, X and h 7→ Φh(p) are analytic and X̃(h) is as in (ii) of Theorem 4.1, then there
exist constants L > 0 and C > 0 such that

d(θ eX,nh(q0), qn) ≤ he−γ/hC

(
eLh

r+1n − 1
eLhr+1 − 1

)
, nh ≤ T.

Proof. We will show that there are constants C > 0 and L > 0 such that

d(θ eX,t(p), θ eX,t(q)) ≤ CeLhrtd(p, q), t ≤ T, p, q ∈ {qh,n}n≤T/h, (4.9)

where d is the same metric as in Theorem 4.1. Now, suppose for the moment that (4.9) is true.
Recall that {qh,n}n∈Z+ is the numerical solution obtained recursively by Φh and let tk = kh.
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Also, to avoid cluttered notation we will use just X̃ for X̃(h). Then

d(θ eX,tn(q0), qn) ≤
n∑
k=1

d(θ eX(tn, tk−1, qk−1), θ eX(tn, tk, qk))

≤
n∑
k=1

CeLh
r(tn−tk)d(θ eX(tk, tk−1, qk−1), θ eX(tk, tk, qk))

=
n∑
k=1

CeLh
r(tn−tk)d(θ eX,h(qk−1), qk),

where the second inequality follows from (4.9) and the last equality follows from the fact that
θ eX(tk, tk, qk) = qk and θ eX(tk, tk−1, qk−1) = θ eX,h(qk−1). Thus, using Theorem 4.1, we get the
two cases

(i) d(θ eX,tn(q0), qn) ≤ C1h
s+1

∑n−1
k=0 e

Lhrkh = hs+1C1

(
eLhr+1n−1

eLhr+1−1

)
,

(ii) d(θ eX,tn(q0), qn) ≤ C2he
−γ/h∑n−1

k=0 e
Lhrkh = C2he

−γ/h
(
eLhr+1n−1

eLhr+1−1

)
,

where C1 and C2 are the constants from Theorem 4.1 (i) and (ii) respectively. Also, the last
inequalities in cases (i) and (ii) come from the standard techniques used to prove convergence
of one step methods (details can be found on p. 161 [11]). Thus, to conclude, we only need to
show (4.9). To do that we will transform our problem from the manifold setting into a vector
space environment and then follow the analysis in Corollary 2 [9] quite closely.

By Whitney’s embedding theorem we obtain a smooth embedding F :M→ Rm, for m ≥ 2n,
where n = dim(M). Let N = F (M). Now, F, X and X̃ induce vector fields on N , namely,
F∗XF−1(·) and F∗X̃F−1(·). With a slight misuse of notation we will also denote these vector
fields by X and X̃ respectively. Our first goal is to extend X and X̃ to a neighborhood around
N .

Let U be a tubular neighborhood of N i.e. N ⊂ U ⊂ Rm where U is open in Rm and
diffeomorphic to an open set V ⊂ NN of the form

V = {(x, v) ∈ NN : |v| < δ(x)} (4.10)

for some positive continuous function δ : N → R. Note that diffeomorphism mentioned above
E : V → U is defined as in (4.7). For (x, v) ∈ NN we identify T(x,v)NN with TxN ×Rm−n and
define the vector fields Z and Z̃ by

Z(x,v) = (Xx, 0) ∈ TxN × Rm−n, Z̃(x,v) = (X̃x, 0) ∈ TxN × Rm−n. (4.11)

Now Z and Z̃ are obviously smooth, thus, we can define smooth vector fields Y and Ỹ on U by
Y = E∗ZE−1(·) and Ỹ = E∗Z̃E−1(·). We are now in the position where we can apply the ideas
from the proof of Corollary 2 [9]. But before we do so we need to establish two facts.

Claim I. There exists a smooth vector field Ŷ on U such that Y − Ỹ = hrŶ . Indeed, by the
construction of X̃, and the fact that Φh is of order r, it follows that there is a vector field X̂ on
N such that

X̂ = h−r(X − X̃). (4.12)

Thus, for x ∈ U, we have

Yx − Ỹx = E∗(ZE−1(x) − Z̃E−1(x))

= E∗

(
(Xπ(E−1(x)), 0)− (X̃π(E−1(x)), 0)

)
= hrE∗(X̂π(E−1(x)), 0),

(4.13)

where π : NN → N is the canonical projection. Thus, by letting Ŷ = E∗(ZE−1(·)− Z̃E−1(·)) the
assertion follows.
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Claim II. There is a compact set K̃ ⊃ F (K) such that the interior K̃o ⊃ F (K) is open in U,
and there is a constant M > 0 such that (independently of h) we have

sup
z∈eK

∥∥∥Ŷ (z)
∥∥∥ ≤M, sup

z∈eK
∥∥∥DŶ (z)

∥∥∥ ≤M, (4.14)

sup
z∈eK

∥∥∥∥ ∂∂z θY (t, s, z)
∥∥∥∥ ≤M, sup

z∈eK
∥∥∥∥ ∂2

∂z2
θY (t, s, z)

∥∥∥∥ ≤M, s < t ≤ T. (4.15)

Let F be the collection of charts referred to in Theorem 4.1 (ii). It is easy to see that we may
without loss of generality assume that F is a family of charts on N , covering F (K), with the
properties stated in Theorem 4.1 (ii). Now, for (V, ϕ) ∈ F , define Uϕ = {x ∈ U : π(E−1(x)) ∈
V }, where π : NN → N is the canonical projection. Observe that Uϕ is obviously open in Rm
and also

F (K) ⊂
⋃

(V,ϕ)∈F

Uϕ

(this is clear by the definition of E). Let K̃ be a compact set with the properties that K̃o is open
in Rm and

F (K) ⊂ K̃o ⊂ K̃ ⊂
⋃

(V,ϕ)∈F

Uϕ.

Note that (4.15) follows immediately from the assumption about uniformly bounded spacial
derivatives of θX,t in any charts belonging to F . To see (4.14), for (V, ϕ) ∈ F let Fϕ : Uϕ×Rn →
Rm be defined by

Fϕ(x, v) = TE−1(x)E · (Taϕ−1 · v, 0), a = ϕ ◦ π(E−1(x)),

where
TE−1(x)E : Tπ(E−1(x))N × Rm−n → Rm

and A · y denotes that the operator A acts linearly on y. Then by (4.13) we get

Yx − Ỹx = hrFϕ(x, X̂ϕ(ρ(x))), ρ(x) = ϕ ◦ π(E−1(x)), x ∈ Uϕ,

where X̂ϕ is the vector field on ϕ(V ) induced by X̂ and ϕ, (X̂ is defined in (4.12)). Hence,

D(Y−Ỹ )(x) · y

= hrDFϕ(x, X̂ϕ(ρ(x))) · (y,DX̂ϕ(ρ(x)) ·Dρ(x) · y), x ∈ Uϕ, y ∈ Rm.

By Theorem 4.1 (ii) it follows that there is a constant K such that

sup
y∈ϕ(V )

‖X̂ϕ(y)‖ ≤ K, sup
y∈ϕ(V )

‖DX̂ϕ(y)‖ ≤ K,

uniformly for all sufficiently small h and all ϕ ∈ F . This allows us to find a constant bounding
‖DFϕ(x, X̂ϕ(ρ(x)))‖, ‖DX̂ϕ(ρ(x))‖ and ‖Dρ(x)‖ for all x ∈ Uϕ and ϕ ∈ F . Since {Uϕ}ϕ∈F
covers K̃ we, deduce that ‖DŶ (x)‖ is bounded uniformly for all sufficiently small h and for all
x ∈ K̃. Similar reasoning gives a bound on ‖Ŷ (x)‖ for small h and all x ∈ K̃.

Note that we may without loss of generality assume that K̃ is convex. Indeed, if that is
not the case choose a compact set K̂ whose interior is open and an open set Û such that
F (K) ⊂ K̂o ⊂ K̂ ⊂ Û ⊂ K̃, and an f ∈ C∞(Rm) such that 0 ≤ f(x) ≤ 1, supp(f) ⊂ Û and f

is equal to one on K̂. Define Yf = fY, Ỹf = fỸ and Ŷf = fŶ . Now Claim I and Claim II are
still valid (possibly with different constants) for these vector fields and since they are globally
defined K̃ could be chosen to be convex.

Now, using Claim I and the Alekseev-Gröbner formula (p. 96, [11]) (recall that θX(t, s, p)
denotes the flow of X at time t that takes the value p at time s, see Section 3) we get, for
p ∈ F ({qh,n}n≤T/h), that

θ
(p)eY (t) = θ

(p)
Y (t) + hr

∫ t

0

∂

∂z
θY (t, s, θ(p)eY (s))Ŷ (θ(p)eY (s)) ds, t ≤ T.
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Note that the latter expression is justified by the assumption on global existence of θX and (4.8).
Hence, by using the above expression also for q ∈ F ({qh,n}n≤T/h), subtracting the two equations
and applying Claim II (this is where convexity is crucial) it follows that

‖θ(p)eY (t)− θ(q)eY (t)‖ ≤M‖p− q‖+ hr
∫ t

0

2M2‖θ(p)eY (t)− θ(q)eY (t)‖, t ≤ T.

Letting L = 2M2 and by appealing to the Gronwall lemma [11] gives

‖θ(p)eY (t)− θ(q)eY (t)‖ ≤ CeLh
rt‖p− q‖, t ≤ T.

Hence, since M inherits a metric from N similarly to what is done in the proof of Theorem 4.1
we obtain (4.9), and we are done.

5 Geometry in infinite dimensions

Given an integrator Φh, Theorem 4.1 and Theorem 4.2 assures us that there is a unique family
of vector fields {Xi} such that for some properly chosen N, the vector field X̃N (h) = X1 +hX2 +
. . .+hN−1XN will have a flow map θ eXN (h),t that is close to the integrator (in the sense described
in Theorem 4.1 and Theorem 4.2). Thus it makes sense to talk about the perturbed or modified
vector field induced by Φh. In the following we will refer to X̃N (h) as the perturbed or modified
vector field and to simplify the notation we will denote the perturbed vector field by X̃(h). It
is of great importance in order to understand the behavior of the numerical approximation that
we understand the behavior of θ eX(h),t. A convenient tool for analyzing θ eX(h),t is the theory of
classifications of diffeomorphisms.

Definition 2. Let M be a smooth manifold. Define

Diff(M) = {ϕ ∈ C∞(M,M) : ϕ is a bijection, ϕ−1 ∈ C∞(M,M)}.

In the following we will consider subsets of Diff(M) with certain geometric properties. We
are interested in determining under which conditions geometric properties of the flow map of
the original vector field will be preserved by the flow map of the perturbed vector field. In other
words, if the flow map θX,t of a vector field X is in some subset S ⊂ Diff(M), under which
conditions will θ eX(h),t ∈ S? To answer the previous question it is convenient to look at Diff(M)
as a manifold itself, in particular as an infinite dimensional manifold.

5.1 Cartan’s subgroups

Diffeomorphism groups and subgroups occur frequently in classical mechanics and are therefore
a crucial concept in Geometric Integration. The theory of such groups originate, from the work
of Lie and Cartan [5], in particular Cartan gave a classification of the complex primitive infinite-
dimensional diffeomorphism groups, finding six classes. We will give a brief review here and refer
to [14] for a more detailed discussion. The diffeomorphism groups of Cartan are as follows:

• Diff(M), the group of all diffeomorphisms on M.

• The diffeomorphisms preserving a symplectic 2-form ω onM, that is the set of diffeomor-
phisms ϕ such that ϕ∗ω = ω.

• The diffeomorphisms preserving a volume form µ onM, that is the set of diffeomorphisms
ϕ such that ϕ∗µ = µ.

• The diffeomorphisms preserving a given contact 1-form α up to a scalar function, that is
the set of diffeomorphisms ϕ such that (ϕ∗α)p = cϕ(p)µ.

• The group of diffeomorphisms preserving a given symplectic form ω up to an arbitrary
constant multiple, that is the set of diffeomorphisms ϕ such that ϕ∗ω = cϕω.
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• The group of diffeomorphisms preserving a given volume form µ up to an arbitrary constant
multiple, that is the set of diffeomorphisms ϕ such that ϕ∗µ = cϕµ.

These subgroups serve as a motivation for most of the theory in the upcoming sections.

5.2 Infinite-dimensional manifolds

We will give a short review of the basic definitions of infinite-dimensional manifolds, their tangent
bundle and tangent spaces. For a more thorough treatment of the subject we refer to [15]. For
an informal introduction of the concept of vector fields belonging to some Lie algebra generated
by a group of diffeomorphisms we refer to [2].

Definition 3. A Hausdorff space M is called a C∞-manifold modeled on a separable locally
convex topological vector space E if M is covered by an indexed family {Uα : α ∈ A} of open
subsets of M satisfying the following:

(i) For each Uα, there is an open subset Vα ⊂ E and a homeomorphism ϕα : Vα → Uα.

(ii) If Uα∩Uβ 6= ∅ then ϕ−1
β ◦ϕα is a C∞ diffeomorphism of ϕ−1

α (Uα∩Uβ) onto ϕ−1
β (Uα∩Uβ).

The maps ϕ−1
β ◦ ϕα are called coordinate transformations.

(iii) The indexed family A is the maximal one among indexed families satisfying (i) and (ii)
above.

M is called a Frechet, Banach or Hilbert manifold if E itself is a Frechet, Banach or Hilbert
space respectively.

Throughout the paper we will use the name E-manifold to describe a C∞-manifold modeled
on a separable locally convex topological vector space E. With a smooth structure on M we
can define the tangent bundle and the tangent space. First we need to introduce an equivalence
relation.

Definition 4. Let M be an E-manifold. Let x ∈ Vα and y ∈ Vβ . Then x and y are equivalent
(x ∼ y) if and only if x and y are contained in the domains of ϕ−1

β ◦ϕα, ϕ−1
α ◦ϕβ and ϕ−1

β ◦ϕα(x) =
y.

Now, for an infinite-dimensional manifold M covered by {Uα = ϕ−1
α (Vα) : α ∈ A} we may

view M as {Vα : α ∈ A} glued together with the equivalence relation from Definition 4. This
gives rise to the following definition of the tangent bundle and the tangent space.

Definition 5. The tangent bundle TM of an E-manifold M is the collection {Vα×E : α ∈ A}
glued according to the following equivalence relation:

(x, u) ∈ Vα × E and (y, v) ∈ Vβ × E

are equivalent if and only if x ∼ y and (ϕ−1
β ◦ ϕα)∗u = v.

Definition 6. Define the mapping π of
⋃
α∈A Vα × E onto

⋃
α∈A Vα by π(x, u) = x. Since

(x, u) ∼ (y, v) yields π(x, u) = π(y, v), then π naturally defines a mapping (which we will, by
slight abuse of notation, denote by the same symbol) π of TM onto M. This map is called the
projection of the tangent bundle. Then the tangent space of M at p is defined as

TpM = π−1(p).

5.3 The smooth structure of Ck(M), Hs(M) and Diff(M)

Before we define Ck(M) and Hs(M) and show how to make them into manifolds, we need
to discuss how to make Banach and Hilbert spaces out of sections of vector bundles. We will
follow [16] (Chap. IV) quite closely. Firstly, we need to define an inner product and norm on
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Lksym(Rn,Rm). Let {ej} be an orthonormal basis for Rn and define, for T, S ∈ Lksym(Rn,Rm),
the inner product and norm

〈T, S〉 = 〈T (ei1 , . . . , eik), S(ei1 , . . . , eik)〉, ‖T‖ = 〈T, T 〉1/2.

(Recall the Einstein summation convention here (discussed in Section 3). In particular, the
above inner product is a sum over all indices). Secondly, let M be a compact manifold and let
π : E →M be a smooth vector bundle over M of rank m. Now, for smooth f : N →M, where
N is a smooth manifold, we let π′ : f∗E → N denote the pull back bundle and Γ(E) denote the
set of all smooth sections of E.

We can now make subspaces of Γ(E) into Banach and Hilbert spaces. Let Γ(Bn,Rm) denote
the vector space of all functions from the closed n-ball Bn ⊂ Rn with radius one into Rm, regarded
as the set of sections of the product bundle Bn ×Rm over Bn. Now cover M with finitely many
charts {(Ui, ϕi)}ri=1 such that ϕi(Ui) = Bn, and choose trivializations Ψi on (ϕ−1

i )∗E such that
Ψi : π′−1(Bn)→ Bn × Rm. Define the linear mapping

F : Γ(E)→
r⊕
i=1

Γ(Bn,Rm), F (ξ) = (ξ1, . . . ξr), ξi(x) = Ψi(ξ ◦ ϕ−1
i (x)) (5.1)

and define the norm ‖·‖B,k and inner product 〈·, ·〉H,k in the following way. For u = (u1, . . . , ur), v =
(v1, . . . , vr) ∈

⊕r
i=1 Γ(Bn,Rm), let

|u|B,k = max
1≤j≤k

r∑
i=1

sup
x∈Bn

‖Djui(x)‖

〈u, v〉k = max
1≤j≤k

r∑
i=1

∫
Bn

〈Djui(x), Djvi(x)〉 dx,
(5.2)

and for ξ, η ∈ Γ(E)

‖ξ‖B,k = |F (s)|B,k, 〈ξ, η〉H,k = 〈F (ξ), F (η)〉k.

Let Ck(E) = Γ(E) and Hs(E) = Γ(E), where the closures are in the norms ‖ · ‖B,k and ‖ · ‖H,s
respectively. These Banach and Hilbert spaces will be useful in the next developments.

Given two smooth manifolds, M and N , let Ck(M,N ) denote the set of mappings from M
to N such that their derivatives (in any local coordinates) of order ≤ k exist and are continuous.
Also, if s > dim(M)/2 we let Hs(M,N ) denote the set of mappings from M to N with square
integrable (in charts) derivatives (in the distributional sense) of order ≤ s. We will show how to
make Ck(M) and Hs(M) (where Ck(M) and Hs(M) are short for Ck(M,M) and Hs(M,M))
into a Banach and Hilbert manifold respectively. The description will be rather brief and we
refer to [6] and [15] for a more detailed discussion.

First one needs candidates for the charts on Ck(M). Let f ∈ Ck(M) and define

TfC
k(M) = {g ∈ Ck(M, TM) : π ◦ g = f},

where π : TM→M is the canonical projection. Note that TfCk(M) can naturally be identified
with Ck(f∗(TM)) with the norm as discussed above, and hence we have the desired Banach
space. Similar reasoning applies to Hs(M) by replacing Ck(f∗(TM)) with Hs(f∗(TM)).

As we will only need a chart around the identity in the following arguments, we will show
how to construct the chart for f = id and refer to [6] [15] [20] for the general case. Let expq
denote the Riemannian exponential map expq : TqM→M (note that expq is defined on all of
TqM since M is compact). Define Exp : TM→M×M, by

Exp(vq) = (q, expq(vq)).

Now Exp is a diffeomorphism from a neighborhood N (M×{0}) of M×{0} ⊂ TM (where we
have allowed a minor misuse of notation usingM×{0}) to a neighborhood U(∆) of the diagonal
∆ ⊂M×M. This defines a neighborhood V(id) around id, namely,

V(id) = {f ∈ Ck(M) : Gr(f) ⊂ U(∆)}, (5.3)
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where Gr(f) is the graph of f. Similarly, we define a neighborhood W(ζ0) of the zero section
ζ0 :M→ TM by

W(ζ0) = {X ∈ TidC
k(M) : X(M) ⊂ N (M×{0})}

We can now define the chart (ωExp,V(id)) by

ωExp(f) = Exp−1 ◦ (id, f), f ∈ V(id),

ω−1
Exp(X) = Pr2 ◦ Exp ◦X, X ∈ W(ζ0),

(5.4)

where Pr2 :M×M→M is the projection onto the second factor.
Using this differentiable structure, Ck(M) becomes a Banach manifold [6], [15] and similarly

we can make a Hilbert manifold of Hs(M). The brief discussion above can be summarized in
the following theorem [20].

Theorem 5.1. LetM be a compact Riemannian manifold. Then, with the differential structure
suggested above, Ck(M), where k ≥ 1, and Hs(M), where s > dim(M)/2, become Banach and
Hilbert manifolds respectively. Also

TidC
k(M) = Xk(M), TidH

s(M) = XsH(M),

where Xk(M) denotes the set of vector fields whose derivatives (in local coordinates) of order ≤ k
exist and are continuous, and XsH(M) denotes the set of vector fields such that the derivatives
(in the distributional sense) of order ≤ s in local coordinates exist and are square integrable.

Actually, the differentiable structure suggested above is independent of the choice of Rie-
mannian metric on M, however, that fact will not be central in the upcoming discussions.
Throughout this paper Ck(M) and Hs(M) are understood to have the differential structure as
presented above. The following property of integrators, stated in Theorem 5.2, is quite conve-
nient and will be a crucial ingredient in some of the later sections. The key is really that for an
integrator Φh on a smooth compact manifold M, there is a difference between the mappings

R 3 h 7→ Φh ∈ Ck(M), R 3 h 7→ Φh(q) ∈M, q ∈M. (5.5)

And of course there is a difference between the derivatives

d

dh

∣∣∣
h=0

Φh ∈ Xk(M),
d

dh

∣∣∣
h=0

Φh(q) ∈ TqM. (5.6)

Note that it is not clear that the properties of an integrator are sufficient for the existence of
the derivative in the first part of (5.6), and this must be established. Also, if the derivative
exist, even though the mappings in (5.5) are different, could it be true that for q ∈ M we have(
d
dh

∣∣
h=0

Φh
)

(q) = d
dh

∣∣
h=0

Φh(q)?

Theorem 5.2. Let M be a compact n dimensional manifold and let Φh be an integrator on M.
Then there exist neighborhoods U ⊂ Ck(M) and Ũ ⊂ Hs(M) of id (the identity), where k ≥ 1
and s > n/2, such that the mappings R 3 h 7→ Φh ∈ U and R 3 h 7→ Φh ∈ Ũ are smooth for
sufficiently small h. Also,(

d

dh

∣∣∣
h=0

Φh

)
(q) =

d

dh

∣∣∣
h=0

Φh(q), q ∈M.

Proof. We will first establish the existence of U and then prove that h 7→ Φh ∈ U is smooth.
Note that by the reasoning in Section 5.3 there is a neighborhood U ⊂ Ck(M), containing the
identity, defined by

U = {f ∈ Ck(M) : Gr(f) ∈ U(∆)},

where U(∆) is defined as in (5.3), such that (V, ωExp) is a local chart around id, and ωExp is
defined in (5.4). We claim that Φh ∈ U for all sufficiently small h. Indeed, this is true, for
since U(∆) is a neighborhood of the diagonal ∆ ∈ M×M (in the product topology), and by
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compactness of M, it suffices to show that for r, s > 0 and q ∈ M, there is an h0 such that
Φh(Br(q)) ⊂ Br+s(q) for h < h0, where Br(q) denotes the open ball of radius r around q with
respect to some metric d onM. Let X ∈ X(M) be defined by Xp = d

dh

∣∣
h=0

Φh(p). Then there is
a h0 > 0 such that

θX,h(Br(q)) ⊂ Br+s(q), h ≤ h0. (5.7)

Now, since Φ : R×M→M is smooth, and by the classical convergence analysis of integrators
in Rn and compactness of M, it follows that there is a C > 0 such that d(θX,h(q),Φh(q)) ≤ Ch
(where d is the metric on M) for h ≤ h̃ for some h̃ > 0. Thus, using (5.7), the assertion follows.

Consider the smooth mapping ωExp ◦Φ : R×M→ TM as a time-dependent smooth vector
field. Choose charts {(Ui, ϕi)} and trivializations {Ψi} and define F as in (5.1). To prove that
h 7→ Φh is differentiable, we need to show that there is a vector field Y ∈ X(M) such that

lim
t→0

1
t
|F (ωExp ◦ Φ)(h+ t, ·)− F (ωExp ◦ Φ)(h, ·)− tF (Y )|B,k = 0,

where | · |B,k is defined as in (5.2), and

lim
t→0

1
t
|F (ωExp ◦ Φ)(h+ t, ·)− F (ωExp ◦ Φ)(h, ·)− tF (Y )|s = 0,

where | · |s is the norm induced by 〈·, ·〉s defined in (5.2). We claim that he vector field defined
by Yp = d

du

∣∣
u=h

(ωExp ◦ Φ)(u, p) is the right candidate (obviously Y ∈ X(M)). Letting ξi be a
local representative of ωExp ◦ Φ with respect to Ψi and ϕi as in (5.1), it suffices to show that

lim
t→0

max
0≤l≤k

sup
x∈Bn

1
t
‖Dlξi(h+ t, x)−Dlξi(h, x)− tDl d

du

∣∣∣
u=h

ξi(u, x)‖ = 0 (5.8)

and

lim
t→0

max
0≤l≤s

1
t

∫
Bn

〈
Dlξi(h+ t, x)−Dlξi(h, x)− tDl d

du

∣∣∣
u=h

ξi(u, x),

Dlξi(h+ t, x)−Dlξi(h, x)− tDl d

du

∣∣∣
u=h

ξi(u, x)
〉
dx = 0.

(5.9)

To see (5.8), let t̃ = (t, 0, . . . , 0) and let D̃ denote the total derivative on the space C1(Rn+1, Rn)
Then, by Taylor’s Theorem [1] and smoothness of ξi it follows that

ξi(h+ t, x)− ξi(h, x)− t d
du

∣∣∣
u=h

ξi(u, x)

= ξi(h+ t, x)− ξi(h, x)− D̃ξi(h, x)(t̃)

= D̃2ξi(h, x)(t̃, t̃) +R(h, x, t̃)(t̃, t̃),

where both D̃2ξi and R are smooth. Hence

lim
t→0

max
0≤l≤k

sup
x∈Bn

1
t
‖DlD̃2ξi(h, x)(t̃, t̃) +DlR(h, x, t̃)(t̃, t̃)‖ = 0,

where DlD̃2ξi(h, x)(t̃, t̃) and DlR(h, x, t̃)(t̃, t̃) and are the l-th derivatives of

x 7→ D̃2ξi(h, x)(t̃, t̃) and x 7→ R(h, x, t̃)(t̃, t̃)

respectively, and we have shown (5.8). Now, (5.9) follows by similar reasoning. To show that
h 7→ Φh is infinitely smooth we observe that ωExp ◦ Φ is infinitely smooth and since Yp =
d
du

∣∣
u=h

(ωExp ◦ Φ)(u, p) we may argue as above using Taylor’s theorem and deduce smoothness.
We are now done with the first part of the proof. Since we have established above that for q ∈M
we have (

d

dh

∣∣∣
h=0

Φh

)
(q) =

d

dh

∣∣∣
h=0

(ωExp ◦ Φ)(h, q),
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the last assertion of the theorem is straightforward, as seen by the following calculation(
d

dh

∣∣∣
h=0

Φh

)
(q) =

d

dh

∣∣∣
h=0

(ωExp ◦ Φ)(h, q)

=
d

dh

∣∣∣
h=0

exp−1
q (Φh(q))

= (exp−1
q )∗

d

dh

∣∣∣
h=0

Φh(q)

=
d

dh

∣∣∣
h=0

Φh(q).

Let D1(M) be the set of C1 diffeomorphisms onM (a compact manifold) and let Diffs(M) =
D1(M) ∩Hs(M), for s > dim(M)/2 + 1, Then Diffs(M) is open in Hs(M) ([6] p. 107) and

Diffs(M) = {ψ ∈ Hs(M) : ψ is bijective, ψ−1 ∈ Hs(M)}. (5.10)

Since Diffs(M) is an open subset of Hs(M), it naturally inherits its smooth manifold structure
from Hs(M). Throughout the paper Diffs(M) will denote the set in (5.10) with this smooth
structure. We immediately get the following.

Corollary 5.3. Let M be a compact manifold and let Φh be an integrator on M. Then there
exists a neighborhood U ⊂ Diffs(M), where s > dim(M)/2 + 1, such that the mapping R 3 h 7→
Φh ∈ U is smooth for sufficiently small h and(

d

dh

∣∣∣
h=0

Φh

)
(q) =

d

dh

∣∣∣
h=0

Φh(q), q ∈M.

Proof. Follows immediately from Theorem 5.2

The next theorem describes the smoothness of the group operations: multiplication and
invertion on Diffs(M).

Theorem 5.4. [20] For s > dim(M)/2 + 1 it follows that Diffs(M) is a smooth infinite-
dimensional manifold and a Lie group in the following sense: For g ∈ Diffs(M), right multipli-
cation is C∞ as a map

Rg : Diffs(M)→ Diffs(M), Rg(f) = f ◦ g.

Left multiplication is Ck as a map

Lg : Diffs+k(M)→ Diffs(M), Lg(f) = g ◦ f.

The group multiplication µ is Ck as a map

µ : Diffs+k(M)×Diffs(M)→ Diffs(M), µ(f, g) = f ◦ g.

The inversion ν is Ck as a map

ν : Diffs+k(M)→ Diffs(M), ν(f) = f−1.

5.4 Alternative definition of the tangent space at the identity

Similarly to the discussion in the previous section one may consider submanifolds of Diffs(M).
We thus consider a symplectic 2-form on M and let

S = {ϕ ∈ Diffs(M) : ϕ∗ω = ω}. (5.11)

18



Then, according to [6], if s > 1
2dim(M) + 1 then S is a closed submanifold of Diffs(M) and

TidS = {X ∈ XsH(M) : LXω = 0}, (5.12)

where LXω denotes the Lie derivative of ω with respect to X.
Returning to Cartans subgroups of Diff(M), we are interested in determining the tangent

spaces at the identity for these subgroups of Diff(M). But not only that, we will see in the
upcoming discussion that there are subsets of Diff(M) without group structure that may be of
interest in geometric integration. The problem we are faced with when focusing on finding TidS
for some subset S ⊂ Diff(M), is that, to be rigorous (according to Definition 6), we must impose
a smooth structure on S. This can be quite technical and sometimes may be impossible. Note
that the crucial assumption in defining a smooth structure on Diffs(M) has been compactness
of M, and this is an assumption we would like to remove. Also, we are interested in very
specific subsets of Diff(M), namely subsets of one-parameter diffeomorphisms (integrators and
flow maps).

Our goal is therefore to find a definition of the tangent space at the identity of subsets of
integrators and flow maps that is independent of the choice of smooth structure on the set, and
also coincides with the usual definition on well-known examples. Note that by our definition
of integrator, it is superfluous to talk about integrators and flow maps, as a flow map is an
integrator.

Suppose that we should choose a heuristically and more intuitive definition of the tangent
space at the identity of (5.11) to obtain (5.12). A natural definition would be to consider the
collection of derivatives at zero of smooth curves R 3 t 7→ f(t) ∈ S, where f(0) = id i.e.

TidS = {X ∈ X(M) : X =
d

dt

∣∣∣
t=0

f(t), f(t) ∈ S, f(0) = id}.

Thus, if we consider the set S̃ ⊂ S defined by S̃ = {Φh ∈ S : Φh is an integrator}, a natural
definition of the tangent space at the identity of S̃ is

TidS̃ = {X ∈ X(M) : X =
d

dt

∣∣∣
h=0

Φh, Φh ∈ S̃},

where d
dt

∣∣
h=0

Φh would have been well defined by Corollary 5.3 had we considered the smooth
structure discussed in Section 5.3. But this definition is based on an underlying smooth structure
on S since the derivative d

dt

∣∣
h=0

Φh is defined as the derivative of the mapping h 7→ Φh ∈ S̃. To
get rid of that extra technicality we suggest the following

TidS̃ = {X ∈ X(M) : Xq =
d

dh

∣∣∣
h=0

Φh(q), Φh ∈ S̃, q ∈M}.

This definition does not depend on any smooth structure on S, it only depends on the smooth
structure on M as we take the derivative of the mapping h 7→ Φh(q) ∈M.

Note that it is not clear that with the latter definition that TidS̃ = {X ∈ X(M) : LXω = 0},
(even though that is the case, see Section 6) but if we consider the following subset of S̃, namely,
Ŝ = {θt ∈ S : θt is a flow map}, then obviously, by the formula for the Lie derivative

TidŜ = {X ∈ X(M) : LXω = 0}.

Thus our definition is compatible with (5.11) and (5.12). To be more formal, by the reasoning
above, we suggest the following definition.

Definition 7. Let S ⊂ Diff(M) be a set of integrators. Define the tangent space at the identity
by

TidS = {X ∈ X(M) : Xq =
d

dh

∣∣∣
h=0

Φh(q), Φt ∈ S, q ∈M}.

Note that the idea of defining the tangent space at the identity in this way was first (at least
to our knowledge) introduced by Reich in [19] for M = Rn. The requirement that M = Rn
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is irrelevant for the definition, however, and Reich should be credited for introducing such an
important tool. Note also that the name “tangent space” used here is a slight abuse of language
as there is no restriction on S and therefore TidS may not be a vector space e.g. consider
S = {Φh} containing only one element. Then the vector field X defined by Xq = d

dt

∣∣
h=0

Φh(q)
is in TidS but tX, for t ∈ R, may not be in TidS as Φh may not be a flow map.

Remark 4 Note that if A = TidS there may exist S̃ such that S 6= S̃ and A = TidS̃. Consider
the following short argument. Let M = Rn and let ω be a symplectic 2-form on M. Let
A = {X ∈ X(M) : LXω = 0} and

S = {θt ∈ Diff(M) : θ∗tω = ω, θt is a flow map}.

Then A = TidS. Let X ∈ A and let the integrator Φh be Euler’s method applied to X and let
S̃ = S ∪ Φh. By consistency we have d

dh

∣∣
h=0

Φh(x) = Xx. Hence TidS̃ = A.

Throughout the paper we will be concerned with the question: Given S ⊂ Diff(M) and
X ∈ TidS will the flow map θX,t ∈ S. Note that this obviously not automatic as S may contain
only one element that is not a flow map (only an integrator). It is therefore important to
establish conditions on S such that the answer to the question above is affirmative. We will first
define a notion of closedness of S that does not depend on any smooth structure (and topology)
of Diff(M) (it only depends of the topology on M).

Definition 8. Let S ⊂ Diff(M) be a semi group. Then S is said to be closed iff for any
integrator Φh ⊂ S, then

Ψh(p) = lim
n→∞

Φh/n ◦ · · · ◦ Φh/n(p), (n times) p ∈M,

exists and Ψh ∈ S.

Proposition 5.5. Let S ⊂ Diff(M) be a semi group. Then S is closed iff for every X ∈ TidS
then the flow map θX,t ∈ S.

Proof. Let X ∈ X(M) be the vector field generated by Φh (i.e. Xp = d
dh

∣∣
h=0

Φh(p)). Note that
if M = Rn, it follows by the standard convergence proof of one-step methods [11] that

Ψh(p) = lim
n→∞

Φh/n ◦ · · · ◦ Φh/n(p), (n times) p ∈M, (5.13)

exists and also Ψh = θX,h (the flow map of X). To extend this result to a smooth manifold we
may use exactly the same embedding technique from the proof of Theorem 4.2 via the tubular
neighborhood as in (4.10) and eventually define a vector field as in (4.11) and then apply the
result in (5.13). We omit the details, however, conclude that (5.13) is valid for arbitrary smooth
manifolds. Note that since (5.13) is valid regardless of any assumptions on the closedness of S,
the assertion of the proposition follows.

6 Classification theory of integrators

In the following we will assume that X ∈ A ⊂ X(M) where A is a vector subspace of the
infinite-dimensional Lie algebra of vector fields onM. In addition we will assume that there is a
closed semigroup S ⊂ Diff(M) such that A = TidS. We will show that if the integrator Φh ∈ S
then the perturbed vector field X̃(h) ∈ A.

Theorem 6.1. Suppose that X ∈ A ⊂ X(M) where A is a linear subspace. Let S ⊂ Diff(M)
be a semigroup that is closed in the sense of Definition 8 such that A = TidS. Suppose also that
the integrator Φh ∈ S for all h. Then the perturbed vector field X̃(h) ∈ A and the flow map θ eX,h
of X̃(h) is also in S.
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Proof. Let {Xj} be the family of vector fields from Theorem 4.1. It suffices to show that Xj ∈ A
for all j ∈ N. We do so by induction. Suppose that Xj ∈ A for i ≤ j. We will show that Xj+1 ∈ A.
To to that we need to show that there is a one-parameter family of diffeomorphisms Ψh ∈ S
such that, for p ∈M, we have Xj+1(p) = d

dh

∣∣
h=0

Ψh(p). Let X̃j = X1 +hX2 + . . .+hj−1Xj . We
claim that

Ψh = θ−1eXj ,h1/(1+j) ◦ Φh1/(1+j)

is the right candidate. Note that it is not clear (because of the root) that Ψh is smooth at h = 0,
but that is part of the proof. However, Ψh ∈ S, indeed, by the induction assumption and the
assumption that A is a vector space we have θ−1eXj ,t

= θ− eXj ,t
∈ S, so since Φh ∈ S and by the

semigroup hypothesis the assertion follows. Let (U,ϕ) be a chart on M, and let Ỹj and {Yj}
be the vector fields induced by ϕ, X̃j and {Xj}. By the construction of {Xj} it suffices to show
that d

dh

∣∣
h=0

Ψ̂h(x) = Yj+1(x), where Ψ̂h is a local representative of Ψh with respect to ϕ, and
x ∈ ϕ(U). To see this, note that by the construction of {Xj} and Taylor’s theorem it follows
that

Φ̂h(x) = θeYj ,h
(x) + hj+1Yj+1(x) + hj+2Z(x, h),

where Φ̂h is the local representative of Φh with respect to ϕ and Z is some smooth mapping.
This gives, again by Taylor’s theorem, that there is a smooth mapping R : Rn×Rn → L2

sym(Rn)
such that

θ−1eYj ,h
◦ Φ̂h(x) = θ−1eYj ,h

(θeYj ,h
(x) + hj+1Yj+1(x) + hj+2Z(x, h))

= x+Dθ−1eYj ,h
(x)W (x, h) +D2θ−1eYj ,h

(x)(W (x, h),W (x, h))

+R(θeYj ,h
(x),W (x, h))(W (x, h),W (x, h)),

(6.1)

where W (x, h) = hj+1Yj+1(x) + hj+2Z(x, h). It is easy to see (by smoothness) that

‖D2θ−1eYj ,h
(x)(W (x, h),W (x, h))

+R(θeYj ,h
(x),W (x, h))(W (x, h),W (x, h))‖ = O(hj+2), h→ 0.

And also, since θ−1eYj ,h
is a flow map, it follows that Dθ−1eYj ,h

(x) = I +O(h) as h→ 0. Hence

θ−1eYj ,h
◦ Φ̂h(x) = x+ hj+1Yj+1(x) +O(hj+2), h→ 0.

Hence,

Yj+1(x) = lim
h→0

θ−1eYj ,h1/(1+j) ◦ Φ̂h1/(1+j)(x)− x

h
=

d

dh

∣∣∣
h=0

Ψ̂h(x).

The fact that X1 = X ∈ A completes the induction and we are done.

In a later section we will treat the case where S is not a subgroup, but has some other
structure. However, a natural question to ask is: does S have to have any structure at all? The
answer is affirmative as the following example shows.

Example 6.2. We follow the reasoning in Remark 4 and let ω be a symplectic 2-form on
M = Rn. Also, we have the subspace A = {X ∈ X(M) : LXω = 0} and

S = {θt ∈ Diff(M) : θ∗tω = ω, θt is a flow map}.

Then A = TidS. If X ∈ A and Φh is Euler’s method (forward Euler) applied to X and we let
S̃ = S ∪ Φh then

d

dh

∣∣∣
h=0

Φh(x) = Xx and TidS̃ = A.

Thus, if we relax the semigroup hypothesis in Theorem 6.1 and assume no structure on the set,
then S̃ is a set and TidS̃ = A so, if Theorem 6.1 was true without the semigroup assumption,
the perturbed vector field of Euler’s method would be symplectic. It is easy to find examples of
symplectic vector fields such that the perturbed vector field of Euler’s method is not symplectic
and thus we have a contradiction.
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Subsets of Diff(M) Subsets of X(M)
Let ω ∈ Ω2(M) be symplectic.
{Φh ∈ Diff(M) : Φ∗hω = ω} {X ∈ X(M) : LXω = 0}

{Φh ∈ Diff(M) : Φ∗hω = cΦh
ω} {X ∈ X(M) : LXω = βXω}

Let µ ∈ Ωn(M) be a volume form.
{Φh ∈ Diff(M) : Φ∗hµ = µ} {X ∈ X(M) : LXµ = 0}

{Φh ∈ Diff(M) : Φ∗hµ = cΦh
µ} {X ∈ X(M) : LXµ = βXµ}

Let α ∈ Ω1(M) be a contact form.
{Φh ∈ Diff(M) : (Φ∗hα)p = cΦh

(p)αp} {X ∈ X(M) : (LXα)p = βX(p)αp}
Let f ∈ C∞(M).

{Φh ∈ Diff(M) : f ◦ Φh = f} {X ∈ X(M) : f∗X = 0}
Let σ : Diff(M)→ Diff(M)

be a smooth homomorphism.
{Φh ∈ Diff(M) : σ(Φh) = Φ−1

h } {X ∈ X(M) : σ∗X = −X}

Table 1: Subsets of diffeomorphisms with corresponding candidates for the tangent spaces at
the identity.

Remark 5 Note that Theorem 6.1 is just Theorem 1 in [19] with Rn replaced by a general
manifoldM and the additional assumption that S is a semigroup. The previous example shows
that Theorem 1 in [19] is incomplete. Note also that Theorem 1 was also originally formulated
in a technical report [17] in the language of groups of diffeomorphisms and Lie algebras of vector
fields.

We are now ready to make use of Theorem 6.1 in analyzing geometric properties of the
perturbed vector field. To be able to utilize Theorem 6.1 we therefore need to determine the
tangent space at the identity for the desired subsets of Diff(M). Table 6 shows several subsets of
Diff(M), that may be of some interest in Geometric Integration, with corresponding subspaces
that are candidates for being the tangent space at the identity for the corrsponding subsets. We
intend to prove that these subspaces actually are the correct tangent spaces.

As Table 6 shows, the Lie derivative is crucial in computing the tangent space at the identity
in several interesting examples. The following result is therefore crucial

Proposition 6.3. Let M be a smooth manifold and let Φt be an integrator. Suppose that
X = X(M) and d

dt

∣∣
t=0

Φt(p) = Xp for p ∈M. Let τ be a smooth covariant k-tensor field on M.
Then

(LXτ)p = lim
t→0

Φ∗t (τΦt(p))− τp
t

.

Proof. Let θt be the flow map of X. Then, for p ∈M we have

(LXτ)p = lim
t→0

θ∗t (τθt(p))− τp
t

,

thus the assertion will be evident if we can show that there is a C > 0 such that for X1, . . . Xk ∈
TpM we have

|Φ∗t (τΦt(p))(X1, . . . Xk)− θ∗t (τθt(p))(X1, . . . Xk)| ≤ Ct2, (6.2)

for sufficiently small t. We will prove this. Let (U,ϕ) be a chart containing p then, in these
coordinates, τ will have the form

τ = τi1...ikdx
i1 ⊗ . . .⊗ dxik ,

where τi1...ik :M→ R is a smooth function.
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Note that the assertion (6.2) becomes evident were we to show that there is a C > 0 such
that

|τi1...ik(Φt(p))− τi1...ik(θt(p))| ≤ Ct2 (6.3)

and

|dxi1
∣∣
θt(p)
⊗ . . .⊗ dxik

∣∣
θt(p)

((θt)∗X1, . . . , (θt)∗Xk)

− dxi1
∣∣
Φt(p)

⊗ . . .⊗ dxik
∣∣
Φt(p)

((Φt)∗X1, . . . , (Φt)∗Xk)| ≤ Ct2
(6.4)

for sufficiently small t. Let θ̃t = ϕ ◦ θt ◦ ϕ−1 and let {ej} be the usual basis for Rn such that
∂
∂xj

= ϕ−1
∗ ej . Also, let Xl = ajl

∂
∂xj

, where 1 ≤ l ≤ k. Then

dxi1
∣∣
θt(p)

⊗ . . .⊗dxik
∣∣
θt(p)

((θt)∗X1, . . . , (θt)∗Xk)

= dxi1
∣∣
θt(p)

⊗ . . .⊗ dxik
∣∣
θt(p)

(aj1(θt)∗
∂

∂xj

∣∣∣
p
, . . . , ajk(θt)∗

∂

∂xj

∣∣∣
p
)

= dxi1
∣∣
θt(p)

⊗ . . .⊗ dxik
∣∣
θt(p)

(aj1ϕ
−1
∗ (θ̃t)∗ej , . . . , a

j
kϕ
−1
∗ (θ̃t)∗ej)

= dxi1
∣∣
θt(p)

⊗ . . .⊗ dxik
∣∣
θt(p)

(aj1ϕ
−1
∗ bµj (t)eµ, . . . , a

j
kϕ
−1
∗ bµj (t)eµ)

= (aj1b
µ
j (t)δi1µ ) . . . (ajkb

µ
j (t)δikµ )

= (aj1b
i1
j (t)) . . . (ajkb

ik
j (t)),

where bµj : R→ R, bµj (t)eµ = (θ̃t)∗ej and δiµ is the Kronecker delta. Let Φ̃t = ϕ ◦Φt ◦ϕ−1. Then
by exactly the same calculation as above we get

dxi1
∣∣
Φt(p)

⊗ . . .⊗ dxik
∣∣
Φt(p)

((Φt)∗X1, . . . , (Φt)∗Xk) = (aj1c
i1
j (t)) . . . (ajkc

ik
j (t)),

where cµj : R → R and cµj (t)eµ = (Φ̃t)∗ej . Thus, to show (6.4) we only need to show that
cµj (t)− bµj (t) = O(t2), which is easily seen to follow if ‖(Φ̃t)∗ − (θ̃t)∗‖ = O(t2). To see the latter;
note that, by our assumption and by Taylor’s theorem, we have Φ̃t(x) = x+ tX̃(x)+ t2Y1(x) and
θ̃t(x) = x+ tX̃(x) + t2Y2(x), where X̃ is the vector field induced by X and ϕ, and Yi : Rn → Rn
is smooth. Hence, taking derivative with respect to x and possibly restricting to a compact
domain yield the assertion. Note that (6.3) follows by the fact that Φ̃t(x) − θ̃t(x) = O(t2) and
smoothness of τi1...ik .

Throughout this section we will use (as opposed to the notation in section 5.3) the notation
C∞(N ) for C∞(N ,R) when N is a smooth manifold.

Corollary 6.4. Let τ ∈ Ωk(M) be a smooth k-form. Let

S1 = {Φt : Φ∗t τ = τ}, S2 = {Φt : Φ∗t τ = cΦ(t)τ, cΦ ∈ C∞(R)}

and S3 = {Φt : (Φ∗t τ)p = cΦ(t, p)τ, cΦ ∈ C∞(R×M)}. Also, let

A1 = {X ∈ X(M) : LXτ = 0}, A2 = {X ∈ X(M) : LXτ = αXτ, αX constant}

and A3 = {X ∈ X(M) : LXτ = αXτ, αX ∈ C∞(M)}. Then TidS1 = A1, TidS2 = A2 and
TidS3 = A3

Proof. Let Φt ∈ S2 and X = d
dt

∣∣
t=0

Φt. Then, by Proposition, 6.3

LXτ = lim
t→0

Φ∗t (τΦt(p))− τp
t

= c′Φ(0)τp,

where the last equality follows by our assumption, so X ∈ A and hence TidS2 ⊂ A2. The
inclusions TidS1 ⊂ A1 and TidS3 ⊂ A3 follow similarly. As for the other inclusion, let X ∈ A2
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and θt be the flow map of X. Then, for p ∈ M and X1, . . . , Xn ∈ TpM we have the following
differential equation

d

dt

∣∣∣
t=t0

θ∗t (τθt(p))(X1, . . . , Xn) = θ∗t0

(
(LXτ)θt0 (p)

)
(X1, . . . , Xn)

= αX(θt0(p))
(
θ∗t0τθt0 (p)

)
(X1, . . . , Xn).

Thus, θ∗t (τθt(p))(X1, . . . , Xn) must satisfy

θ∗t (τθt(p))(X1, . . . , Xn) = eβX(t,p)τp(X1, . . . , Xn),

where βX(t, p) =
∫ t

0
αX(θs(p)) ds. Hence, θt ∈ S2. The inclusions A1 ⊂ TidS1 and A3 ⊂ TidS3

follow similarly.

Corollary 6.5. Let X ∈ X(M) and τ ∈ Ωk(M). Let Φh be an integrator for X.

(i) If LXτ = 0 and Φ∗hτ = τ then the perturbed vector field X̃(h) satisfies L eXτ = 0.

(ii) If LXτ = αXτ and Φ∗hτ = cΦ(h)τ, where c is smooth, then the perturbed vector field X̃(h)
satisfies L eXτ = αX̃τ.

(iii) If LXτ = αXτ where αX ∈ C∞(M) (Φ∗hτ)p = cΦ(h, p)τ, cΦ ∈ C∞(R ×M)}, then the
perturbed vector field X̃(h) satisfies L eXτ = α eXτ where αX ∈ C∞(M)

Proof. Note that the sets S1, S2, S3 from Corollary 6.4 are easily seen to be groups and they are
in fact closed in the sense of Definition 8 (this is easily seen from the proof of Corollary 6.4 and
the statement of Proposition 5.5). The corresponding sets A1, A2, A3 are vector spaces, a fact
easily seen from Cartan’s formula. Thus, the assertion follows by Theorem 6.1.

We can now prove the main theorem.

Theorem 6.6. Let X ∈ X(M) with corresponding flow map θt, and let Φh be a numerical
integrator for X with corresponding perturbed vector field X̃(h) and flow map θ̃t. Then

(i) if ω is a symplectic 2-form on M such that θ∗tω = ω and Φ∗hω = ω then the perturbed
vector field X̃(h) is symplectic i.e. it satisfies L eX(h)ω = 0, and θ̃∗tω = ω.

(ii) if µ is a volume form on M such that θ∗t µ = µ and Φ∗hµ = µ then the perturbed vector field
X̃(h) is divergence-free i.e. it satisfies div X̃(h) = 0, and θ̃∗t µ = µ.

(iii) if ω is a symplectic 2-form on M such that θ∗tω = α(t)ω and Φ∗hω = β(h)ω, where α, β :
R→ R are smooth, then the perturbed vector field X̃(h) satisfies L eX(h)ω = ρω, where ρ is

a real constant and θ̃∗tω = α̃(t)ω, where α̃ is smooth.

(iv) if µ is a volume form on M such that θ∗t µ = α(t)µ and Φ∗hµ = β(h)µ, where α, β : R→ R
are smooth, then the perturbed vector field X̃(h) satisfies L eX(h)µ = ρµ, where ρ is a real

constant and θ̃∗t µ = α̃(t)µ, where α̃ is smooth.

(v) if τ is a contact 1-form on M such that (θ∗t τ)p = α(t, p)τ and (Φ∗hτ)p = β(h, p)τ, where
α, β ∈ C∞(R × M) then the perturbed vector field X̃(h) satisfies L eX(h)τ = ρτ, where

ρ ∈ C∞(M) and θ̃∗t τ = α̃(t, p)τ, where α ∈ C∞(R×M).

(vi) if f :M→ R is a smooth function such that f∗X = 0 and f ◦Φh = f. Then the perturbed
vector field X̃(h) satisfies f∗X̃(h) = 0 and f ◦ θ̃t = f.
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Proof. (i)–(v) follow from corollary 6.5 and its proof as well as Theorem 6.1. To show (vi), note
that

S = {ϕt : f ◦ ϕt = f}

is obviously a closed semigroup in the sense of Definition 8 and it is easily seen that

TidS = {X ∈ X(M) : f∗X = 0}

and the latter is a vector space. Hence, appealing to Theorem 6.1 yields our assertion.

Remark 6 Note that (i) in Theorem 6.6 is important for the study of integration of Hamiltonian
vector fields, however, symplectic vector fields are only locally Hamiltonian. It is therefore of
interest to understand when one can expect to get globally Hamiltonian modified vector fields.
It is well known [13] that every locally Hamiltonian vector field on M is globally Hamiltonian
if and only if H1

dR(M) = 0, where H1
dR(M) denotes the 1st de Rham cohomology group of the

manifold.

7 Smooth homomorphisms and their anti fixed points

In the previous section we considered subsets of Diff(M) that are semigroups. It turns out
that there are interesting examples that do not fit into the previous framework. One of these
examples are anti-fixed points of smooth homomorphisms and this is the theme in this section. By
a smooth homomorphism we mean a C1 mapping σ : Diffs+k(M)→ Diffs(M), (recall (5.10) for
the definition of Diffs(M)) where s > 1

2dim(M)+1 and k ≥ 0, such that σ(Ψ◦Φ) = σ(Ψ)◦σ(Φ).
An anti-fixed point of σ is an element Φ ∈ Diff(M) such that σ(Φ) = Φ−1. Recall also Xs+kH (M)
from Theorem 5.1.

An example of such a smooth homomorphism is the following. Let ρ : M → M be a
diffeomorphism and denote the mapping

Ψ 7→ ρ ◦Ψ ◦ ρ−1 (7.1)

by σ. Note that this is a homomorphism on Diff(M), since σ(Ψ ◦ Φ) = σ(Ψ) ◦ σ(Φ). Also, by
Theorem 5.4, σ is Ck as a map

σ : Diffs+k(M)→ Diffs(M).

Theorem 7.1. LetM be a compact manifold, s > 1
2dim(M)+1 and k ≥ 0. Let X ∈ X(M) with

corresponding flow map θt and let Φh be an integrator for X. Let σ : Diffs+k(M) → Diffs(M)
be a C1 group homomorphism and define

S = {ϕ ∈ Diffs+k(M) : σ(ϕ) = ι(ϕ−1)},

A = {X ∈ Xs+kH (M) : σ∗X = −ι∗X},

where ι : Diffs+k(M)→ Diffs(M) is the inclusion map. Suppose that θt ∈ S. If Φh ∈ S then the
modified vector field X̃(h) ∈ A and θ̃t ∈ S, where θ̃t is the flow map of X̃(h).

Proof. The proof is similar to the proof of Theorem 6.1. Let

S̃ = {Φh ∈ S : Φh is an integrator}, Ã = A ∩ X(M).

We will first show that Ã = TidS̃. To see that TidS̃ ⊂ Ã, let Ψh ∈ S̃ be an integrator. To get
the desired inclusion we have to show that

σ∗(
d

dh

∣∣∣
h=0

Ψh) = − d

dh

∣∣∣
h=0

Ψh, (7.2)

where d
dh

∣∣
h=0

Ψh is well defined because of Corollary 5.3.

25



To see this, for any chart (U,ϕ) let Ψ̃h = ϕ ◦ Ψh ◦ ϕ−1. Let Y = d
dh

∣∣
h=0

Ψh and Ỹ be
the vector field induced by ϕ and Y . By Taylor’s Theorem and a little manipulation we have
Ψ̃−1
h (y) = y − hỸ (y) + O(h2), where y ∈ ϕ(U), and thus, by Corollary 5.3, d

dh

∣∣
h=0

Ψ−1
h = −Y.

Hence, we have

σ∗Y =
d

dh

∣∣∣
h=0

σ(Ψh) =
d

dh

∣∣∣
h=0

Ψ−1
h = −Y,

and this yields (7.2). To get the inclusion TidS̃ ⊃ Ã we must show that for Y ∈ Ã the corre-
sponding flow map satisfies σ(θY,t) = θ−1

Y,t. To see that, note that by Corollary 5.3 t 7→ θY,t ∈
Diffs+k(M) is smooth so t 7→ σ(θY,t) ∈ Diffs(M) is smooth and

d

dt

∣∣∣
t=0

σ(θY,t) = σ∗
d

dt

∣∣∣
t=0

θY,t = σ∗Y = −Y.

Thus, σ(θY,t) is the flowmap of −Y and hence σ(θY,t) = θ−Y,t = θ−1
Y,t. Note that we have shown

more than just Ã = TidS̃, we have also shown that for X ∈ Ã then the flow map θX,t ∈ S̃.
We can now proceed as in the proof of Theorem 6.1. The Theorem will follow if we can

show that X̃(h) ∈ A. The proof is by induction. Now for sufficiently small h > 0 let X̃i(h) =
X1 + hX1 + . . . + hi−1Xi where Xj is constructed as in the proof of Theorem 4.1. Suppose
X̃j ∈ Ã for all j ≤ i for some j. We will show that Xi+1 ∈ Ã, thus we need to show that
σ∗(Xi+1) = −Xi+1, which we will do.

Let θi be the flow map of X̃i(h). Let θ̂i,t = θi,t1/(1+i) and Φ̂t = Φt1/(1+i) . We will need the
following fact

Xi+1 =
d

dt

∣∣∣
t=0

θ̂−1
i,t ◦ Φ̂t and −Xi+1 =

d

dt

∣∣∣
t=0

θ̂i,t ◦ Φ̂−1
t . (7.3)

Suppose for a moment that (7.3) is true. Then

σ∗(Xi+1) = σ∗(
d

dt

∣∣∣
t=0

θ̂−1
i,t ◦ Φ̂t)

=
d

dt

∣∣∣
t=0

σ(θ̂−1
i,t ◦ Φ̂t)

=
d

dt

∣∣∣
t=0

σ(θ̂−1
i,t ) ◦ σ(Φ̂t)

=
d

dt

∣∣∣
t=0

θ̂i,t ◦ Φ̂−1
t = −Xi+1,

where the second to last equality follows by the induction hypothesis on Xi and the proved fact
that Ã = TidS̃. Thus, to conclude the argument we only have to show (7.3).

It suffices to show (7.3) in local coordinates. Let (U,ϕ) be a chart on M, and let Φ̃h =
ϕ ◦ Φh ◦ ϕ−1 and θ̃i,h = ϕ ◦ θi,h ◦ ϕ−1. Let X̂i+1 be the vector field on ϕ(U) induced by Xi+1

and ϕ. By the construction of X̃i(h) it follows that for y ∈ ϕ(U) we have

Φ̃h(y) = θ̃i,h(y) + hi+1X̂i+1(y) +O(hi+2),

Φ−1
h (y) = θ̃−1

i,h(y)− hi+1X̂i+1(y) +O(hi+2).

So, by arguing as in the proof of Theorem 6.1, we get

θ̃−1
i,h ◦ Φ̃h(y) = y + hi+1X̂i+1(y) +O(hi+2)

θ̃i,h ◦ Φ̃−1
h (y) = y − hi+1X̂i+1(y) +O(hi+2).

Let t = hi+1. Then

X̃i+1 = lim
t→0

θ̃−1
i,t(1/1+i) ◦ Φ̃t(1/1+i) − id

t
=

d

dt

∣∣∣
t=0

θ̃−1
i,t(1/1+i) ◦ Φ̃t(1/1+i) .

And similarly we get −X̃i+1 = d
dt

∣∣∣
t=0

θ̃i,t(1/1+i) ◦ Φ̃−1
t(1/1+i) , proving (7.3). The fact that X̃1 = X ∈

A completes the induction.

26



Corollary 7.2. Let M be a compact manifold. Let X ∈ X(M) and let Φt be a numerical
integrator for X. Suppose that σ is defined as in (7.1) and that σ(θX,h) = θ−1

X,h and σ(Φh) = Φ−1
h

then the perturbed vector field X̃(h) of Φh satisfies σ∗X̃(h) = −X̃(h) and σ(θ̃X,t) = θ̃−1
X,t, where

θ̃ is the flow of X̃(h).

Proof. Follows from Theorems 5.4 and 7.1.

Remark 7 Note that there is a difference in the prerequisites needed for Theorem 7.1 and
Theorem 6.6. In particular, Theorem 7.1 must use the existence of some smooth structure on
Diff(M), however, Theorem 6.6 does not rely on this. Recall that the essence of Theorem 7.1
and its proof is

σ : Diffs+k(M)→ Diffs(M),

a C1 group homomorphism and also

S = {ϕ ∈ Diffs+k(M) : σ(ϕ) = ι(ϕ−1)}, A = {X ∈ Xs+kH (M) : σ∗X = −ι∗X},

where ι : Diffs+k(M)→ Diffs(M) is the inclusion map. Now by letting

S̃ = {Φh ∈ S : Φh is an integrator}, Ã = A ∩ X(M),

one shows that Ã = TidS̃. It is in this process the results in 5.3 are absolutely necessary. Note
that the tangent map σ∗ (or the derivative) is not even defined without a smooth structure on
Diff(M). The necessity of the framework in 5.3 may not be clear at first glance when considering
question (vii) from Section 2.2, however, after realizing that Ã = TidS̃ and that the modified
vector field is in A provided that the integrator is in S, this becomes clear. Comparing with
Theorem 6.6 one realizes that the smooth structure of Diff(M) is not needed at all. However,
the formula for the Lie-derivative in Proposition 6.3 is absolutely crucial.
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