
WHEN CAN YOU TRUST FEATURE SELECTION? – I: A CONDITION-BASED ANALYSIS OF
LASSO AND GENERALISED HARDNESS OF APPROXIMATION

ALEXANDER BASTOUNIS, FELIPE CUCKER, AND ANDERS C. HANSEN

ABSTRACT. The arrival of AI techniques in computations, with the potential for hallucinations and non-robustness, has
made trustworthiness of algorithms a focal point. However, trustworthiness of the many classical approaches are not
well understood. This is the case for feature selection, a classical problem in the sciences, statistics, machine learning
etc. Here, the LASSO optimisation problem is standard. Despite its widespread use, it has not been established when
the output of algorithms attempting to compute support sets of minimisers of LASSO in order to do feature selection
can be trusted. In this paper we establish how no (randomised) algorithm that works on all inputs can determine the
correct support sets (with probability > 1/2) of minimisers of LASSO when reading approximate input, regardless of
precision and computing power. However, we define a LASSO condition number and design an efficient algorithm for
computing these support sets provided the input data is well-posed (has finite condition number) in time polynomial in
the dimensions and logarithm of the condition number. For ill-posed inputs the algorithm runs forever, hence, it will
never produce a wrong answer. Furthermore, the algorithm computes an upper bound for the condition number when
this is finite. Finally, for any algorithm defined on an open set containing a point with infinite condition number, there
is an input for which the algorithm will either run forever or produce a wrong answer. Our impossibility results stem
from generalised hardness of approximation – within the Solvability Complexity Index (SCI) hierarchy framework –
that generalises the classical phenomenon of hardness of approximation.

1. INTRODUCTION

In the wake of the many AI-based algorithms throughout the society and the sciences, potentially yielding hal-
lucinations and instabilities [4, 23, 23, 24, 31, 34, 38, 40, 44, 46], the question of trustworthiness of algorithms is
now becoming a crucial topic. This is particularly true for government regulators, where the European Commis-
sion [52] has been particularly vocal about its demand for trust in algorithms. However, with this new focus on
trust in algorithms comes an important question: Which of the classical (non-AI-based) approaches are trustwor-
thy? For example, can solutions to the unconstrained LASSO feature/model selection problem be trustworthily
computed? See Remark 1.3 for a discussion of what one means by a trustworthy algorithm. The now classical
LASSO feature selection approach, initiated by Tibshirani [60] is now standard in large parts of the sciences and
is defined as follows, see also [15, 36, 37, 41].

Definition 1.1. For fixed λ ∈ Q, λ > 0, the unconstrained LASSO feature selection problem is the following:
given input ι = (y,A) with y ∈ Rm and A ∈ Rm×N , find the support of some vector in

SolUL(b, U) := argmin
x̂∈RN

∥Ax̂− y∥22 + λ∥x̂∥1. (1.1)

The output set for input (y,A) is therefore

Ξ(y,A) = {supp(x) |x ∈ argmin
x̂∈RN

∥Ax̂− y∥22 + λ∥x̂∥1} (1.2)

and we have Ξ(y,A) ⊆ BN where B = {0, 1}.

Remark 1.2 (Model of computation – Inexact input). In practice, when trying to compute an element of Ξ(y,A)

in (1.2), we must assume that the A and y are given inexactly. This is because either we have: (1) an irrational
input; or (2) the input is rational (for example 1/3), but our computer expresses numbers in a certain base (typically
base-2); (3) the computer uses floating-point arithmetic for which – in many cases – the common backward-error

1

analysis (popularized by Wilkinson [64]) translates the accumulation of round-off in a computation into a single-
perturbation of the input data. Hence, in the sequel, we assume that algorithms access the input to whatever finite
precision desired and that all computational operations are done exactly.

The key questions we address in this paper are the following:

When do there exist algorithms that can compute a support set in Ξ(y,A), when (y,A) are
given inexactly (yet with arbitrary large precision)? If trustworthy algorithms cannot exist for all
inputs, when can we guarantee trustworthy computations?

These questions touch on condition numbers, generalised hardness of approximation and robust optimisation.

Remark 1.3 (Trustworthiness of algorithms). By ’trustworthy algorithm’ for a computational problem, we mean
the following. If the computational problem takes only discrete values (as is the case when computing support
sets of minimisers of optimisation problems), a trustworthy algorithm will always produce a correct answer – if it
halts. If the computational problem takes non-discrete values, a trustworthy algorithm produces an output – if it
halts – that is at least ϵ ≥ 0 accurate in some predefined metric – for any ϵ > 0 given as input to the algorithm.

1.1. Condition and trustworthiness. The phenomenon of small imprecisions on the input data leading to sub-
stantial errors on the output of an algorithm is a classical challenge in numerical analysis. Indeed, this magni-
fication of the input error can in many cases be gauged by a notion of condition, which needs to be defined for
each individual problem. This is crucial in the developments of trustworthy algorithms — that is algorithms with
guaranteed error bounds. A condition number Cond is a map from the space of inputs to the interval [0,∞] that
defines the sensitivity to small perturbations, with high values indicating sensitive inputs. Condition numbers
were introduced independently by Turing [62] and von Neumann and Goldstine [63] in a pair of papers widely
considered the birth certificate of contemporary numerical analysis. The goal was to understand the effects of
finite precision in linear system solving to ensure trustworthy algorithms. Shortly after, condition numbers took
also a role in the computation of complexity bounds. See [16, Overture] for a global picture about this.

1.2. Generalised hardness of approximation (GHA) and robust optimisation. The program on robust opti-
misation, pioneered by A. Ben-Tal, L. El Ghaoui & Nemirovski [11, 12, 48] among others, provides a powerful
mathematical framework that addresses the challenge of optimisation given inaccuracies and uncertainty in the
input. This model, as argued in Remark 1.2, is more realistic in view of real life computations — compared
to models assuming exact computations — and aligns with S. Smale’s call for “[Computational] models which
process approximate inputs and which permit round-off computations” in the list of problems for the 21st cen-
tury [59]. Recent developments in this area intersect with generalisations of the phenomenon of hardness of
approximation [5], namely generalised hardness of approximation (GHA), initiated in [7] (see also [1, 3, 26, 29]
and Problem 5 (J. Lagarias) in [28] for further results on GHA). GHA in optimisation is the phenomenon where
one can easily compute an ϵ-approximation to a minimiser of the optimisation problem when ϵ > ϵ0 > 0, but
for ϵ < ϵ0 (the approximation threshold) it suddenly becomes impossible regardless of computing power and
accuracy on the input. This phase transition phenomenon was recently established [7,28] for computing minimis-
ers of the LASSO problem (1.1), and our impossibility results build on this framework and extend these results.
Robust optimisation is classically concerned with the problem of approximating the optimal value of the objective
function. However, a theory of robust optimisation for computing minimisers will necessarily include the GHA
phenomenon.

Remark 1.4 (Condition and GHA). Condition numbers are well-known to often provide sufficient conditions for
the existence of trustworthy algorithms in optimisation [16,19,53, 55–58]. J. Renegar’s seminal work [53,55–58]
on condition numbers in optimisation start with a definition of ill-posed problems, and then a natural condition
number is 1/(distance to the closest ill-posed problem). New developments demonstrate how, in certain situations,
the necessity of having finite standard condition numbers in order to obtain trustworthy algorithms is not needed.

2

Indeed, the theory of GHA [1,3,7,26,29] demonstrate examples of classes of optimisation problems in the sciences
that have infinite condition numbers that are standard in optimisation, yet efficient and trustworthy algorithms can
handle the problems.

For linear programs and basis pursuit problems restricted to an input class Ω with inputs ι = (y,A), where
A ∈ Rm×N satisfies the robust nullspace condition [1] of order s ≥ 1, with fixed parameters τ > 0 and ρ ∈
(0, 1), and y = Ax, where x is s-sparse, we have the following phenomenon [7]. There exists an algorithm that
can compute approximate minimisers of the optimisation problem when A and y are given with inexact input.
Moreover, such approximate minimisers can be computed in polynomial time in the number of variables and
log(ϵ−1) where ϵ > 0 is the bound on the error of the approximate minimiser produced by the algorithm. As is
standard in linear programming [16], the set of ill-conditioned problems is the collection of problems with several
minimisers, yielding a condition number Cond for minimisers of linear programs. However, the set Ω contains
input elements ι = (y,A) for which the condition number Cond(ι) = ∞. In particular, there exist polynomial
time algorithms for vast input classes in the sciences for which classical condition numbers are infinite.

This suggests that the marriage of condition theory and GHA provide a much more refined theoretical frame-
work designed to understand when trustworthy and efficient algorithms can be designed. This paper is the first
step in this direction.

2. MAIN RESULT

Our paper continues the developments of condition in connection with GHA and provides both upper and lower
bounds. We define in Section 6 a condition number CUL that gauges the impact of numerical errors when using
feature selection via unconstrained LASSO. This quantity follows classical ideas of condition as the inverse of the
distance to ill-posedness (see for instance [20] for a close ancestor of CUL for linear programming). We provide
an alternative definition of CUL based on the Karush-Kuhn-Tucker (KKT) conditions in Section 7. Alongside the
condition of the data at hand, the cost of solving LASSO also depends of the size of the data. We will measure
this size with the following “truncated norms:”

[[(b, U)]]max := max {∥U∥max, ∥b∥∞, 1} , [[(y,A)]]S := max

m∑
i=1

N∑
j=1

|Aij |,
m∑
i=1

|yi|, 1

where ∥U∥max = maxi,j |Uij | and ∥b∥∞ = maxi |bi|.

Our main result is the following (we will make the meaning of “variable-precision approximations” precise in
Section 4).

Theorem 2.1. Consider the condition number CUL(b, U) defined in (6.1).

(1) We exhibit an algorithm Γ which, for any input pair (b, U) ∈ Rm × Rm×N , reads variable-precision
approximations of (b, U). If CUL(b, U) < ∞ then the algorithm halts and returns a correct value in
Ξ(b, U). The cost of this computation is

O
{
N3
[
log2

(
N2[[(b, U)]]2maxCUL(b, U)

)]2}
and the maximum number of digits the algorithm accesses is bounded by

O(
⌈
log2

(
max{λ+ λ−1, N, [[(b, U)]]S,CUL(b, U)}

)⌉
).

If, instead, CUL(b, U) = ∞ then the algorithm runs forever.
(2) The condition number CUL(b, U) can be estimated in the following sense: There exists an algorithm that

provides an upper bound on CUL(b, U), when it is finite, and runs forever when CUL(b, U) = ∞.
(3) If Ω ⊆ Rm × Rm×N is an open set and there is a (b, U) ∈ Ω with CUL(b, U) = ∞ then there is

no algorithm that, for all inputs (y,A) ∈ Ω, computes an element of Ξ(y,A) given approximations to
(y,A) ∈ Ω. Moreover, for any randomised algorithm Γran that always halts and any p > 1/2, there exists
a (y,A) ∈ Ω and an approximate representation (ỹ, Ã) (see §9) of (y,A) so that Γran(ỹ, Ã) /∈ Ξ(y,A)

with probability at least p.
3

If (b, U) ∈ Ω is computable, then the failure point (y,A) ∈ Ω above can be made computable.

Remark 2.2 (Our algorithm never produces wrong outputs). In terms of trustworthiness – which is the main
topic of this paper – our algorithm will never make a mistake. In the cases where it fails, it will simply run forever.
Note that according to Theorem 2.1, this is optimal for any algorithm that will work on open sets of inputs, as the
alternative to not halting is producing a wrong output when CUL(b, U) = ∞.

The complexity bound presented in Theorem 2.1 is pleasantly low, exhibiting a cubic dependence on N and
logarithmic dependence on both the size of the data and its condition number. It is worth highlighting that (3)
within Theorem 2.1 implies that our defined condition number effectively captures the challenging aspects of
solving unconstraint LASSO with open input sets. Indeed, open sets of inputs containing elements with an infi-
nite condition number inherently preclude the application of reliable algorithms. Our current approach does not
provide a means to determine when the condition number becomes infinite. Generally, it is widely believed that
discerning with finite precision whether a data has finite or infinite condition number is, in most cases, not possible
(cf. [54]). The estimate of this condition number is, for a broad class of problems, as challenging as solving the
underlying problem itself [21]. This insight was promptly recognized by von Neumann and Goldstine, prompting
them to address this issue in their sequel [30] to [63].

The proposed solution in that sequel, which has since become a commonly followed approach, involves imbu-
ing the data space with a probability measure and deriving probabilistic estimates for the condition number. These
estimates, in turn, lead to probabilistic bounds on complexity and accuracy. A sequel [6] of our paper proceeds
along these lines.

Remark 2.3 (Condition number and robust optimisation). Both the fields of condition in optimisation and
robust optimisation share a common objective: ensuring stable and precise computations even in the presence of
imprecise input data. However, historically, these two domains have often remained somewhat distinct within
mathematics. A reason for this is that robust optimisation has focused on computing the optimal value and not
the minimisers. As our negative results in Theorem 2.1 demonstrate, providing a theory about properties of
minimisers within robust optimisation, necessarily involves condition numbers. In particular, our results illustrate
how a theory of robust feature selection through optimization inherently links robust optimization and the theory
of condition.

2.1. Connection to previous work. Below follows an account of the connection to different areas and works that
are crucial for the paper.

Condition in optimisation: Condition numbers in computational mathematics and numerical analysis have been
a mainstay [27, 39] in order to secure trustworthy algorithms that are accurate and stable. In optimisation J.
Renegar has pioneered the theory of condition numbers [53, 55–58] both from the perspective of stability and
accuracy, but also from the perspective of efficiency of algorithms. All of these perspectives are covered in detail
in [16]. In addition, we want to mention the work of J. Peña [50, 51] as well as D. Amelunxen, M. Lotz, J.
Walvin [43], and D. Amelunxen, M. Lotz, M. McCoy, J. Tropp [2] see also [19, 20, 22].

GHA and robust optimisation: GHA [1, 3, 7, 26, 29] is in spirit (although mathematically very different) close
to hardness of approximation in computer science [5]. However, GHA in optimisation can be viewed as a part
of the program on robust optimisation (A. Ben-Tal, L. El Ghaoui & Nemirovski [11, 12, 48]) for computing
minimisers. It is also a part of the greater program on the mathematics behind the Solvability Complexity Index
(SCI) hierarchy, see for example the work by J. Ben-Artzi, M. Colbrook, M. Marletta [9, 10, 25, 35].

Trustworthy algorithms and computer assisted proofs: Trustworthy algorithms in optimisation go beyond sci-
entific computing and have important implications in computer assisted proofs in mathematics, where T. Hales’
proof of Kepler’s conjecture [32, 33] is a star example. The intricate computer assisted proof relies on comput-
ing around 50,000 linear programs with irrational inputs, which leads to the crucial problem of computing with
inexact inputs. The reader may also want to consult [28], in particular Problem 2 (T. Hou) and Problem 5 (J.
Lagarias) on

4

ϵ x1 x2 Features computed Features correctly computed

10−1 0 0.95 {2} Yes
10−2 0 0.95 {2} Yes
10−3 0 0.95 {2} Yes
10−4 0.45 0.5001 {1, 2} No
10−5 0.9 0.0500 {1, 2} No
10−6 0.945 0 {1} No

TABLE 1. The computation done in Example 3.1. Note that there is an error for ϵ = 10−4, 10−5

or 10−6.

a paper that discusses the tradition of developing algorithms that are 100% trustworthy and even suitable for
computer assisted proofs.

Algorithms for computing minimisers of LASSO: There is, of course, a variety of algorithms suitable for the
LASSO problem. We refer to the review articles by Nesterov & Nemirovski [49] and Chambolle & Pock [18],
and the references therein for a more complete overview. See also the work by Beck & Teboulle [8] and Wright,
Nowak & Figueiredo [66], and the references therein, as well as [1, 15, 65]. However, while these algorithms
can compute approximations to the objective function, they cannot – in general – compute the support sets of
minimisers of LASSO.

3. NUMERICAL EXAMPLES – FAILURE OF MODERN ALGORITHMS

Our first numerical example shows how this idea can work in practice.

Example 3.1. Assume that a dependent variable b depends on two features b1, b2 in the following way: b =

u1/(1 − ϵ) = u2 where the parameter ϵ ∈ (0, 1). In particular, b is strongly correlated with u2 and this is the
best predictor (using the lasso) for b. Suppose that we observe b, u1 and u2 and obtain the measurements u = 1,
and U =

(
u1 u2

)
=
(
1− ϵ 1

)
. The LASSO problem with input (b, U) has a unique solution x∗ with

supp(x∗) = {2} provided λ < 2. We tested the accuracy of LASSO solvers under finite precision by computing
solutions to the LASSO problem with λ = 10−1 in the following way: first, we used MATLAB’s lasso routine to
attempt to find a minimiser. Next, we set any values of this minimiser that were smaller in magnitude than 10−2 to
0 (not doing so would systematically lead to minimisers with full support). We then computed the support of the
resulting vector x. Table 1 presents the results for the computed vector x and its support. For small values of ϵ, the
execution was unable to identify the zero component of the true solution x∗ of the unconstrained LASSO problem.
There is, of course, a variety of algorithms suitable for the LASSO problem [17, 18], however, Theorem 2.1 is
universal, and thus for any algorithm there will be inputs for which the algorithm will fail.

An obvious extension of Example 3.1 is to move from the deterministic inputs of Example 3.1 to inputs chosen
according to a random distribution. We thus look at a simple random example, where we can once again compute
by hand the true solution and thus contrast with the output of the algorithm.

Example 3.2. Again we consider the single measurement case and set b = 1, and λ = 10−2 but this time we
assume that we observe N features, u1, . . . , uN , which are randomly and independently drawn according to either
the exponential distribution with parameter 1, the normal distribution with mean 1 variance 10−4, and the uniform
distribution on (0, 1). This purposefully simplified situation is considered because it is easy to derive the true
solution to the feature set induced by the solution of (1.1). We compare this answer (the ground truth) with the
following procedure: we use Matlab’s lasso routine to attempt to compute an element x in SolUL(b, U) and then
set any values of x larger in absolute value than a parameter ‘threshold’ to 0 and consider the resulting vector’s
support.

5

0
20

00
40

00
60

00
80

00
10

000
0

0.2

0.4

0.6

0.8

1 Exp(1)

N (1; 10!4)

U(0; 1)

0
20

00
40

00
60

00
80

00
10

000
0

0.2

0.4

0.6

0.8

1 Exp(1)

N (1; 10!4)

U(0; 1)

FIGURE 1. Outputs of the computation done in Example 3.2 – where each entry of U is IID
according to the distributions U(a, b) (uniform), Exp(ν) (exponential) and N (µ, σ2) (normal).
The task is to compute the support set of a LASSO minimiser i.e. an element in Ξ(b, U) from
(1.2) with λ = 10−2. The horizontal axis represents the dimension N . The vertical axis repre-
sents the success rate # of successes

of trials with threshold value – see the text accompanying in Example
3.2 – set to 10−3 and 10−12 for the left and right figures respectively.

We do this over five hundred randomly generated instances U = (u1, . . . , uN) for each choice of N ∈
{10, 20, . . . , 10010} inclusive. The results are presented in Figure 1. We see that for large N , the algorithm
is more accurate when data are drawn from an exponential distribution instead of this normal distribution and
similarly the algorithm is more accurate when data are drawn from a normal distribution instead of a uniform one.

4. PRELIMINARIES ON THE COMPUTATIONAL MODEL

To talk about algorithms and complexity it is necessary to fix a computational model. In our case, we can take
either a BSS machine [13, 14] or a Turing machine. The only assumption we will do on these machines is that
they can access arbitrarily precise approximations to the input data (and that the machine “knows” the precision of
these approximations). It is clear that otherwise, there would be no hope to return a correct output. It is also clear
that the cost of accessing one such approximation will have to depend of the precision required. We next specify
this.

We will assume that, for any pair (b, U) ∈ Rm × Rm×N we want to solve, the machine is given as input two
procedures GetMatrixU (), GetVectorb() taking themselves as input a natural number n ∈ N which return some
matrix Un and vector bn respectively such that

|Un
ij − Uij | ≤ 2−n, |bni − bi| ≤ 2−n for i = 1, 2, . . . ,m and j = 1, 2, . . . , N. (4.1)

The procedures GetMatrixU (), GetVectorb() are black boxes or oracles. We do not suppose any specific imple-
mentation for them, merely their correctness.

Of course, for any fixed (b, U) there are multiple choices of bn and Un satisfying (4.1). Crucially, the algorithm
must work for any such choice. That is to say, the algorithm has to work with whichever choice of bn or Un the
oracles return, it can only rely on the fact that (bn, Un) approximates (b, U) with a precision given by (4.1).
But to be consistent with both the BSS and Turing choices, we want Un and bn to have rational entries1. And
for complexity reasons (we will rely on existing algorithms for convex quadratic programming that take rational
inputs) we also want to control the bit-size of the entries of bn and Un. We now observe that for any x ∈ R and
n ≥ 1, we can compute a rational number x̃ such that |x̃− x| ≤ 2−n with

bit-size(x̃) ≤ ⌈log2(1 + |x|)⌉+ n. (4.2)

1This consistency refers to our algorithm in Theorem 2.1(1) which can be thought either as a Turing or a BSS algorithm as it works over
rational numbers. We note, however, that the complexity bound in the statement refers to the BSS setting. Also, part (3) of the theorem holds
for both Turing and BSS algorithms.

6

Hence, we will strengthen assumption (4.1) with the bounds (4.2) for the entries of Un
ij and bni .

Furthermore, the computation of x̃ above can be done with a cost of O(⌈log2(1 + |x|)⌉ + n) arithmetic oper-
ations. This suggests a natural cost of O(mN(log2(∥U∥max + 1) + n)) for a call to GetMatrixU (n) and one of
O(m(log2(∥b∥∞ + 1) + n)) for a call to GetVectorb(n). We will therefore adopt these costs.

We also make the assumption that λ ∈ Q and that the algorithm can access the value of λ exactly. This is
because this parameter is usually configurable by an end user working on the feature selection problem, and can
thus be chosen to be a rational number. This is not the case for b and U which are usually taken from real world
datasets and may be irrational. It goes without saying, at least in the Turing model, the bit-size p(λ) of λ affects
the cost of the computation. But for a fixed λ the bound in Theorem 2.1 holds. Nonetheless, we will explicitly
quantify this effect in Section 8.

In addition to [[(y,A)]]max we will also use the ℓp-norm ∥y∥p of y, the operator norms ∥A∥qr = sup∥x∥q=1 ∥Ax∥r
(writing ∥A∥q when q = r), and the additional ‘truncated norm’ [[(y,A)]]2 := max {∥A∥2, ∥y∥2, 1}.

5. STANDARD FACTS ABOUT THE UNCONSTRAINED LASSO

In this section we will describe some well-known facts about the unconstrained LASSO selector. We make no
claims to novelty — instead, this section exists only to supplement the rest of the article.

For a pair (y,A), let SolUL(y,A) be the set of solutions in RN to unconstrained LASSO with input (y,A).
More precisely, we set

SolUL(y,A) := argmin
x̂∈RN

∥Ax̂− y∥22 + λ∥x̂∥1.

Note that SolUL(y,A) is a set and not necessarily single valued: a priori, multiple vectors may minimise the
unconstrained LASSO functional. Then, we recall, Ξ(y,A) = {supp(x) | x ∈ SolUL(y,A)}.

The following facts are well-known:

(UL1): If x ∈ SolUL(y,A) we must have ∥Ax− y∥22, λ∥x∥1 ≤ ∥Ax− y∥22 + λ∥x∥1 ≤ ∥y∥22. Thus SolUL(y,A)

can be written equivalently as

SolUL(y,A) = argmin
x̂∈RN , ∥x̂∥1≤λ−1∥y∥2

2

∥Ax̂− y∥22 + λ∥x̂∥1.

For each fixed (y,A), this is a minimisation problem of a continuous function (of x̂) over a non-empty
compact region. Thus SolUL(y,A) is always non-empty and compact. This situation is different from that
of linear programming, where there exist inputs without optimal solutions.

(UL2): As the objective function (that is to say, the function mapping x̂ to ∥Ax̂ − y∥22 + λ∥x̂∥1) is convex, the
unconstrained LASSO problem is convex.

(UL3): As mentioned before, it is not necessary that the unconstrained LASSO problem has a unique minimiser.
However, as the problem is convex and the feasible region is non-empty, either there is a unique minimiser
or there are infinitely many minimisers. Understanding uniqueness will prove to be important to this paper
and has been examined in detail in [61].

(UL4): As argued in [61], if x1, x2 ∈ SolUL(y,A) then Ax1 = Ax2. Thus ∥Ax1 − y∥22 = ∥Ax2 − y∥22 and so
∥x1∥1 = ∥x2∥1.

(UL5): The KKT conditions are both necessary and sufficient. That is,

x ∈ SolUL(y,A) ⇐⇒ 2A∗(Ax− y) = −λ s(x)

where

(s(x))i

= 1 if xi > 0

= −1 if xi < 0

∈ [−1, 1] if xi = 0.

In particular, combining this with (UL4) we see that s(x) is constant over all x ∈ SolUL(y,A).

7

Remark 5.1. Note that s(x) is closely related to the sign function sgn, but is multivalued when applied to 0

whereas sgn(0) is traditionally defined to be 0. In fact, s(x) is the convex subdifferential of the ℓ1 norm applied
at x.

6. CONDITIONING OF UNCONSTRAINED LASSO

It is sensible to define a quantity that measures how variations in the input to a LASSO problem affect the
support of a solution. We thus define the stability support.

Definition 6.1. The stability support of a pair (y,A) is defined as

stsp(y,A) := inf
{
δ ≥ 0

∣∣∃ ỹ ∈ Rm, Ã ∈ Rm×N , x ∈ SolUL(y,A), and x̃ ∈ SolUL(ỹ, Ã)

such that ∥ỹ − y∥∞, ∥A− Ã∥max ≤ δ and supp(x) ̸= supp(x̃)
}
.

The stability support is therefore the distance to support change. If stsp(y,A) > 0 then there exists S ∈ BN

such that Ξ(y,A) = {S}. Furthermore, for all pairs (y′, A′) in a ball (w.r.t. the max distance) of radius stsp(y,A)

around (y,A) we have Ξ(y′, A′) = {S}. If, instead, stsp(y,A) = 0 then there are arbitrarily small perturbations
of (y,A) which yield LASSO solutions with different support.

The notion of stability support leads to a natural definition of condition for the unconstrained LASSO feature
selection problem.

Definition 6.2. For an input (y,A) to UL feature selection we define the condition number CUL(y,A) to be

CUL(y,A) =

 (stsp(y,A))−1 if stsp(y,A) ̸= 0

∞ otherwise.
(6.1)

The set ΣUL := {(y,A) | stsp(y,A) = 0} is the set of ill-posed inputs.

Remark 6.3. For scale-invariant problems it is common to define condition as the normalized inverse of the
distance to ill-posedness. That is, for a data a, as ∥a∥/d(a,Σ) where Σ denotes the set of ill-posed inputs, ∥ ∥
is some norm measuring the size of the input data and d is some distance metric, usually the one induced by
∥ ∥ (see [16, §6.1] for a discussion on this). The fact that UL is not scale invariant explains why the condition
number CUL is not normalized. To better understand this issue it is worth considering a simple example. Let us
consider the input (y,A) = (0, 0). For any λ > 0, it is easy to see that SolUL(y,A) = {0}. Moreover, if both
∥y′ − y∥∞ = ∥y′∥∞ ≤ ϵ and ∥A′ −A∥max = ∥A′∥max ≤ ϵ then ∥A′0 − A′y′∥∞ = ∥A′y′∥∞ < λ, provided
that ϵ ≤

√
λN−1. Thus 0 satisfies the KKT conditions and so 0 ∈ SolUL(y′, A′). Since all LASSO solutions have

the same ℓ1 norm (by (UL4)), we conclude that SolUL(y′, A′) = {0}. Thus stsp(y,A) > 0 and so the input (0, 0)
should be considered well-posed. If we were to define the condition number as a norm over a distance, we would
have that CUL(y,A) = 0. Such perfect conditioning would be unhelpful in understanding how close the data is to
instability. Hence, we do not define the condition number in the traditional way. We instead opt to define CUL as
in (6.1) so that the condition of (0, 0) is both positive and finite.

From the definition, it is immediately obvious that if (y,A) /∈ ΣUL then Ξ(y,A) must be single valued. We
conclude this section by noting that this property transfers to multivaluedness of SolUL. We will prove this result
in Section 8.

Proposition 6.4. If (y,A) /∈ ΣUL then |SolUL(y,A)| = 1.

7. AN ALTERNATIVE CHARACTERISATION OF THE CONDITION NUMBER

In this section we present a different characterisations of ill-posedness based on three values, σ1, σ2, σ3, which
we can use to computationally approximate the condition number.

8

Definition 7.1. For a pair (y,A), we write (with the convention that if M is non-invertible, ∥M−1∥2 := ∞ and
so ∥M−1∥−1

2 = 0),

σ1(y,A) := inf{t | ∃x ∈ SolUL(y,A) with ∥A∗
Sc(Ax− y)∥∞ = λ/2− t, S = supp(x)},

σ2(y,A) := inf{∥(A∗
SAS)

−1∥−1
2 | ∃x ∈ SolUL(y,A) with S = supp(x)},

σ3(y,A) := inf{t | ∃i ∈ {1, 2, . . . , N} and x ∈ SolUL(y,A) such that 0 < |xi| ≤ t}.

where, for the empty-set ∅, we interpret ∥A∗
∅(Ax−y)∥∞ = 0, we treat A∗

∅A∅ as invertible with ∥(A∗
∅A∅)

−1∥−1
2 =

∞, and we set inf ∅ = ∞.

To get an intuition of what these σs gauge assume momentarily that Proposition 6.4 holds and let SolUL(y,A) =

{x}. Then σ1 gauges how close the non-support set of x is to violating the KKT conditions; it is small if
∥A∗

Sc(Ax − y)∥∞ is close to λ/2. Similarly, σ2 is small if ∥(A∗
SAS)

−1∥2 is large for the support set S of x
(and thus A∗

SAS is close to being non-invertible), and σ3 is small if x has a small component on its support.
We combine each of σ1, σ2 and σ3 into a single quantity as follows,

σ(y,A) := min
{
σ1(y,A), σ2(y,A)2, σ3(y,A)

}
At first glance, it might seem that computing σ is difficult owing to the infima in Definition 7.1. The next

proposition shows how these infima can be removed so that σ can be easily calculated given an x ∈ SolUL(y,A).

Proposition 7.2. Let x ∈ SolUL(y,A) have support S.

(1) If ∥A∗
Sc(Ax− y)∥∞ < λ/2 and A∗

SAS is invertible, then |SolUL(y,A)| = 1 and so

σ1(y,A) = λ/2− ∥A∗
Sc(Ax− y)∥∞, σ2(y,A) = ∥(A∗

SAS)
−1∥−1

2

σ3(y,A) = inf{|xi| | i ∈ S}.

(2) If instead ∥A∗
Sc(Ax− y)∥∞ = λ/2 or A∗

SAS is not invertible, then σ(y,A) = 0.

We are now interested in the relation between σ and stsp. The following proposition provides a bound from
above from stsp in terms of σ.

Proposition 7.3. For (y,A) ∈ Rm × Rm×N , stsp(y,A) is bounded above by σ(y,A) as follows,

(1) For σ1(y,A) < λ/4, we have stsp(y,A) ≤ 4∥A∥maxσ1(y,A)
λ .

(2) We have stsp(y,A) ≤
√

σ2(y,A).
(3) We have stsp(y,A) ≤ ∥A∥maxσ3(y,A).

Similarly, a lower bound which makes use of the following polynomial (defined on positive ν, ξ)

q(ν, ξ) := 96ν5 + 12ν3(1 + λ
√
N)
√

ξ + ξ

(
2ν3

λ
+ 3ν

)
(7.1)

is given below.

Proposition 7.4. Set α = [[(y,A)]]2 and σ = σ(y,A). Then

stsp(y,A) ≥ (mN)−
1
2 min

{
σ2

q(α, σ)
,

√
σ

6α
, α

}
.

Propositions 7.2 and 7.3 allow us to compute upper bounds for the condition number CUL(y,A), whilst Propo-
sition 7.4 ensures that these estimates are accurate. There is also another consequence of these results: they allow
us to provide an alternative definition for the condition number.

Definition 7.5. For (y,A) ∈ Rm × Rm×N , (y,A) is said to be σ-ill-posed for the UL feature selection problem
if σ(y,A) = 0.

Propositions 7.3 and 7.4 then show that the set of σ-ill-posed problems is exactly the set ΣUL. Thus an al-
ternative definition of the condition number for (y,A) is to define it as the reciprocal of the distance to the set
of σ-ill-posed problems. Whilst σ is convenient from a computational perspective, it is more intuitive to define
condition in terms of stsp.

9

8. PROOFS OF THE STATED RESULTS

8.1. Proof of Proposition 6.4. Before proving Proposition 6.4, we need to introduce the concept of the set of
solutions with minimal support.

Definition 8.1. The set of solutions with minimal support of a pair (y,A) is

Solms(y,A) := {x ∈ SolUL(y,A) | ∀x′ ∈ SolUL(y,A), supp(x′) ⊆ supp(x) ⇒ x′ = x}. (8.1)

Lemma 8.2. If |SolUL(y,A)| ≠ 1 then |Solms(y,A)| ≥ 2.

Proof. The set SolUL(y,A) is compact, convex, and non-empty (from (UL1-2)). In particular, by the Krein-
Milman Theorem [47, Theorem 9.4.6], SolUL(y,A) is the closed convex hull of its extreme points (that is, points
p ∈ SolUL(y,A) so that if p′ ∈ RN is such that p+p′ ∈ SolUL(y,A) and p−p′ ∈ SolUL(y,A) then p′ = 0 [47, The-
orem 9.2.2(d)]). Therefore there must be at least two extreme points of SolUL(y,A); otherwise, |SolUL(y,A)| = 1.

To complete the proof, we now show that every extreme point of SolUL(y,A) is in Solms(y,A). Suppose
otherwise, that is, that there is an extreme point x ∈ SolUL(y,A) and an x′ ∈ SolUL(y,A) with x′ ̸= x and
supp(x′) ⊆ supp(x). Then (by (UL4-5)), Ax = Ax′, s(x) = s(x′) and ∥x∥1 = ∥x′∥1. For ϵ > 0, let v =

(1 + ϵ)x− ϵx′. If ϵ is sufficiently small we have that s(v) = s(x) and hence

∥v∥1 =
∑

i∈supp(v)

vis(vi) =
∑

i∈supp(x)

vis(xi) =
∑

i∈supp(x)

(1 + ϵ)|xi| − ϵ|x′
i|

= (1 + ϵ)∥x∥1 − ϵ∥x′∥1 = ∥x∥1.

Moreover, Av = Ax. We thus conclude that v ∈ SolUL(y,A). But this contradicts the extremality of x (take
p′ = ϵ(x − x′) ̸= 0; then x + p′ = v ∈ SolUL(y,A) and x − p′ = (1 − ϵ)x + ϵx′ ∈ SolUL(y,A) since this set
is convex) and thus all extreme points of SolUL(y,A) are in Solms(y,A). We have already shown that there are
multiple extreme points in SolUL(y,A), thus completing the proof. □

This immediately implies Proposition 6.4: indeed, if |SolUL(y,A)| ≠ 1 then by Lemma 8.2 there exist v1, v2 ∈
SolUL(y,A) with supp(v1) ̸= supp(v2). By the definition of stsp, we must have stsp(y,A) = 0.

8.2. Proof of Proposition 7.2. To prove part (1), first note that the result is trivial if S = ∅: indeed, in this case
x = 0 and hence by (UL4) the solution is unique. We thus consider the case where S ̸= ∅. Assume that the
vector x̃ is such that x̃ ∈ SolUL(y,A). Then Ax̃ = Ax (note that this was stated in Section 5 as (UL4)) and so
∥A∗

Sc(Ax̃ − y)∥∞ < λ/2. By the KKT conditions this implies that supp(x̃) ⊆ S (note, in the case Sc = ∅
this is trivial). But then AS x̃S = Ax̃ = Ax = ASxS . Since A∗

SAS is invertible by assumption, it must have
a trivial kernel and hence xS = x̃S . Finally, since both supp(x), supp(x̃) ⊆ S we must have x = x̃. Thus
|SolUL(y,A)| = 1. The result about σ1, σ2 and σ3 in this circumstance follows from the fact that in this case, the
infima in Definition 7.1 are taken over a single vector with finitely many entries.

Part 2 follows immediately from the definition of σ: note that ∥A∗
Sc(Ax − y)∥∞ = λ/2 implies that σ1 = 0

and non-invertibility of A∗
SAS implies that σ2 = 0. □

8.3. Proof of Proposition 7.3. We begin with the following Lemma.

Lemma 8.3. If σ2(y,A) = 0 then (y,A) ∈ ΣUL.

Proof. By the definition of σ2, if σ2(y,A) = 0 then there is a minimiser x ∈ SolUL(y,A) and a set S ̸= ∅ such
that supp(x) = S and A∗

SAS is non-invertible. In particular, since A∗
SAS ∈ R|S|×|S| it must also have a non-

trivial nullspace. Let v ∈ RN be such that A∗
SASvS = 0 (so that ∥ASvS∥22 = ⟨vS , A∗

SASvS⟩ = 0) and vSc = 0.
For ϵ > 0 sufficiently small we must have s(xS + ϵvS) = s(xS) and so ∥xS ± ϵvS∥1 = ⟨s(xS), xS ± ϵvS⟩ =

∥x∥1 ± ϵ⟨s(xS), vS⟩. Thus at least one of ∥xS + ϵvS∥1, ∥xS − ϵvS∥1 is bounded above by ∥x∥1. Assume that
∥xS+ϵvS∥1 ≤ ∥x∥1 (the argument for ∥xS−ϵvS∥1 ≤ ∥x∥1 is identical). In this case, we have A∗

SAS(xS+ϵvS) =

A∗
SASxS = −λs(xS)/2 = −λs(xS + ϵvS)/2 and ∥A∗

ScAS(xS + ϵvS)∥∞ = ∥A∗
ScASxS∥∞ ≤ λ/2. Therefore

10

(x + ϵv) obeys the KKT conditions and so (x + ϵv) ∈ SolUL(y,A). But then |SolUL(y,A)| ≥ 2 and so by
Proposition 6.4 we have (y,A) ∈ ΣUL. □

We can now prove Proposition 7.3.
Proof of Proposition 7.3. All parts are trivial if stsp(y,A) = 0. We then assume that stsp(y,A) > 0. Proposi-
tion 6.4 then shows that there exists a unique point x in SolUL(y,A). Let S := supp(x). We now prove each of the
three parts separately. Note that, because x is the only point in SolUL(y,A), we don’t need to take infima in the def-
inition of σ1, σ2 and σ3. Furthermore, if S = ∅ then parts (2) and (3) are trivial since σ2(y,A) = σ3(y,A) = ∞,
so we assume S ̸= ∅ for parts (2) and (3).

Proof of part (1): Note that the condition that σ1(y,A) < λ/4 implies that A is not the zero matrix and so
∥A∥max ̸= 0. It also implies that Sc ̸= ∅ since otherwise σ1(y,A) = λ/2. We will argue by contradiction and
assume that the statement does not hold. Let t be a real number such that

σ1(y,A) < t < min

{
λ stsp(y,A)

4∥A∥max
,
λ

4

}
(note that this interval is non-empty by our assumption). Then there is an i ∈ {1, 2, . . . , N} such that |[A∗

i (Ax−
y)]| > λ/2 − t and xi = 0. Set Ã = A(IN + δPi) where δ = 2t/(λ − 2t) < 4t/λ and where Pi is an
N × N matrix consisting only of 0s except the entry on the ith row, ith column, which is set to 1. Clearly
∥A− Ã∥max ≤ δ∥A∥max ≤ 4t∥A∥max/λ < stsp(y,A). Thus supp(x̃) = supp(x) for all x̃ ∈ SolUL(y, Ã).

We claim that x ∈ SolUL(y, Ã). Indeed, since xi = 0 and supp(x̃) = supp(x), we must have x̃i = 0. Thus,
again as xi = 0,

∥Ãx− y∥22 + λ∥x∥1 = ∥Ax− y∥22 + λ∥x∥1 ≤ ∥Ax̃− y∥22 + λ∥x̃∥1 = ∥Ãx̃− y∥22 + λ∥x̃∥1,

the inequality by the optimality of x and the last equality as x̃i = 0. This shows the claim.
By the assumption that |[A∗(Ax− y)]i| > λ/2− t we have

|Ã∗
i (Ãx− y)| = (1 + δ)|A∗

i (Ãx− y)| = (1 + δ)|A∗
i (Ax− y)| >

(
1 +

2t

λ− 2t

)(
λ

2
− t

)
= λ/2

but this contradicts the fact that ∥Ã∗(Ãx− y)∥∞ ≤ λ/2 by the KKT conditions for the LASSO problem and the
fact that x ∈ SolUL(y, Ã).

Proof of part (2): Suppose for the sake of contradiction that for some ϵ > 0 we have σ2(y,A) = t but
stsp(y,A) >

√
t+ ϵ. Then ∥(A∗

SAS)
−1∥2 = 1

t > 1/(t + ϵ). This implies that there is a v ∈ RN such that
vSc = 0, ∥v∥2 = 1 and ∥A∗

SASvS∥2 ≤ t + ϵ. Therefore, ∥ASvS∥22 = ⟨A∗
SASvS , vS⟩ ≤ ∥vS∥2∥A∗

SASvS∥2 and
we obtain ∥ASvS∥2 ≤

√
t+ ϵ.

Let B := A−AvvT. Then

∥B −A∥max ≤ ∥B −A∥2 = ∥AvvT∥2 ≤ ∥Av∥2 ∥vT∥2 = ∥Av∥2 ≤
√
t+ ϵ.

Hence, since stsp(y,A) >
√
t+ ϵ, (y,B) /∈ ΣUL and there exists x̂ ∈ SolUL(y,B) with supp(x̂) = S (this comes

from the definition of stsp). But

BSvS = ASvS −AvvTS vS = ASvS −Av∥vS∥2 = ASvS −Av = 0

and hence, B∗
SBSvS = 0. It follows that B∗

SBS is not invertible. This contradicts Lemma 8.3.
Proof of part (3): For shorthand, let t := σ3(y,A). Then there exists an index i ∈ {1, 2, . . . , N} such that

|xi| = t. Let ỹ = y− xiAei where ei is the ith vector in the standard basis on RN . We claim that x̃ = x− xiei is
such that x̃ ∈ SolUL(ỹ, A). Since the KKT conditions are both necessary and sufficient for unconstrained LASSO,
it suffices to show that x̃ obeys the KKT conditions. Let W be the support of x̃. Since x̃W = xW , we have
Ax̃ = AW x̃W = AWxW so that

A∗(Ax̃− ỹ) = A∗(AWxW − ỹ) = A∗(AWxW + xiAei − y) = A∗(Ax− y).

Therefore A∗
W (Ax̃ − ỹ) = −λs(x)W /2 = −λs(x̃)W /2 (since x obeys the KKT conditions) and on W c we

have ∥A∗
W c(Ax̃ − ỹ)∥∞ = ∥A∗

W c(Ax − y)∥∞ ≤ λ/2 (again, since x obeys the KKT conditions). Thus x̃ obeys

11

the KKT conditions and so x̃ ∈ SolUL(ỹ, A) as claimed. But then supp(x̃) ̸= supp(x) and so stsp(y,A) ≤
dmax([(y,A), (ỹ, A)]) ≤ ∥xiAei∥∞ ≤ t∥A∥max. □

8.4. Proof of Proposition 7.4. We assume that σ > 0, otherwise there is nothing to prove. Let x ∈ SolUL(y,A)

and S = supp(x). Additionally, let ∆ := min
(

σ2

q(α,σ) ,
√
σ

6α , α
)

and δ := (mN)−1/2∆. Finally, let (ỹ, B) be such
that ∥ỹ − y∥∞ ≤ δ and ∥A−B∥max ≤ δ.

We will use the following results derived from the classic bounds (see [16, §1.1] or [39, §6.2]) between norms
and the definition of ∆:

∥B −A∥2 ≤
√
mN∥B −A∥max ≤

√
mNδ ≤ ∆, (8.2)

∥B∥2 ≤ ∥A∥2 +∆ ≤ 2α, (8.3)

∥ỹ − y∥2 ≤
√
mδ ≤ ∆, (8.4)

∥ỹ∥2 ≤ ∥y∥2 + ∥ỹ − y∥2 ≤ α+∆ ≤ 2α. (8.5)

We start with the case where both S and Sc are non empty. We initially establish a sequence of basic inequalities.
We begin by observing that

B∗
SBS = A∗

SAS + (BS −AS)
∗AS +A∗

S(BS −AS) + (BS −AS)
∗(BS −AS)

so that B∗
SBS = A∗

SAS(I +X) where

X = (A∗
SAS)

−1 [(BS −AS)
∗AS +A∗

S(BS −AS) + (BS −AS)
∗(BS −AS)] .

Note that X is well defined since (A∗
SAS)

−1 exists by the assumption that σ > 0 and Proposition 7.2. In addition,

∥X∥2 ≤ ∥(A∗
SAS)

−1∥2 (∥(BS −AS)
∗AS∥2 + ∥A∗

S(BS −AS)∥2
+ ∥(BS −AS)

∗(BS −AS)∥2)

≤ ∥(A∗
SAS)

−1∥2
(
2∥BS −AS∥2 ∥AS∥2 + ∥BS −AS∥22

)
≤ 2∆∥A∥2 +∆2

σ2(y,A)
≤ 3∆α√

σ
(8.6)

where we used the definition of σ2, (8.2) and ∆, ∥A∥2 ≤ α. It follows from the hypothesis on ∆ that ∥X∥2 < 1/2.
Hence, I + X is invertible with inverse satisfying (I + X)−1 =

∑∞
r=0(−1)rXr and consequently, so is B∗

SBS

and we have (B∗
SBS)

−1 = (I +X)−1(A∗
SAS)

−1. Furthermore,

∥(B∗
SBS)

−1− (A∗
SAS)

−1∥2=∥(I +X)−1(A∗
SAS)

−1 − (A∗
SAS)

−1∥2
≤∥(I +X)−1 − I∥2 ∥(A∗

SAS)
−1∥2

≤

∥∥∥∥∥
∞∑
r=1

(−1)rXr

∥∥∥∥∥
2

∥(A∗
SAS)

−1∥2≤
∥X∥2∥(A∗

SAS)
−1∥2

1− ∥X∥2

<
2∥X∥2
σ2(y,A)

≤ 6∆α

σ
, (8.7)

where the last inequality following from (8.6). In particular,∥∥(B∗
SBS)

−1B∗
S ỹ − (A∗

SAS)
−1A∗

Sy
∥∥
2

≤
∥∥[(B∗

SBS)
−1B∗

S − (A∗
SAS)

−1B∗
S

]
ỹ
∥∥
2
+
∥∥[(A∗

SAS)
−1B∗

S − (A∗
SAS)

−1A∗
S

]
ỹ
∥∥
2

(8.8)

+
∥∥(A∗

SAS)
−1A∗

S(y − ỹ)
∥∥
2

≤ ∥(B∗
SBS)

−1 − (A∗
SAS)

−1∥2∥B∗
S∥2∥ỹ∥2 (8.9)

+∥(A∗
SAS)

−1∥2
(
∥B∗

S −A∗
S∥2∥ỹ∥2 + ∥A∗

S∥2∥y − ỹ∥2
)

≤ 6∆α(2α)(2α)

σ
+

∆(2α) + ∆α

σ2(y,A)
by (8.2), (8.7), (8.4), and (8.5)

=
24∆α3

σ
+

3∆α√
σ

=: Υ. (8.10)

12

Since σ > 0 and x obeys the KKT conditions for unconstrained LASSO with input (y,A), we see that xS =

(A∗
SAS)

−1(A∗
Sy − λs(x)S/2) and xSc = 0. Hence, if we let x̃ ∈ RN be given by x̃S := (B∗

SBS)
−1(B∗

S ỹ −
λ s(x)S/2) and x̃Sc := 0 then

2∥x̃− x∥2 ≤ ∥(B∗
SBS)

−1(2B∗
S ỹ − λ s(x)S)− (A∗

SAS)
−1(2A∗

Sy − λ s(x)S)∥2
≤ 2

∥∥(B∗
SBS)

−1B∗
S ỹ − (A∗

SAS)
−1A∗

Sy
∥∥
2

(8.11)

+ λ
∥∥[(B∗

SBS)
−1 − (A∗

SAS)
−1
]
s(x)S

∥∥
2

≤
(8.8)

2Υ + λ∥(B∗
SBS)

−1 − (A∗
SAS)

−1∥2∥s(x)S∥2 ≤
(8.7)

2Υ +
6∆αλ

√
|S|

σ

≤ 6∆α

(
8α2

σ
+

1 + λ
√
|S|√

σ

)
(8.12)

Also, since x ∈ SolUL(y,A) we have (by (UL1)) ∥Ax− y∥22, λ∥x∥1 ≤ ∥y∥22. Thus

∥B∗
Sc(Bx̃− ỹ)−A∗

Sc(Ax− y)∥2
≤∥B∗

Sc(Bx̃− ỹ)−B∗
Sc(Bx− ỹ)∥2 + ∥B∗

Sc(Bx− ỹ)−B∗
Sc(Ax− ỹ)∥2

+ ∥B∗
Sc(Ax− ỹ)−B∗

Sc(Ax− y)∥2 + ∥B∗
Sc(Ax− y)−A∗

Sc(Ax− y)∥2
≤∥B∥2 (∥B∥2∥x̃− x∥2 + ∥B −A∥2∥x∥2 + ∥y − ỹ∥2) + ∥B −A∥2∥Ax− y∥2

≤2α

[
2α∥(x̃− x)∥2 +

∥B −A∥2∥y∥22
λ

+ ∥y − ỹ∥2
]
+∆∥y∥2

≤2α

[
6∆α2

(
8α2

σ
+

1 + λ
√
|S|√

σ

)
+

∆α2

λ
+∆

]
+∆α

= 12∆α3

(
8α2

σ
+

1 + λ
√
|S|√

σ

)
+

2∆α3

λ
+ 3∆α

≤∆

(
96α5

σ
+

12α3 + 12α3λ
√
|S|√

σ
+

2α3

λ
+ 3α

)
≤ ∆q(α, σ)/σ. (8.13)

We can now conclude the proof. Using (8.11) and the definition of ∆ we obtain that

∥x̃− x∥∞ ≤ ∥x̃− x∥2 ≤ 3∆α

(
8α2

σ
+

1 + λ
√

|S|√
σ

)
≤ 3

σ2

q(α, σ)
α

(
8α2

σ
+

1 + λ
√

|S|√
σ

)

= σ

(
24α3 + 3α

√
σ(1 + λ

√
|S|)

96α5 + 12α3(1 + λ
√
N)

√
σ +

(
2α3

λ + 3α
)) < σ

and therefore, if we set S+ = {i |xi > 0}, then for each i ∈ S+ we have that x̃i ≥ xi−|x̃i−xi| > σ3(y,A)−σ ≥
0. Similarly, if we set S− = {i |xi < 0} then for each i ∈ S− we have x̃i < 0. It follows that each entry of x̃S is
non-zero and that s(x̃)S = s(x)S and so,

2B∗
S(Bx̃− ỹ) = λ s(x)S = λ s(x̃)S . (8.14)

Using (8.13) and the definition of ∆ we show as above that ∥B∗
Sc(Bx̃− ỹ)−A∗

Sc(Ax− y)∥2 < σ and thus

∥B∗
Sc(Bx̃− ỹ)∥∞ ≤ ∥B∗

Sc(Bx̃− ỹ)−A∗
Sc(Ax− y)∥∞ + ∥A∗

Sc(Ax− y)∥∞
< σ + λ/2− σ1(y,A) ≤ λ/2. (8.15)

Inequalities (8.14) and (8.15), together with the fact that each entry of x̃S is non-zero show that x̃ satisfies the
unconstrained LASSO KKT conditions for (ỹ, B) and that the hypothesis of Proposition 7.2 part (1) holds. We
therefore have {x̃} = SolUL(ỹ, B). Since each entry of x̃S is non-zero and x̃Sc = 0, we have supp(x̃) = supp(x)

and therefore all vectors in SolUL(ỹ, B) have the same support as x.
We now argue that the same result holds for S = ∅ or Sc = ∅. In the former case, we set x̃ = 0. Then the

bound in (8.11) holds trivially and (8.13) and (8.15) follow as before. Thus x̃ satisfies the unconstrained LASSO
13

KKT conditions for (ỹ, B) and we are done. In the later case where Sc = ∅, the only difference is that there is no
need to compute (8.13): it suffices to use (8.11) to conclude (8.14), which shows that x̃ satisfies the unconstrained
LASSO KKT conditions.

We have thus shown in each case for S that all vectors in SolUL(ỹ, B) have the same support as x, for every
pair (ỹ, B) with ∥ỹ− y∥∞ ≤ δ and ∥A−B∥max ≤ δ. We deduce that stsp(y,A) ≥ δ which completes the proof.

8.5. A convex quadratic routine for unconstrained LASSO. In addition to the subroutines GetMatrixU and
GetVectorb, which are assumed within our computational model we will use the following subroutine:

ULasso(y,A, λ):: given y ∈ Qm, A ∈ Qm×N , and λ ∈ Q, it returns a vector x ∈ SolUL(y,A)

in time O(N3 log2(L)) where L is the total number of bits of A, y and λ.

The existence of ULasso follows from the fact that unconstrained LASSO can be written as a convex quadratic

program. To see this, if we write x = x+ − x− and x̃ =
(
x+ x−

)T
with x+ ≥ 0 and x− ≥ 0 (where these

inequalities are taken entrywise) we have

∥Ax− y∥22 + λ∥x∥1 = ⟨Ax,Ax⟩ − 2⟨A∗y, x⟩+ λ

N∑
i=1

(x+
i + x−

i) + ∥y∥22

= x̃∗Mx̃+ (λ12N − 2By)∗x̃+ ∥y∥22

where 1N is a vector of length N with each entry equal to 1, M =

(
A∗A −A∗A

−A∗A A∗A

)
and B =

(
A∗

−A∗

)
.

Note also that M is positive semi-definite. Since ∥y∥22 is constant, we conclude that the solutions to the quadratic
program in standard form

argmin
x̃∈RN

{x̃∗Mx̃+ (λ12N − 2By)∗x̃ | − I2N x̃ ≤ 0}

can be converted to solutions of the unconstrained LASSO problem with inputs A and y. Thus using the algorithm
proposed in e.g. [45], we obtain an algorithm that works in O(N3L) = O(N3p+N3 log2(m+N)) = O(N3(p+

log2(N))) arithmetic operations, where L is the total number of bits required to store A, y and λ and p is the
maximal number of bits required to store any entry of A, y and λ.

8.6. A subroutine for testing upper bounds for σ. Our aim in this section is to produce an algorithm that can
tell us, for a given value of C, whether or not σ ≤ C2. More precisely, we aim to produce the following subroutine
to add to the one discussed above,

Sigma(y,A, x, λ, C):: with input y ∈ Qm, A ∈ Qm×N , x ∈ QN , and λ,C ∈ Q, returns true
if σ(y,A) ≤ C2 and false otherwise. The precondition is that x ∈ SolUL(y,A) and λ is the
unconstrained LASSO parameter. The cost of running this procedure is O(N3).

Executing Sigma(y,A, x, λ, C) requires deciding if σ1(y,A) ≤ C2, σ2(y,A) ≤ C and σ3(y,A) ≤ C2.
Let S := supp(x). Note that computing σ1 can be done by computing A∗

Sc(Ax − y) (at a cost of O(mN)

operations), finding the maximum absolute value across all rows (taking O(|Sc|) = O(N) operations) and then
subtracting λ/2. Hence σ1 can be computed in O(mN) operations. We compute σ3 via a simple maximum
argument requiring O(N) operations. The hardest of the three to compute is σ2; we will approximate the smallest
singular value of A∗

SAS by testing the positive definiteness of A∗
SAS − tI for various values of t. Note that if

A∗
SAS − tI is not positive definite then ∥(A∗

SAS)
−1∥−1

2 ≤ t. Conversely, if A∗
SAS − tI is postiive definite then

∥(A∗
SAS)

−1∥−1
2 > t. Indeed, the following chain of equivalences hold since A∗

SAS is symmetric: A∗
SAS − tI is

positive definite ⇐⇒ each eigenvalue of A∗
SAS is larger than t ⇐⇒ each eigenvalue of (A∗

SAS)
−1 is smaller

than t−1 ⇐⇒ ∥(A∗
SAS)

−1∥2 < t−1.

Remark 8.4. It is well known that there is an algorithm PosDef, that can check if a symmetric r × r matrix is
positive definite or not. Such an algorithm runs with O(r3) operations.

14

We can now precisely state our algorithm for computing σ (where we take by convention ∥A∗
∅(Ax−y)∥∞ = 0

and A∗
∅A∅ − CI as positive definite for any C > 0).

Algorithm: Sigma(y,A, x, λ, C)

Data: A ∈ Rm×N , y ∈ Rm, x ∈ SolUL(y,A) ⊆ RN , C > 0, and the LASSO parameter λ.
Result: true if σ ≤ C2, otherwise, false
S := supp(x);

if ∥A∗
Sc(Ax− y)∥∞ < λ/2 and A∗

SAS is invertible then
σ1 := λ/2−maxi∈Sc(|A∗

i (Ax− y)|);
σ3 := ∥xSc∥∞;

X := A∗
SAS − CI;

if PosDef(X) and σ1 ≤ C2 and σ3 ≤ C2 then
return true;

else
return false;

end
else

return true

end

Proposition 8.5. Algorithm Sigma is correct (the returned value is true iff σ(y,A) ≤ C2). Its running time is
bounded by O(N3).

Proof. We begin proving correctness. Because x ∈ SolUL(y,A), by Proposition 7.2(1), if A∗
Sc(Ax − y) < λ/2

and A∗
SAS is invertible, then x is the only solution of (y,A). In this case the infima in the definition of σ1, σ2

and σ3 reduces to the corresponding values at S and the correctness of the estimates for the σs has already been
argued above. If, instead, either A∗

Sc(Ax − y) ≥ λ/2 or A∗
SAS is invertible, then, by Proposition 7.2(2), σ = 0

and, clearly, σ ≤ C2.
We now show the complexity bound. As mentioned earlier, computing σ1 takes O(mN) operations and com-

puting σ3 takes O(N) operations. Computing X can be done using O(|S|2N) = O(N3) operations. Also, as
discussed earlier, the computation of PosDef takes |S|3/3 = O(N3) operations. Thus the total complexity of the
algorithm is O(N3 +mN +N +N3) = O(N3). □

8.7. Proof of Theorem 2.1, parts (1) & (2). Our argument for both parts (1) and (2) will involve increasing the
precision of the approximations (y,A) of the true input, which we denote throughout the proof by (b, U), until
σ(y,A) is sufficiently large. This strategy will give us both the solution to unconstrained LASSO feature selection
(part 1) and an upper bound for the condition number (part 2). This is done in the algorithm FSUL.

There are two things that need to be shown: firstly, that the algorithm is correct in the sense that if the repeat
loop terminates, the output S is correct and η is a bound for CUL(b, U). Secondly, that the runtime is bounded as
stated, which will also give us a guarantee that the repeat loop does in fact terminate when CUL(b, U) < ∞. The
correctness proof will require the use of Proposition 7.4 and the runtime bound the use of Proposition 7.3. We
split the proof of the runtime into two further sections: firstly, we evaluate the cost of each iteration of the loop,
and secondly we show a bound on the number of iterations that are executed.

8.7.1. Proof of correctness: Assume that the repeat loop terminates. We use the notation S, n, δ, A, y, x,G,H

and C to denote the values of these variables set by the algorithm when the repeat loop has terminated. We claim
that stsp(y,A) ≥ 2δ. Assume for now that this is the case. Then by the properties (4.1) of GetMatrixU and
GetVectorb, at the nth iteration of the repeat loop we must have d∞(b, y), dmax(A,U) ≤ 2−4n = 16−n = δ.

Thus when the repeat loop terminates, stsp(y,A) ≥ 2δ > dmax [(y,A), (b, U)] and so if w ∈ SolUL(b, U) and
v ∈ SolUL(y,A) then supp(w) = supp(v). But since x ∈ SolUL(y,A) by the correctness of ULasso, we must have

15

Algorithm: FSUL
Data: λ > 0 as well as oracles GetMatrixU and GetVectorb that approximate (b, U) to arbitrary precision
Result: a support set S ⊆ {1, . . . , N} and η such that Cond(b, U) ≤ η

δ := 1, n := 0, δ1/4 := 1;

repeat
n := n+ 1;

δ := δ/16;

A := GetMatrixU (4n);

y := GetVectorb(4n);

x := ULasso(y,A, λ);

δ1/4 := δ1/4/2;

G := [[(y,A)]]max;

H := [[(y,A)]]S;

C := 6 · δ1/4N(λ+ λ−1)H2;

until not Sigma(y,A, x, λ, C) and G2(mN)−1 ≥ 4δ2;
return S := supp(x) and η = δ−1.

supp(w) = supp(x) = S. Furthermore, since stsp(b, U) ≥ stsp(y,A)− dmax [(y,A), (b, U)] ≥ 2δ − δ = δ, we
must have CUL(b, U) ≤ δ−1 = η.

Therefore we have shown that if the algorithm terminates then it terminates with the correct result, provided
that we can show that stsp(y,A) ≥ 2δ. To that end, we will make use of the following lemma.

Lemma 8.6. Let H ≥ ν ≥ 1, δ ≤ 1, and λ > 0. Let C = 6δ1/4N(λ+ λ−1)H2. For all ξ ≥ C2 we have

f(ξ) := ξ2 − 2δ
√
mNq(ν, ξ) ≥ 0 and g(ξ) :=

√
ξ(mN)−1/2

6ν
− 2δ ≥ 0

where, we recall, q(ν, ξ) is defined in (7.1).

Assuming for now that Lemma 8.6 holds, we will complete the proof that stsp(y,A) ≥ 2δ. Indeed, when the
algorithm terminates σ(y,A) > C2 because Sigma(y,A, x, λ, C) does not hold. Now we apply Lemma 8.6 with
H = [[(y,A)]]S, α = [[(y,A)]]2 and σ = σ(y,A). Using the inequality for f in this lemma with ξ = σ and ν = α

we obtain σ2 ≥ 2δ
√
mNq(α, σ) and thus (mN)−1/2σ2/q(α, σ) ≥ 2δ. Next, using the inequality for g, we obtain

(mN)−1/2
√
σ/(6α) ≥ 2δ. Finally, when the repeat loop terminates we must have G2(mN)−1 ≥ 4δ2 and in

particular, since α ≥ G, we get (mN)−1/2α ≥ 2δ. Combining these inequalities yields

stsp(y,A) ≥ (mN)−1/2 min(σ2/q(α, σ),
√
σ/(6α), α) ≥ 2δ (8.16)

where the first inequality follows from Proposition 7.4.
All that remains is to prove Lemma 8.6. This is done as follows.

Proof of Lemma 8.6. We make frequent use of the inequality H ≥ ν. We start by proving that f(ξ) is increasing
on [C2,∞). We have f ′(ξ) = 2ξ− 2δ

√
mN [6ν3(1+λ

√
N)/

√
ξ+2ν3/λ+3]. The form of f ′(ξ) makes it clear

to see that for positive ξ, f ′(ξ) is increasing and so to show that f(ξ) is increasing on [C2,∞) it suffices to show
that f ′(C2) ≥ 0. Because δ ≤ 1, we have δ2/4 ≥ δ3/4. Furthermore, H ≥ ν ≥ 1 and N ≥ 1. Thus

δ2/4N2(λ2 + 2 + λ−2)H4 ≥ 2δ2/4N2H ≥ δ2/4

(
1 +

λ
√
N

λ+ λ−1

)
ν ≥ νδ3/4(1 + λ

√
N)

λ+ λ−1
(8.17)

Furthermore, (λ2 + 2 + λ−2)λ > 2λ + λ−1 > λ + λ−1 ≥ 2 by the AM-GM inequality and the assumption
that λ > 0. Thus

δ2/4N2(λ2 + 2 + λ−2)H4 ≥ 2δ2/4N2ν3λ−1 ≥ 2ν3δNλ−1. (8.18)

16

Our final simple inequality is the following: using λ2 + λ−2 ≥ 2 and H,N ≥ 1 ≥ δ, we get

δ2/4N2(λ2 + 2 + λ−2)H4 ≥ 4δ2/4N2ν ≥ 3δNν. (8.19)

Using the definitions of f , C and the bounds H ≥ ν, H,N ≥ 1, and m ≤ N , we get

f ′(C2) = 2C2 − δ
√
mN

[
6ν3(1 + λ

√
N)

C
+

2ν3

λ
+ 3ν

]

≥ (2 · 62)δ2/4N2(λ2 + 2 + λ−2)H4 − 2δN

[
6ν3(1 + λ

√
N)

6δ1/4N(λ+ λ−1)H2
+

2ν3

λ
+ 3ν

]

≥ 6δ2/4N2(λ2 + 2 + λ−2)H4 − 2

[
νδ3/4(1 + λ

√
N)

(λ+ λ−1)
+

2ν3δN

λ
+ 3νδN

]
≥ 0,

where the subtraction in the last line decomposes into three subtractions each of them being non-negative by
(8.17–8.19). We conclude that f is increasing on [C2,∞). Thus to show that f is positive it is sufficient to show
that f(C2) > 0. Indeed,

f(C2)

(NH2)4δ
= (6(λ+ λ−1))4 − 2

√
mN

(NH2)4

[
96ν5 + 12ν3(1 + λ

√
N)(6δ1/4N(λ+ λ−1)H2)

+ 62δ2/4N2(λ+ λ−1)2H4

(
2ν3

λ
+ 3ν

)]
≥ 64(λ+ λ−1)4 − 2

(
96 + 12(1 + λ)(6(λ+ λ−1)) + 62(λ+ λ−1)2

(
2

λ
+ 3

))
= [64(λ+ λ−1)4 − 2(180λ2 + 144λ+ 384λ0 + 216λ−1 + 108λ−2 + 72λ−3)]

≥ 64[λ4 + 4λ2 + 6 + 4λ−2 + λ−4 − (λ2 + λ+ 1 + λ−1 + λ−2 + λ−3)]

≥ 64[λ4 + 4λ2 + 6 + 4λ−2 + λ−4 − (2λ2 + 3 + 3λ−2 + λ−4)] ≥ 0.

where in the last line we have made use of the facts that λ < λ2 +1, λ−1 < λ−2 +1 and λ−3 < λ−4 +λ−2 all of
which following from λ > 0. Since f is increasing on [C2,∞) and f(C2) ≥ 0, we get that f(ξ) ≥ 0 for ξ ≥ C2,
completing the proof for f .

We finish the argument by showing that g(ξ) > 0. This is somewhat simpler: since ξ ≥ C2 by assumption, we
have ξ ≥ 36δ2/4N2(λ + λ−1)2H4 ≥ 36 · 4δ2(mN)ν2 since δ ≤ 1, H ≥ ν, N ≥ m and λ + λ−1 ≥ 2. Taking
square roots yields

√
ξ ≥ 12δν(mN)1/2, or, equivalently,

√
ξ(mN)−1/2/(6ν) ≥ 2δ. □

8.7.2. A bound on the number of iterations & precision that the repeat loop requires. The number of iterations &
the maximum precision of the repeat loop is bounded in the following lemma.

Lemma 8.7. There exists a universal constant D independent of all parameters such that for any n ∈ N with

n ≥ D log2
(
max{λ+ λ−1, N, [[(b, U)]]max,CUL(b, U)}

)
(8.20)

and any (y,A) and (b, U) such that dmax[(y,A), (b, U)] ≤ 2−n =: δ, we have [[(y,A)]]max(mN)−1/2 ≥ δ and
σ(y,A) ≥ C2 where C = 6δ1/4N(λ+ λ−1)[[(y,A)]]2S.

As a consequence, the number of iterations of the repeat loop in FSUL (and thus, the maximum digits of
precision used by FSUL) on input (b, U) is bounded by

O(
⌈
log2

(
max{λ+ λ−1, N, [[(b, U)]]S,CUL(b, U)}

)⌉
).

Proof. As we don’t need to give a precise value for D in the bound on the number of iterations we will give a
shorter proof without making this value explicit using big O and big Ω notation [42]. To show that σ(y,A) ≥ C2

we need to show that σ1(y,A) ≥ C2, σ2(y,A) ≥ C and σ3(y,A) ≥ C2. We start by noting that using well-
known norm inequalities [39, §6.2] and the fact that m ≤ N we get [[(y,A)]]S ≤ N2[[(y,A)]]max. Moreover,
[[(y,A)]]max ≤ [[(b, U)]]max + δ and since δ ≤ 1 ≤ [[(y,A)]]max we obtain [[(y,A)]]max ≤ 2[[(b, U)]]max. Hence

[[(y,A)]]S ≤ 2N2[[(b, U)]]max. (8.21)
17

Since λ + λ−1 ≥ 2, the bound (8.20) implies that n ≥ Dmax{2, log2 CUL(b, U)} ≥
Dmax{1, log2 CUL(b, U)}. Hence, since stsp(y,A) ≥ stsp(b, U)−δ, we obtain

stsp(y,A) ≥ stsp(b, U)−δ ≥ stsp(b, U)−2−Dmax{1,log2 CUL(b,U)}. (8.22)

We now claim that for D > 2 we have

CUL(y,A) ≤ 2CUL(b, U). (8.23)

Indeed, if CUL(b, U) ≥ 2 we see (recall, CUL(b, U) = stsp(b, U)
−1) that

stsp(b, U)−2−Dmax{1,log2 CUL(b,U)} ≥ stsp(b, U)−stsp(b, U)
D ≥ stsp(b, U) /2

whereas if CUL(b, U) ≤ 2 we have (since in this case 2−D ≤ 1/4 ≤ stsp(b, U) /2)

stsp(b, U)−2−Dmax{1,log2 CUL(b,U)} = stsp(b, U)−2−D ≥ stsp(b, U) /2.

In both cases, stsp(b, U)−2−Dmax{1,log2 CUL(b,U)} ≥ stsp(b, U) /2. This, together with (8.22), proves the
claim (8.23). The bound (8.20), together with (8.21) and (8.23), thus implies that

n ≥ DX/4 (8.24)

with
X := log2

(
max{λ+ λ−1, N, [[(y,A)]]S,CUL(y,A)}

)
.

Because log2 max{α, β} = Ω(log2 α+ log2 β) we have

X = Ω(log2((λ+ λ−1)N [[(y,A)]]SCUL(y,A)) (8.25)

and

X = Ω(log2((λ+ λ−1)N [[(y,A)]]S) = Ω(log2((λ+ λ−1)N [[(y,A)]]2S))

= Ω

(
log2

C

δ1/4

)
. (8.26)

By Proposition 7.3(1), for σ1(y,A) < λ/4, we have log2(σ1(y,A)) ≥ log2(stsp(y,A)) − log2

(
4∥A∥max

λ

)
.

Hence, using that [[(y,A)]]S ≥ ∥A∥max and that CUL(y,A) = stsp(y,A)−1,

log2(σ1(y,A)) + n ≥
(8.24)

− log2 CUL(y,A)− log2

(
4∥A∥max

λ

)
+DX/4

≥
(8.25)

O(X)−DX/4 ≥ KX ≥
(8.26)

2 log2(C) + n

where the constant K is chosen so that KX ≥ 2 log2(C) + 2n (in particular, this implies the last inequality) and
then the penultimate inequality is ensured by choosing D sufficiently large. If instead σ1(y,A) ≥ λ/4, we use
that X ≥ | log2 λ| to deduce that

log2(σ1(y,A)) + n ≥ log2(λ/4) +DX/4 ≥ KX ≥ 2 log2(C) + n

the last part of the reasoning being identical to the above. In both cases, we get σ1(y,A) ≥ C2.
We next use Proposition 7.3(2–3) to get, reasoning as above,

log2(σ2(y,A)) + n ≥ −2 log2 CUL(y,A) +
DX

4
≥ KX

2
≥ log2(C/δ

1
4) = log2(C) + n

log2(σ3(y,A)) + n ≥ − log2 CUL(y,A)− log2(∥A∥max) +
DX

4
≥ KX ≥ 2 log2(C) + n

which shows σ2(y,A) ≥ C and σ3(y,A) ≥ C2, as we wanted to prove. From the definition of σ we conclude
that σ(y,A) ≥ C2.

All that remains is to show that [[(y,A)]]max(mN)−1/2 ≥ 2δ. But for any D ≥ 2, it follows from (8.20) that

n− 1 ≥ n/2 ≥ log2 N ≥ log2((mN)1/2) ≥ log2((mN)1/2)− log2[[(y,A)]]max

18

the third inequality as m ≤ N and the last as [[(y,A)]]max ≥ 1. This completes the proof by noting that 21−n =

2δ. □

8.7.3. A bound on the number of arithmetic operations performed at the nth iteration of the repeat loop. We
analyse each section of the repeat loop line by line, calculating the number of operations performed in big O
notation. The first two lines, n := n+ 1 and δ := δ/16, can be done using two arithmetic operations.

Next we analyse the calls to oracles and subroutines. Firstly, GetMatrixU (n) and GetVectorb(n) are executed
with cost O(mN(log2(∥U∥max + 1) + n)) and O(m(log2(∥b∥∞ + 1) + n)), respectively. Both quantities are
bounded by O(N2(log2[[(b, U)]]max + n)). The call to ULasso(y,A, λ) takes O(N3(p + log2(N)) operations
where p is the largest number of bits for the entries of y,A and λ. Note that p ≤ max{log2(∥A∥max + 1) +

n, log2(∥y∥∞ +1)+ n, p(λ)} ≤ max{log2(3[[(b, U)]]max) + n, p(λ)} and thus the runtime of ULasso(y,A, λ) is
O[N3(max{log2([[(b, U)]]max)+n, p(λ)}+log2(N))]. Calculating δ1/4 can be done in one arithmetic operation.
We can calculate H and G in O(mN) = O(N2) operations. To calculate C requires five multiplications and
one addition of already calculated quantities and thus takes O(1) time. Finally, the call to Sigma takes O(N3)

operations (Proposition 8.5).
Thus the total runtime of the nth iteration of the loop is

O(N2(log2[[(b, U)]]max + n)

+O[N3(max{log2([[(b, U)]]max) + n+ 1, p(λ)}+ log2(N))] +O(N3)

which is equal to
O[N3(max{log2([[(b, U)]]max) + n, p(λ)}+ log2(N))].

8.7.4. The overall runtime of the algorithm. By Lemma 8.7, the number of iterations of FSUL is bounded above
by some r with

r = O(
⌈
log2

(
max{λ+ λ−1, N, [[(b, U)]]max,CUL(b, U)}

)⌉
).

Thus, the total runtime is bounded above by
r∑

n=1

O[N3(max{log2([[(b, U)]]max) + n+ 1, p(λ)}+ log2(N))]

= O
{
N3
[
r log2([[(b, U)]]max) + r2 + rp(λ) + r log2(N)

]}
.

Clearly, log2(N) = O(r) and r log2([[(b, U)]]max) = O(r2). Hence the total runtime is bounded above by
O(N3r2 +N3rp(λ)) i.e.

O
{
N3
[
log2

(
N2(λ+ λ−1)2[[(b, U)]]2maxCUL(b, U)

)]2
+N3 log2

(
N2(λ+ λ−1)2[[(b, U)]]2maxCUL(b, U)

)
p(λ)

}
Coupled with the earlier argument to show correctness for the algorithm, we have completed the proof of

Theorem 2.1 parts (1) and (2). □

8.8. Proof of Theorem 2.1, part (3). We start by proving the following:

Lemma 8.8. Let (y, U) ∈ Ω and x ∈ Solms(y, U). Then if E is the diagonal matrix with entries
(1{1/∈supp(x)},1{2/∈supp(x)}, . . . ,1{N /∈supp(x)}) where 1{i/∈supp(x)} is 1 if i /∈ supp(x) and 0 otherwise and if
δ ∈ (0, 1) we have then SolUL(y, U(I− δE1)) = {x}.

Proof of Lemma 8.8. This proof is similar to [7, Lemma 17.3]. We show that x is the unique vector in SolUL(y, U−
δUE).

Suppose that v is such that ∥(U − δUE)v − y∥22 + λ∥v∥1 ≤ ∥(U − δUE)x − y∥22 + λ∥x∥1. We claim that
supp(v) ⊆ supp(x). Otherwise, if we let v̂ be defined by v̂i = vi whenever i ∈ supp(x) and v̂i = (1 − δ)vi

19

whenever i /∈ supp(x), we obtain (U − UE1)v = Uv̂ and ∥v̂∥1 < ∥v∥1 (the strict inequality follows from
supp(v) ̸⊆ supp(x)) and hence (setting f(w) := ∥Uw − y∥22 + λ∥w∥1)

f(v̂) < ∥(U − δUE)v∥22 + λ∥v∥1 ≤ ∥(U − δUE)x− y∥22 + λ∥x∥1 = f(x)

contradicting x ∈ SolUL(y, U). Hence supp(v) ⊆ supp(x1). But then Uv = (U − δUE)v and so

f(v) = ∥(U − δUE)v∥22 + λ∥v∥1 ≤ ∥(U − δUE)x− y∥22 + λ∥x1∥1 = f(x1)

so v ∈ SolUL(y, U) with supp(v) = supp(x). It follows from x ∈ Solms(y, U) that v = x and so x is the unique
vector in SolUL(y, U − UE1). □

Proof of Theorem 2.1, part (3). We will consider two cases: firstly, the case where there exists (b, U) ∈ Ω with
|Ξ(b, U)| > 1 and secondly the case where all (b, U) ∈ Ω have |Ξ(b, U)| = 1.

Case 1: There exists (b, U) ∈ Ω with |Ξ(b, U)| > 1.
By Lemma 8.2, there exists x1, x2 ∈ Ξms(b, U) with supp(x1) ̸= supp(x2). We now use Lemma 8.8 to see

that for each n ∈ N and for i = 1, 2, there exists bi,n ∈ Rm, U i,n ∈ Rm×N so that Ξ(bi,n, U i,n) = supp(xi) and
∥bi,n − b∥∞ ≤ 2−n, ∥U i,n − U∥max ≤ 4−n. Since Ω is open, we can pass to a subsequence and assume that
(bi,n, U i,n) ∈ Ω for all n ∈ N and i ∈ {1, 2}. The conclusion now follows by an application of Proposition 9.7,
where we choose ι1n = (b1,n, U1,n), ι2n = (b2,n, U2,n) and ι0 = (b, U).

Case 2: All (b, U) ∈ Ω have |Ξ(b, U)| = 1.
Let Ξ(y,A) = s0. By assumption, CUL(y,A) = ∞. Thus there exists a sequence (yn, An) ∈ Rm × Rm×N

with ∥yn − y∥∞ ≤ 4−n, ∥An −A∥max ≤ 4−n and Ξ(yn, An) = s1,n with s1,n ̸= s0. Since Ω is open we can
assume by potentially passing to a subsequence that (yn, An) ∈ Ω. Furthermore, since the number of possible
supports for vectors in RN is finite, {s1,n |n ∈ N} is finite and we can again pass to a subsequence to assume
that s1,n = s1. Once again, the conclusion now follows by an application of Proposition 9.7, where we choose
ι1n = (y1,n, A1,n) and ι0 = ι2n = (y,A). □

9. TOOLS FROM THE SCI HIERARCHY AND GHA

In this section we explain the SCI framework in the context of the LASSO problem. The purpose of introducing
this framework is to ensure that Theorem 2.1, part (3)] is proven with as much generality as possible, taking into
account the wide variety of computational models (e.g. Turing, BSS, Von-Neumann, etc.) that are prevalent in the
optimisation literature. We start by defining the LASSO feature selection as a ‘Computational problem’ following
the setup of [7].

Definition 9.1 (The LASSO computational problem). For some set Ω ⊂ Rm × Rm×N , which we call the input
set, the LASSO computational problem on Ω is the collection {Ξ,Ω,BN ,Λ} where Ξ : Ω → 2B

N

is defined as
in (1.2) and

Λ = {fvec, fmat} with fvec : Ω → Rm, fmat : Ω → Rm×N

are defined by fvec(y,A) = y and fmat(y,A) = A for all (y,A) ∈ Ω.

We want to generalise the LASSO computational problem so that we work with inexact inputs. To do so, we
will consider the collection of all functions fvec

n : Ω → Rm and fmat
n : Ω → Rm×N satisfying

∥fvec
n (y,A)− y∥∞ ≤ 2−n, ∥fmat

n (y,A)−A∥max ≤ 2−n (9.1)

for all (y,A) ∈ Ω. To handle inexact input we follow [7] and replace the exact input set, Ω, by the inexact input
set Ω̃ to form the inexact LASSO computational problem.

Definition 9.2 (Inexact LASSO computational problem). The inexact LASSO computational problem on Ω (ILCP)
is the quadruple {Ξ̃, Ω̃,BN , Λ̃}, where

Ω̃ =
{
ι̃ = {(fvec

n (ι), fmat
n (ι)}n∈N | ι = (y,A) ∈ Ω and

fvec
n : Ω → Rm, fmat

n : Ω → Rm×N satisfy (9.1) respectively
} (9.2)

20

It follows from (9.1) that there is a unique ι = (y,A) ∈ Ω for which

ι̃ =
{
(fvec

n (ι), fmat
n (ι))

}
n∈N.

We say that this ι ∈ Ω corresponds to ι̃ ∈ Ω̃ and we set Ξ̃ : Ω̃ ⇒ BN so that Ξ(ι̃) = Ξ(ι), and
Λ̃ = {f̃vec

n , f̃mat
n }n∈N, with f̃vec

n (ι̃) = fn(ι), f̃mat
n (ι̃) = fmat

n (ι) where ι corresponds to ι̃.

Part (3) in Theorem 2.1 is a negative result (it states that a computational problem cannot be solved). To make
it as general as possible we want it to apply to a broad class of algorithms. These are defined, roughly speaking, by
a single requirement namely, that for a given ι̃ ∈ Ω̃, the algorithm finds any member of Ξ̃(ι̃) by accessing finitely
many values of f̃(ι̃) where f̃ ∈ Λ̃. This captures the idea that any algorithm that solves the ILCP should return
an answer by accessing arbitrarily many (but finitely many) approximations to the true input. Note, the algorithm
should work for any choice of approximations and any input but it may return different results depending on which
approximations it sees.

The type of algorithm described above are called general algorithms. As noted in [7], the purpose of a general
algorithm is to have a definition that encompasses any model of computation. This ensures that Theorem 2.1(3)
holds in all relevant computational models considered by the optimisation community (e.g. Turing, BSS).

Definition 9.3 (General Algorithms for the ILCP). A general algorithm for {Ξ̃, Ω̃,BN , Λ̃}, is a mapping Γ : Ω̃ →
BN such that, for every ι̃ ∈ Ω̃, the following conditions hold:

(i) there exists a nonempty subset of evaluations ΛΓ(ι̃) ⊂ Λ̃ with |ΛΓ(ι̃)| < ∞,
(ii) the action of Γ on ι̃ is uniquely determined by {f(ι̃)}f∈ΛΓ(ι̃),

(iii) for every ι′ ∈ Ω such that f(ι′) = f(ι̃) for all f ∈ ΛΓ(ι̃), it holds that ΛΓ(ι
′) = ΛΓ(ι̃).

This will prove useful when we come to define randomised general algorithms to prove the random setting
statement in Theorem 2.1(3). We can thus proceed to define randomised general algorithms.

Definition 9.4 (Randomised General Algorithm for the ILCP). A randomised general algorithm (RGA) for
{Ξ̃, Ω̃,BN , Λ̃} is a collection X of general algorithms Γ : Ω̃ → BN , a sigma-algebra F on X , and a family
of probability measures {Pι}ι∈Ω on F such that the following conditions hold:

(Pi) For each ι ∈ Ω̃, the mapping Γran
ι : (X,F) → (BN ,B) defined by Γran

ι (Γ) = Γ(ι) is a random variable,
where B is the Borel sigma-algebra on BN .

(Pii) For each n ∈ N and ι ∈ Ω̃, we have {Γ ∈ X |TΓ(ι) ≤ n} ∈ F , where

TΓ(ι̃) := sup{m ∈ N | either fvec
m ∈ ΛΓ(ι̃) or fmat

m ∈ ΛΓ(ι̃)}.

(Piii) For all ι1, ι2 ∈ Ω̃ and E ∈ F so that, for every Γ ∈ E and every f ∈ ΛΓ(ι1), we have f(ι1) = f(ι2), it
holds that Pι1(E) = Pι2(E).

Remark 9.5. The quantity TΓ(ι̃) is known as the minimum amount of input information in [7].

Definition 9.6 (Halting randomised general algorithms). A randomised general algorithm Γran,h for a computa-
tional problem {Ξ,Ω,M,Λ} is called a halting randomised general algorithm (hRGA) if Pι(Γ

ran,h
ι = NH) = 0,

for all ι ∈ Ω.

We make use of the following propositions, taken from [7] and simplified for the specific problem under
consideration in this paper.

Proposition 9.7. (Simplified from [7], Proposition 9.5) Suppose that a subset Ω of ∪∞
N=1 ∪N

m=1 Rm × Rm×N is
such that there exists two sequences {ι1n}∞n=1, {ι2n}∞n=1 ⊂ Ω and an ι0 ∈ Ω satisfying the following conditions:

(a) There are disjoint sets S1, S2 ⊂ BN with Ξ(ιin) ⊂ Si for i = 1, 2 where Ξ is defined as in Definition 9.1.
(b) ιin = (yi,n, Ai,n) and ι0 = (y,A) with ∥yi,n − y∥∞ ≤ 1/4n and ∥Ai,n −A∥max ≤ 1/4n for all n ∈ N and

i = 1, 2.

Then each of the following holds:
21

(1) For any general algorithm Γ : Ω̃ → BN , there must exist a ι̃ ∈ Ω̃ so that Γ(ι̃) ̸= Ξ̃(ι̃).
(2) For any p > 0 and halting randomised general algorithm Γran,h, there must exist ι̃ so that the probability

that Γran,h(ι̃) ̸= Ξ̃(ι̃) is at least 1/2− p.

REFERENCES

[1] B. Adcock and A. C. Hansen. Compressive Imaging: Structure, Sampling, Learning. Cambridge University Press, 2021.
[2] D. Amelunzen, M. Lotz, M. B. McCoy, and J. A. Tropp. Living on the edge : phase transitions in convex programs with random data.

Information and Inference, 3(3):224–294, June 2014.
[3] V. Antun, M. J. Colbrook, and A. C. Hansen. Proving existence is not enough: Mathematical paradoxes unravel the limits of neural

networks in artificial intelligence. SIAM News, 55(04):1–4, May 2022.
[4] V. Antun, F. Renna, C. Poon, B. Adcock, and A. C. Hansen. On instabilities of deep learning in image reconstruction and the potential

costs of AI. Proc. Natl. Acad. Sci. USA, 117(48):30088–30095, 2020.
[5] S. Arora and B. Barak. Computational Complexity - A Modern Approach. Princeton University Press, 2009.
[6] A. Bastounis, F. Cucker, and A. C. Hansen. When can you trust feature selection? – ii: On the effects of random data on condition in

statistics and optimisation. Preprint, 2023.
[7] A. Bastounis, A. C. Hansen, and V. Vlačić. The extended Smale’s 9th problem – On computational barriers and paradoxes in estimation,

regularisation, computer-assisted proofs and learning. arXiv:2110.15734, 2021.
[8] A. Beck and M. Teboulle. A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM Journal on Imaging

Sciences, 2(1):183–202, 2009.
[9] J. Ben-Artzi, M. J. Colbrook, A. C. Hansen, O. Nevanlinna, and M. Seidel. Computing spectra – On the solvability complexity index

hierarchy and towers of algorithms. arXiv:1508.03280v5, 2020.
[10] J. Ben-Artzi, M. Marletta, and F. Rösler. Computing scattering resonances. Journal of the European Mathematical Society, 2023.
[11] A. Ben-Tal, L. El Ghaoui, and A. Nemirovski. Robust Optimization. Princeton Series in Applied Mathematics. Princeton University

Press, October 2009.
[12] A. Ben-Tal and A. Nemirovski. Robust solutions of linear programming problems contaminated with uncertain data. Mathematical

Programming, 88(3):411–424, 2000.
[13] L. Blum, F. Cucker, M. Shub, and S. Smale. Complexity and Real Computation. Springer-Verlag, 1998.
[14] L. Blum, M. Shub, and S. Smale. On a theory of computation and complexity over the real numbers: NP-completeness, recursive

functions and universal machines. BAMS, 21:1–46, 1989.
[15] S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University Press, New York, NY, USA, 2004.
[16] P. Bürgisser and F. Cucker. Condition: The Geometry of Numerical Algorithms. Number 349 in Grundlehren der matematischen Wis-

senschaften. Springer Verlag, 2013.
[17] A. Chambolle and T. Pock. A first-order primal-dual algorithm for convex problems with applications to imaging. J. Math. Imaging Vis.,

40(1):120–145, May 2011.
[18] A. Chambolle and T. Pock. An introduction to continuous optimization for imaging. Acta Numerica, 25:161–319, 2016.
[19] D. Cheung and F. Cucker. A new condition number for linear programming. Mathematical Programming, 91(1):163–174, 2001.
[20] D. Cheung and F. Cucker. Solving linear programs with finite precision: I. Condition numbers and random programs. Math. Program-

ming, 99:175–196, 2004.
[21] D. Cheung and F. Cucker. A note on level-2 condition numbers. Journal of Complexity, 21(3):314–319, 2005.
[22] D. Cheung, F. Cucker, and J. Peña. On strata of degenerate polyhedral cones. I: Condition and distance to stratae. European Journal of

Operational Research, 198:23–28, 2009.
[23] C. Choi. 7 revealing ways AIs fail. IEEE Spectrum, September, 2021.
[24] C. Choi. Some AI systems may be impossible to compute. IEEE Spectrum, March, 2022.
[25] M. Colbrook and A. C. Hansen. The foundations of spectral computations via the solvability complexity index hierarchy. Journal of the

European Mathematical Society, 2022 (online).
[26] M. J. Colbrook, V. Antun, and A. C. Hansen. The difficulty of computing stable and accurate neural networks: On the barriers of deep

learning and smale’s 18th problem. Proc. Natl. Acad. Sci. USA, 119(12):e2107151119, 2022.
[27] F. Cucker and S. Smale. Complexity estimates depending on condition and round-off error. Journal of the ACM, 46(1):113–184, 1999.
[28] C. Fefferman, A. C. Hansen, and S. Jitomirskaya, editors. Computational mathematics in computer assisted proofs, American Institute

of Mathematics Workshops. American Institute of Mathematics, 2022. Available online at
https://aimath.org/pastworkshops/compproofsvrep.pdf.

[29] L. E. Gazdag and A. C. Hansen. Generalised hardness of approximation and the SCI hierarchy – On determining the boundaries of
training algorithms in AI. arXiv:2209.06715, 2022.

[30] H. Goldstine and J. von Neumann. Numerical inverting matrices of high order, II. Proc. Amer. Math. Soc., 2:188–202, 1951.
[31] N. M. Gottschling, V. Antun, A. C. Hansen, and B. Adcock. The troublesome kernel – on hallucinations, no free lunches and the

accuracy-stability trade-off in inverse problems. 2023.

22

https://aimath.org/pastworkshops/compproofsvrep.pdf

[32] T. C. Hales. A proof of the Kepler conjecture. Ann. of Math. (2), 162(3):1065–1185, 2005.
[33] T. C. Hales and et al. A formal proof of the kepler conjecture. Forum of Mathematics, Pi, 5:e2, 2017.
[34] K. Hammernik, T. Klatzer, E. Kobler, M. P. Recht, D. K. Sodickson, T. Pock, and F. Knoll. Learning a variational network for recon-

struction of accelerated MRI data. Magnetic Resonance in Medicine, 79(6):3055–3071, 2018.
[35] A. C. Hansen. On the solvability complexity index, the n-pseudospectrum and approximations of spectra of operators. Journal of the

American Mathematical Society, 24(1):81–124, 2011.
[36] T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical Learning. Springer Series in Statistics. Springer New York Inc.,

New York, NY, USA, 2001.
[37] T. Hastie, R. Tibshirani, and M. Wainwright. Statistical Learning with Sparsity: The Lasso and Generalizations (Chapman & Hall/CRC

Monographs on Statistics & Applied Probability). Chapman and Hall/CRC, May 2015.
[38] D. Heaven et al. Why deep-learning AIs are so easy to fool. Nature, 574(7777):163–166, 2019.
[39] N. J. Higham. Accuracy and Stability of Numerical Algorithms. Society for Industrial and Applied Mathematics, Philadelphia, PA, USA,

2nd edition, 2002.
[40] K. H. Jin, M. T. McCann, E. Froustey, and M. Unser. Deep convolutional neural network for inverse problems in imaging. IEEE Trans-

actions on Image Processing, 26(9):4509–4522, 2017.
[41] A. Juditsky, F. Kilinç-Karzan, A. Nemirovski, and B. Polyak. Accuracy guaranties for ℓ1 recovery of block-sparse signals. The Annals of

Statistics, 40(6):3077 – 3107, 2012.
[42] D. Knuth. Big omicrom and big omega and big theta. SIGACT News, pages 18–24, Apr.-Jun. 1976.
[43] M. Lotz, D. Amelunxen, and J. Walvin. Effective condition number bounds for convex regularization. IEEE Transactions on Information

Theory, Jan. 2020.
[44] M. T. McCann, K. H. Jin, and M. Unser. Convolutional neural networks for inverse problems in imaging: A review. IEEE Signal Process

Magazine, 34(6):85–95, 2017.
[45] R. D. C. Monteiro and I. Adler. Interior path following primal-dual algorithms. part ii: Convex quadratic programming. Mathematical

Programming, 44(1):43–66, May 1989.
[46] S. Moosavi-Dezfooli, A. Fawzi, O. Fawzi, and P. Frossard. Universal adversarial perturbations. In IEEE Conference on computer vision

and pattern recognition, pages 86–94, July 2017.
[47] L. Narici and E. Beckenstein. Topological Vector Spaces. Chapman and Hall/CRC, July 2010.
[48] A. Nemirovski. Lectures on Robust Convex Optimization. Available online at https://www2.isye.gatech.edu/

˜nemirovs/, 2009.
[49] Y. E. Nesterov and A. Nemirovski. On first-order algorithms for l1/nuclear norm minimization. Acta Numer., 22:509–575, 2013.
[50] J. Peña. Conditioning of convex programs from a primal-dual perspective. Mathematics of Operations Research, 26(2):206–220, 2001.
[51] J. Peña. Two properties of condition numbers for convex programs via implicitly defined barrier functions. Mathematical Programming,

93(1):55–75, 2002.
[52] H. R, J. H, and S. M. JI. Robustness and explainability of artificial intelligence. (KJ-NA-30040-EN-N (online)), 2020.
[53] J. Renegar. A polynomial-time algorithm, based on newton’s method, for linear programming. Mathematical Programming, 40(1-3):59–

93, 1988.
[54] J. Renegar. Is it possible to know a problem instance is ill-posed? J.of Complexity, 10:1–56, 1994.
[55] J. Renegar. Incorporating condition measures into the complexity theory of linear programming. SIAM Journal on Optimization,

5(3):506–524, 1995.
[56] J. Renegar. Linear programming, complexity theory and elementary functional analysis. Mathematical Programming, 70(1):279–351,

1995.
[57] J. Renegar. Condition numbers, the barrier method, and the conjugate-gradient method. SIAM Journal on Optimization, 6:879–912, 1996.
[58] J. Renegar. A mathematical view of interior-point methods in convex optimization, volume 3. Siam, 2001.
[59] S. Smale. Mathematical problems for the next century. In V. Arnold, M. Atiyah, P. Lax, and B. Mazur, editors, Mathematics: Frontiers

and Perspectives. American Mathematical Society, 2000.
[60] R. Tibshirani. Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society, Series B, 58:267–288, 1994.
[61] R. J. Tibshirani. The lasso problem and uniqueness. Electron. J. Statist., 7:1456–1490, 2013.
[62] A. Turing. Rounding-off errors in matrix processes. Quart. J. Mech. Appl. Math., 1:287–308, 1948.
[63] J. von Neumann and H. Goldstine. Numerical inverting matrices of high order. Bull. Amer. Math. Soc., 53:1021–1099, 1947.
[64] J. Wilkinson. Rounding Errors in Algebraic Processes. Prentice Hall, 1963.
[65] S. Wright and B. Recht. Optimization for Data Analysis. Cambridge University Press, 2022.
[66] S. J. Wright, R. D. Nowak, and M. A. T. Figueiredo. Sparse reconstruction by separable approximation. IEEE Transactions on Signal

Processing, 57(7):2479–2493, 2009.

23

https://www2.isye.gatech.edu/~nemirovs/
https://www2.isye.gatech.edu/~nemirovs/

UNIVERSITY OF LEICESTER, UK
Email address: ajb177@leicester.ac.uk

CITY UNIVERSITY OF HONG KONG, HONG KONG
Email address: macucker@gmail.com

UNIVERSITY OF CAMBRIDGE, UK
Email address: ach70@cam.ac.uk

24

	1. Introduction
	1.1. Condition and trustworthiness
	1.2. Generalised hardness of approximation (GHA) and robust optimisation

	2. Main Result
	2.1. Connection to previous work

	3. Numerical Examples – Failure of modern algorithms
	4. Preliminaries on the computational model
	5. Standard facts about the unconstrained LASSO
	6. Conditioning of unconstrained LASSO
	7. An alternative characterisation of the condition number
	8. Proofs of the stated results
	8.1. Proof of Proposition 6.4
	8.2. Proof of Proposition 7.2
	8.3. Proof of Proposition 7.3
	8.4. Proof of Proposition 7.4
	8.5. A convex quadratic routine for unconstrained LASSO
	8.6. A subroutine for testing upper bounds for
	8.7. Proof of Theorem 2.1, parts (1) & (2)
	8.8. Proof of Theorem 2.1, part (3)

	9. Tools from the SCI hierarchy and GHA
	References

