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ABSTRACT. In Part I, we defined a LASSO condition number and developed an algorithm – for computing
support sets (feature selection) of the LASSO minimisation problem – that runs in polynomial time in the number
of variables and the logarithm of the condition number. The algorithm is trustworthy in the sense that if the
condition number is infinite, the algorithm will run forever and never produce an incorrect output. In this Part II
article, we demonstrate how finite precision algorithms (for example algorithms running floating point arithmetic)
will fail on open sets when the condition number is large – but still finite. This augments Part I’s result: If an
algorithm takes inputs from an open set that includes at least one point with an infinite condition number, it fails
to compute the correct support set for all inputs within that set. Hence, for any finite precision algorithm working
on open sets for the LASSO problem with random inputs, our LASSO condition number – as a random variable
– will estimate the probability of success/failure of the algorithm. We show that a finite precision version of our
algorithm works on traditional Gaussian data for LASSO with high probability. The algorithm is trustworthy,
specifically, in the random cases where the algorithm fails, it will not produce an output. Finally, we demonstrate
classical random ensembles for which the condition number will be large with high probability, and hence where
any finite precision algorithm on open sets will fail. We show numerically how commercial software fails on
these cases.

1. INTRODUCTION

This article is the continuation of [7], which in the sequel we will refer to as Part I. Both here and in Part I,
the unconstrained LASSO feature selection problem [33,50] is the main focus. Specifically, we are interested
in computing, for fixed λ ∈ Q, λ > 0, an element in

Ξ(y,A) = {supp(x) |x ∈ argmin
x̂∈RN

∥Ax̂− y∥22 + λ∥x̂∥1}, (1.1)

where (y,A) ∈ Rm × Rm×N . The rationale is as follows: given the many AI-based algorithms in the
computational sciences, with the potential for hallucinations and non-robustness [5, 20, 20, 21, 28, 31, 34, 36,
38, 39], the question of trustworthiness of algorithms is now becoming a crucial topic. For example, the
European Commission [44] has been particularly vocal about its demand for trust in algorithms. However,
with this new focus on trust in algorithms comes an important question: Which of the classical (non-AI-
based) approaches are trustworthy, such as LASSO feature selection?

Part I first defines a LASSO condition number CUL(b, U) (see Definition 5.2) for any pair (b, U) ∈ Rm×
Rm×N , and then provides the following Theorem (Theorem 1.2 there1) below. The model of computation
is that any algorithm reads variable-precision approximations of the input (b, U) ∈ Rm × Rm×N . Most
importantly, the set of variable precision algorithms contains the set of finite precision algorithms, which is
a typical way of modelling algorithms using floating point arithmetic.

Remark 1.1 (Model of computation – Inexact input). In practice, when trying to compute an element of
Ξ(y,A) in (1.1), we must assume that the A and y are given inexactly. This is because either we have: (1)
an irrational input; or (2) the input is rational (for example 1/3), but our computer expresses numbers in a
certain base (typically base-2); (3) the computer uses floating-point arithmetic for which – in many cases –

1In all what follows, for simplicity, we will use a prefix ‘I.’ in the references to objects in Part I not contained here. Thus, for
instance, Theorem 1.2 or equation (7.19) there become Theorem I.1.2 and equation (I.7.19) here.
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the common backward-error analysis (popularized by Wilkinson [53]) translates the accumulation of round-
off in a computation into a single-perturbation of the input data. Hence, we assume that algorithms access
the input to whatever finite precision desired and that all computational operations are done exactly.

Theorem 1.2 (Main theorem of Part I). Consider the condition number CUL(b, U) defined in (5.1).

(1) We exhibit an algorithm Γ which, for any input pair (b, U) ∈ Rm×Rm×N , reads variable-precision
approximations of (b, U). If CUL(b, U) < ∞ then the algorithm halts and returns a correct value in
Ξ(b, U). The cost of this computation is

O
{
N3
[
log2

(
N2[[(b, U)]]2maxCUL(b, U)

)]2}
.

If, instead, CUL(b, U) = ∞ then the algorithm runs forever.
(2) The condition number CUL(b, U) can be estimated in the following sense: There exists an algorithm

that provides an upper bound on CUL(b, U), when it is finite, and runs forever when CUL(b, U) =

∞.
(3) If Ω ⊆ Rm × Rm×N is an open set and there is a (b, U) ∈ Ω with CUL(b, U) = ∞ then there is no

algorithm that, for all input (y,A) ∈ Ω, computes an element of Ξ(y,A) given approximations to
(y,A) ∈ Ω. Moreover, for any randomised algorithm Γran that always halts and any p > 1/2, there
exists (y,A) ∈ Ω and an approximate representation (ỹ, Ã) (for a precise statement see §9 in Part
I [7]) of (y,A) so that Γran(ỹ, Ã) /∈ Ξ(y,A) with probability at least p.

If (b, U) ∈ Ω is computable, then the failure point (y,A) ∈ Ω above can be made computable.

Remark 1.3 (Trustworthiness of algorithms – No wrong outputs). By ‘trustworthy algorithm’ for a com-
putational problem, we mean the following. If the computational problem takes only discrete values (as is
the case when computing support sets of minimisers of optimisation problems), a trustworthy algorithm will
always produce a correct answer – if it halts.

Note that (1) implies – in view of the question on trustworthiness – that our algorithm will never output a
wrong solution, and thus if it halts, the output is always trustworthy. However, there are inputs for which it
will not produce an answer. In view of (3) this is optimal in terms of existence of algorithms on open sets:
Every algorithm will fail on some inputs, although not necessarily on inputs (b, U) where CUL(b, U) = ∞,
which is where our algorithm fails.

1.1. The LASSO problem with random inputs. To motivate our main results in this paper – Part II – we
begin by asking the basic question:

Can commercial software for the LASSO problem be trusted on random data? If not, why?
Is there a link to our LASSO condition number? And how can a lack of trust be mitigated?

To illustrate the motivation behind this question we consider the following example, using a variety of dif-
ferent probability distributions on the input data.

Example 1.4 (Testing algorithms for LASSO with random inputs). We set m = 1, b = 1, and λ = 10−2

and generate each entry of a matrix U ∈ R1×N iid from three distributions: the exponential distribution with
parameter 1, the normal distribution with mean 1 variance 10−4, and the uniform distribution on (0, 1). This
purposefully simplified situation is considered because it is easy to use Lemma 6.3 to compute Ξ(b, U) as
defined in (1.1) (this is a singleton with probability 1). We compare this answer (the ground truth) with the
following procedure: we use Matlab’s lasso routine to attempt to compute an element x in

SolUL(b, U) := argmin
x̂∈RN

∥Ux̂− b∥22 + λ∥x̂∥1. (1.2)

and then set any values of x larger in absolute value than a parameter ‘threshold’ to 0 and consider the
resulting vector’s support. We do this 500 times for each choice of N ∈ {10, 20, . . . , 10010} inclusive. In
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FIGURE 1. (P(LASSO has a unique minimiser) = 1 and P(CUL(b, U) < ∞) = 1,
yet standard algorithms fail to compute the support set). Testing MATLAB’s lasso
on random iid inputs (b, U) ∈ R1 × R1×N – according to the distributions U(a, b) (uni-
form), Exp(ν) (exponential) and N (µ, σ2) (normal). The task is to compute the support
set of a LASSO minimiser i.e. an element in Ξ(b, U) from (1.1) with λ = 10−2. All
figures: the horizontal axis represents the dimension N . Top figures: the vertical axis
represents the success rate # of successes

# of trials with threshold value – see the text accompanying
(1.2) – set to 10−3 and 10−12 for the left and right figures respectively. Bottom left fig-
ure: the proportion of trials (threshold = 10−12) for each dimension which had a condition
CUL(b, U) above 1, 000, for each distribution. Bottom right figure: the vertical axis is
the median condition CUL(b, U) (across all distributions and trials) for that dimension for
the cases where MATLAB was correct and MATLAB was incorrect (threshold = 10−12).
Note that for all the distributions considered P(LASSO has a unique minimiser) = 1 and
P(CUL(b, U) < ∞) = 1 for all N .

addition, we also compute the condition number CUL(b, U) and present the proportion of experiments for
each dimension and distribution which had condition above 1, 000 as well as the median condition across all
distributions of cases where Matlab fails to compute the correct support set and where Matlab computes the
correct support set. The results are presented in Figure 1.

We see that for large N , MATLAB is more accurate when data are drawn from an exponential distribution
instead of a normal distribution and similarly the algorithm is more accurate when data are drawn from a
normal distribution instead of a uniform one. This also correlates with the size of the condition number:
large median condition number correlates with low success rate.

2. MAIN RESULTS

Our main results can be described with three main theorems: Theorem 2.3 demonstrating a relation
between failure of finite precision algorithms and our condition number CUL(b, U); Theorem 2.4, which
shows asymptotic estimates of CUL(b, U), and thus helps explain Example 1.4; and Theorem 2.5 presenting
conditions in classical statistics that allow us to obtain ’good/small’ condition numbers CUL(b, U) – and
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thus effective and trustworthy algorithms for these inputs (we have a stronger, yet more involved version
presented as Theorem 3.3 in §3).

2.1. Condition CUL(b, U) and failure of algorithms on random inputs. The failure of MATLAB’s lasso
in Example 1.4 and Figure 1 yields the question: Why does the algorithm fail on these basic random LASSO
problems? The key issue is that CUL(b, U) characterises failures of finite precision algorithms.

Remark 2.1 (Finite precision algorithms). For a precise definition of a finite precision algorithm, see Def-
inition 9.5. However, the concept can be explained simply: A finite precision algorithm with precision 2−k

(with k ∈ N) can only read a dyadic approximation of the correct input with error bound 2−k.

Remark 2.2 (Inputs that are represented exactly). Given Remark 1.1, there are certain dyadic inputs for
which a finite precision algorithm will have an exact representation. Hence, we can consider algorithms that
are correct on all inputs that can be represented exactly. This concept is formally defined in Definition 9.6.

Theorem 2.3. Let Γ1 and Γ2 be finite precision algorithms with precision 2−k with an open domain Ω ⊂
Rm ×Rm×N for the LASSO function Ξ defined in (1.1). Suppose that Γ1 is correct on all inputs that can be
represented exactly in Ω (see Remarks 2.1 & 2.2) . Suppose that CUL(b, U) = α with 0 < 1

α < 2−k−1 and
that for some r ∈ (α−1, 2−k−1) we have B∞(b, U, r) ⊂ Ω. Then, Γ1 fails on a set F such that

• B∞(b, U, r) \ F has Lebesgue measure 0,
• B∞(b, U, α−1) ∈ F .

Moreover, Γ2 either fails on the whole of B∞(b, U, α−1) or on another open set θ ⊂ B∞(b, U, r).

Theorem 2.3 demonstrates how finite precision algorithms will fail when CUL(b, U) is large relative to
the precision of the algorithm. This means that if the probability that CUL(b, U) is large is high, it is highly
likely that the algorithm will fail.

2.2. Condition CUL(b, U) as a random variable. Theorem 2.4 provides a theoretical explanation to the
behaviours exhibited in Example 1.4 and the corresponding Figure 1.

Theorem 2.4. Let y ∈ R be fixed and A ∈ R1×N be random with i.i.d. entries.

• If the entries of A follow an exponential distribution with parameter 1 then

lim
N→∞

P
(
1

t
< CUL(y,A)

)
=

 1− e−2t for t < |y|

1 for t ≥ |y|.

• If the entries of A follow the normal distribution N (µ, σ2), then
2
√
2 ln(N)[CUL(y,A)]

−1 converges in distribution to an exponential random variable with param-
eter 1/σ.

• If the entries of A follow a uniform distribution U(0, 1) on (0, 1), then
2N [CUL(y,A)]−1 converges in distribution to an exponential random variable with parameter 1.

This theorem can help us to explain Example 1.4. Indeed, a basic understanding of Theorem 2.4 is that,
with high probability and for large N , the condition number (as a function of N ) stays roughly constant
when A is exponentially distributed, grows like

√
ln(N)/σ when A is normally distributed, and grows like

N when A is uniformly distributed.
Note that – according to Theorem 2.3 – larger values of the condition number are unfavourable for finite

precision algorithms. Thus, it is unsurprising that in Figure 1 we see that MATLAB commits more errors
for large N when A is uniform than when A is normal and similarly that MATLAB commits more errors for
large N when A is normal than when A is exponentially distributed.
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2.3. CUL(b, U) and trustworthy algorithms for classical statistics. Our next set of major results is focused
on the following question:

In view of Example 1.4, Figure 1 and Theorem 2.3, under which conditions do there ex-
ist efficient and trustworthy finite precision algorithms – for the LASSO feature selection
problem with random data – that produce correct outputs with high probability?

Our final main result (Theorem 3.3) gives a bound on the probability of CUL being large for normally
distributed inputs (b, U) (as a function of the input’s size). Its statement involves a number of technical
conditions laid out in Section 3 below. To give an idea of its significance, however, we next state a variant
of it in a simple, yet frequently considered, context. Consistently with the notation used in Part I, we write
[[v]]2 := max{1, ∥v∥2}.

Theorem 2.5. Let v ∈ RN , S = supp(v), and s = |S|. Assume ln(N/2) ≤ s ≤ N/8 and m ≤ N/9. Let
U ∈ Rm×M be random with i.i.d. entries with standard Gaussian distribution and b = Uv. There exists a
universal constant c ≥ 1 with the following property. Assume that

(i) m > (1 + ϵ)12s ln(N − s) for some ϵ ∈ (0, 1/2) with ϵ > 8
√
s/m,

(ii) cλ < 2mmin
j∈S

|vj | −
1

N2
,

(iii) λ ≥ 2
N2 .

Then, the algorithm in Theorem I.1.2, which reads variable-precision approximations of input (b, U), returns
S = supp(v), with a cost bounded by O

(
N3(log2 N [[v]]2)

2
)

and maximum number of digits bounded by
O(⌈log2 (N [[v]]2)⌉) with probability at least 1−C1N

−C2 for some positive universal constants C1 and C2.

Remark 2.6. The more general statement in Theorem 3.3 applies under the presence of noise —now b =

Uv+w with w ∈ Rm random with i.i.d entries drawn from N (0, η2)— however, this requires slightly more
involved assumptions and is done in the next section.

3. PRECISE AND GENERAL STATEMENT OF THEOREM 2.5

Recall, for a matrix M ∈ Rm×N , its ∞-norm is given by ∥M∥∞ := maxi∈{1,2,...,m}
∑N

j=1 |Mi,j |.
In this section we consider m feature points ai ∈ RN independently drawn from a normal distribution in

RN . Moreover, we assume that the data y is a random corruption of a fixed linear predictor v ∈ RN . More
precisely, we consider the setup given by the following assumptions:

(Si) A ∈ Rm×N is a random matrix such that each row is an i.i.d. random vector with distribution
N (0,Σ) for some covariance matrix Σ.

(Sii) The vector w ∈ Rm, chosen independently from A, has i.i.d. entries with N (0, η2) distribution.
(Siii) y = Av + w where v ∈ RN is non-random and has support S with |S| = s.

As it happens, we cannot expect a useful probabilistic bound on CUL for arbitrary m,N , and Σ even
if there is no noise in the measurements (i.e. η2 = 0). In order to prove a useful bound on the condition
number we will therefore make some assumptions on the covariance matrix Σ, number of measurements m,
and vectors v. Since our intention is to understand when the lasso can be successfully applied, it is sensible
to use existing conditions that guarantee a low chance of a recovery error. Our goal will be to show that
these conditions can also be used to give an upper bound on the condition number and thus a guarantee of a
low chance of a numerical error. As a starting point, we therefore use the conditions defined in an important
paper in understanding recovery errors for unconstrained lasso, [52]. More precisely, we make use of the
following parameters taken from [52]:

(1) For sets G = {g1, g2, . . . , g|G|} ⊆ {1, 2, . . . , N} and H = {h1, h2, . . . , h|H|} ⊆ {1, 2, . . . , N}
we define the matrix ΣGH ∈ R|G|×|H| so that the i, jth entry (ΣGH)i,j is given by Σgi,hj In other
words, ΣGH is the restriction of Σ to the rows given by G and the columns given by H .
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(2) Define Cmin and Cmax to be, respectively, the minimal and maximal eigenvalues of ΣSS .
(3) Define the matrix ΣSc|S ∈ R(N−s)×(N−s) by ΣSc|S := ΣScSc − ΣScS(ΣSS)

−1ΣSSc .
(4) We define γ := 1− ∥ΣScS(ΣSS)

−1∥∞.
(5) For a square, symmetric, matrix M we define ρl(M) := mini ̸=j(Mii + Mjj − 2Mij)/2 and

ρu(M) := max{Mii}. When convenient, we will write for shorthand ρu = ρu(ΣSc|S) and
ρl = ρl(ΣSc|S).

(6) Define θl = θl(Σ) := ρl/(Cmax(2− γ2)) and θu = θu(Σ) := ρu/(Cminγ
2),

(7) Define

ϕN :=
λ2

8η2 ln(N)Cminθum
, (3.1)

Remark 3.1. Although at first glance these parameters —Cmin, Cmax, θu, θl and γ— seem somewhat com-
plicated, it can be revealing to consider their values when the rows of A are drawn from a standard isotropic
Gaussian, that is, when Σ = IN . In this case, for any S, ΣSS = Is. Therefore clearly, Cmin = Cmax = 1.
Also, ΣScS = 0 and ΣScSc = IN−s so that ΣSc|S = IN−s and hence, γ = ρl = ρu = 1 and thus
θl = θu = 1. This means that ϕN = λ2(8η2 log(N)m)−1.

We next consider the following assumption:

(a0): γ is strictly positive.

Our starting point is [52, Thm. 3], which when written in the notation of this paper becomes the following.

Theorem 3.2 (Theorem 3 [52]). Assume that ϕN ≥ 2 and that

m

2s ln(N − s)
> (1 + ϵ)θu

(
1 +

4m2η2Cmin

λ2s

)
(3.2)

for some ϵ ∈ (0, 1/2) with ϵ > max{8Cmin

√
s/m,

√
s/m} as well as assumption (a0).

Then there exist constants c1, c2 and c3 independent of all parameters such that the following is true. If

g(λ) :=
c3λ∥Σ−1/2∥2∞

2m
+ 20

√
η2 ln(s)

Cminm
< min

j∈S
|vj |

then, with probability greater than 1 − c1e
−c2 min{s,ln(N−s)}, the LASSO problem SolUL(y,A) defined in

(1.2) has a unique solution x. Moreover x satisfies the following:

(1) supp(x) = S

(2) sgn(xS) = sgn(vS) ∈ {−1, 1}S

(3) ∥xS − vS∥∞ ≤ g(λ). □

Theorem 3.2 is a very important result in the literature concerning the lasso. Firstly, the result applies
both when Σ = IN and η = 0 (giving the traditional bound from the compressed sensing literature that
m ≥ Cs log(N − s) for some constant C as a sufficient condition for recovering the set S from gaussian
measurements) and when Σ ̸= IN to explain the more realistic scenario of trying to distinguish between
correlated normally distributed features.

The second and perhaps more crucial reason for the importance of Theorem 3.2 is optimality. Indeed, [52,
Thm. 4] also contains a corresponding lower bound: if instead of assuming (3.2), we assume that

m

2s ln(N − s)
< (1− ϵ)θl

(
1 +

4m2η2Cmax

λ2s

)
then (with probability approaching 1 as N increases) no solution x of the lasso problem has supp(x) = S

and sgn(xS) = sgn(vS). Thus the hypotheses of Theorem 3.2 can be seen as necessary for the lasso to avoid
recovery errors and are therefore a basic requirement for working with the lasso with normally distributed
data.
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It is therefore worth considering if the conditions in Theorem 3.2 and assumption (a0) are sufficient to
also avoid numerical errors. The major result of this section will be to show that this is indeed the case, under
slightly stronger assumptions. More precisely, we assume the following:

(ai): The number of measurements m satisfies

m

(
1

1 + ϵ
− 6

ϕN

)
> 12s ln(N − s)θu (3.3)

for some ϵ ∈ (0, 1/2) with ϵ > max{8Cmin

√
s/m,

√
s/m}.

(aii): g(λ) < min
s∈S

|vs|.

At first glance, it may seem that assumption (ai) is only loosely related to (3.2). However, because of (3.1),
we can write (3.2) as

m

2s ln(N − s)
> (1 + ϵ)θu

(
1 +

m

2s ln(N)θuϕN

)
Replacing the constant 1/2 in the left-hand side by the smaller value 1/12 and replacing 1/ ln(N) by the
larger value 1/ ln(N − s) in the right-hand side of this bound yields the simpler inequality (3.3). Thus (3.3)
can be seen as a slightly stronger condition than (3.2) (but note that (3.3) is still optimal up to the change of
constants). Moreover, for the left hand side of (3.3) to be positive we will require ϕN ≥ 6(1 + ϵ) and hence
assumption (ai) supersedes the requirement that ϕN ≥ 2.

To state our result under assumptions (ai–aii) we will use one additional parameter. Recall from (I.7.1)
the function q in the variables ν, ξ > 0,

q(ν, ξ) := 96ν5 + 12ν3(1 + λ
√
N)
√

ξ + ξ

(
2ν3

λ
+ 3ν

)
. (3.4)

We are now in a position to state the major result of this section.

Theorem 3.3. In the setup described by (Si–iii) and under the assumptions (ai–aii), there exists constants
c1, c2 such that if p = c1e

−c2 min{ln(N−s),s} then

P(CUL(y,A) ≥ K̂) ≤ p where K̂ := (mN)
1
2 max

{
q(α̂, σ̂)

σ̂2
,
6α̂√
σ̂
, 1

}
with

σ̂ = min
{
C2

min/(4(
√
s+

√
m)4), λ/2,min

j∈S
|vj | − g(λ)

}
,

α̂ = max
{
1,
√
2m(η + Cmax∥v∥2), ∥Σ∥1/22 (3

√
m+ 6

√
N)
}
.

In particular, the algorithm in Theorem I.1.2, which reads variable-precision approximations of input
(y,A), returns S = supp(v), with a cost bounded by O

(
N3(log2 K̂[[v]]2)

2
)

and maximum number of digits

bounded by O(
⌈
log2

(
K̂[[v]]2

)⌉
). with probability at least p.

As per Remark 3.1, when the rows of A are drawn from a standard isotropic Gaussian assumption (a0) is
automatically satisfied whereas (ai–aii) reduce to the following

(ai’): The number of measurements m satisfies

m

(
1

1 + ϵ
− 6

ϕN

)
> 12s ln(N − s) (3.5)

for some ϵ ∈ (0, 1/2) with ϵ > 8
√
s/m.

(aii’): g(λ) < min
s∈S

|vs| where g(λ) = c3λ/(2m) + 20
√
η2 ln(s)/m and c3 is as in Theorem 3.2.

and hence we obtain the following simpler form of Theorem 3.3 which we state in full.



8 ALEXANDER BASTOUNIS, FELIPE CUCKER, AND ANDERS C. HANSEN

Corollary 3.4. Assume Σ = IN . In the setup above and under assumptions (ai’) and (aii’), there exist
absolute constants c1 and c2 such that the following holds true. Let

σ̂ = min

{
1

4(
√
s+

√
m)4

,
λ

2
,min
j∈S

|vj | − g(λ)

}
and α̂ = max

{√
2m(η + ∥v∥2), 3

√
m+ 6

√
N
}
.

Then, P(CUL(y,A) ≥ K̂) ≤ c1e
−c2 min{ln(N−s),s} where K̂ := (mN)

1
2 max

{
q(α̂,σ̂)
σ̂2 , 6α̂√

σ̂

}
. In particu-

lar, the algorithm in Theorem I.1.2, which reads variable-precision approximations of input (y,A), returns
S = supp(v), with a cost bounded by O

(
N3(log2 K̂[[v]]2)

2
)

and maximum number of digits bounded by

O(
⌈
log2

(
K̂[[v]]2

)⌉
). with probability at least p.

4. CONNECTION TO PREVIOUS WORK

Below follows an account of the connection to different areas and works that are crucial for the paper.

Condition in optimisation: The concept of condition numbers has proven a crucial to computational math-
ematics and numerical analysis for securing trustworthy algorithms that are accurate and stable [24, 35].
J. Renegar’s contributions in optimization and condition are particularly noteworthy, with [45–49] im-
portant for understanding stability, accuracy, and efficiency of optimization algorithms. This is exten-
sively discussed in [15]. Furthermore, the following have important links to condition in optimization: J.
Peña [42, 43] as well as D. Amelunxen, M. Lotz, J. Walvin [37], and D. Amelunxen, M. Lotz, M. McCoy,
J. Tropp [3] see also [17–19].

GHA and robust optimisation: GHA [2, 4, 8, 23, 27] plays an instrumental role in establishing some of
the computational barriers that this paper introduces. The topic is related (although mathematically very
different) to hardness of approximation in computer science [6]. Importantly, GHA in optimisation can be
viewed as a part of the broader program on robust optimisation (A. Ben-Tal, L. El Ghaoui & Nemirovski [12,
13, 40]) for computing minimisers. It is also a part of broader efforts to establishthe mathematics behind
the Solvability Complexity Index (SCI) hierarchy, see for example the work by J. Ben-Artzi, M. Colbrook,
M. Marletta [10, 11, 22, 32].

Trustworthy algorithms and computer assisted proofs: The importance of finding trustworthy algorithms for
optimisation goes beyond scientific computing: it has important implications in computer assisted proofs.
T. Hales’ proof of Kepler’s conjecture [29, 30] is a prime example. Hales’ computer assisted proof of
this famous conjecture relied on solving around 50,000 linear programs with irrational inputs, thus high-
lighting the importance of understanding computation with inexact inputs across all of mathematics. For
other examples, see [26]. Of particular interest to this work are Problem 2 (T. Hou) and Problem 5 (J.
Lagarias) which discusses results on developing algorithms that are 100% trustworthy and thus appropriate
for computer assisted proofs.

Algorithms for computing minimisers of LASSO: Numerous algorithms are available for solving the LASSO
problem, as detailed in the review articles by Nesterov & Nemirovski [41] and Chambolle & Pock [16],
which include additional references for a comprehensive understanding. See also the work by Beck &
Teboulle [9] and Wright, Nowak & Figueiredo [55], and the references therein, as well as [2, 14, 54].
However, while these algorithms are capable of approximating the objective function, they cannot – in
general – determine the support sets of minimisers of LASSO.

5. DEFINITIONS AND RESULTS FROM [7]

In this section we recall some definitions and results that are taken from [7]. These are provided without
proofs, as the proofs are contained in [7], and are included for the sake of ensuring that this paper can be
read as self contained material.
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In addition to [[(y,A)]]max we will also use the ℓp-norm ∥y∥p of y, the operator norms ∥A∥qr = sup∥x∥q=1 ∥Ax∥r
(writing ∥A∥q when q = r), and the truncated norms

[[(y,A)]]S = max


m∑
i=1

N∑
j=1

|Aij |,
m∑
i=1

|yi|, 1


and [[(y,A)]]2 := max {∥A∥2, ∥y∥2, 1}.

Definition 5.1. The stability support of a pair (y,A) is defined as

stsp(y,A) := inf
{
δ ≥ 0

∣∣ ∃ ỹ ∈ Rm, Ã ∈ Rm×N , x ∈ SolUL(y,A), and x̃ ∈ SolUL(ỹ, Ã)

such that ∥ỹ − y∥∞, ∥A− Ã∥max ≤ δ and supp(x) ̸= supp(x̃)
}
.

The stability support is therefore the distance to support change. If stsp(y,A) > 0 then there exists
S ∈ BN such that Ξ(y,A) = {S}. Furthermore, for all pairs (y′, A′) in a ball (w.r.t. the max distance)
of radius stsp(y,A) around (y,A) we have Ξ(y′, A′) = {S}. If, instead, stsp(y,A) = 0 then there are
arbitrarily small perturbations of (y,A) which yield LASSO solutions with different support. We use stability
support to define the condition:

Definition 5.2. For an input (y,A) to UL feature selection we define the condition number CUL(y,A) to be

CUL(y,A) =

 (stsp(y,A))−1 if stsp(y,A) ̸= 0

∞ otherwise.
(5.1)

The set ΣUL := {(y,A) | stsp(y,A) = 0} is the set of ill-posed inputs.

To make this easier to work with, we define the following:

Definition 5.3. For a pair (y,A), we write (with the convention that if M is non-invertible, ∥M−1∥2 := ∞
and so ∥M−1∥−1

2 = 0),

σ1(y,A) := inf{t | ∃x ∈ SolUL(y,A) with ∥A∗
Sc(Ax− y)∥∞ = λ/2− t, S = supp(x)},

σ2(y,A) := inf{∥(A∗
SAS)

−1∥−1
2 | ∃x ∈ SolUL(y,A) with S = supp(x)},

σ3(y,A) := inf{t | ∃i ∈ {1, 2, . . . , N} and x ∈ SolUL(y,A) such that 0 < |xi| ≤ t}.

where, for the empty-set ∅, we interpret ∥A∗
∅(Ax−y)∥∞ = 0, we treat A∗

∅A∅ as invertible with ∥(A∗
∅A∅)

−1∥−1
2 =

∞, and we set inf ∅ = ∞.

We combine each of σ1, σ2 and σ3 into a single quantity as follows,

σ(y,A) := min
{
σ1(y,A), σ2(y,A)2, σ3(y,A)

}
The next proposition provides a lower bound for stsp which makes use of the polynomial (3.4):

Proposition 5.4. Set α = [[(y,A)]]2 and σ = σ(y,A). Then stsp(y,A) ≥ (mN)−
1
2 min

{
σ2

q(α,σ) ,
√
σ

6α , α
}
.

6. PROOF OF THEOREM 2.4

To prove Theorem 2.4, we first relate the condition number to some quantities that will be easier to deal
with. Specifically, we define the event Z and the quantity δ as follows.

Definition 6.1. For pairs (y,A) ∈ R1+N and ϵ > 0, we define Z(ϵ) = Z(y,A, ϵ) to be the following event:
if ∥(y,A)− (ỹ, Ã)∥max ≤ ϵ, then 0 ̸∈ SolUL(ỹ, Ã).

Definition 6.2. For a vector A ∈ RN we let δ ≥ 0 denote the difference between the largest entry of |A| and
the second largest entry of |A|, where |A| ∈ RN is the vector with entries |Ai| for i = 1, . . . , N .
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The proof of Theorem 2.4 easily follows from the following four lemmas, the second of which relates the
condition number to Z and δ.

Lemma 6.3. Let A ∈ RN and i ∈ {1, 2, . . . , N} be such that |Ai| > |Aj | for all j ∈ {1, 2, . . . , N} with
j ̸= i. Let y ∈ R and x ∈ SolUL(y,A). Then supp(x) = {i} if |Aiy| > λ/2 and supp(x) = ∅ (i.e. x = 0) if
|Aiy| ≤ λ/2.

Lemma 6.4. Let A ∈ RN be randomly drawn from an absolutely continuous distribution with respect to the
Lebesgue measure in RN . Let y ∈ R and ϵ > 0. Then, P[Z(ϵ) ∩ (stsp < ϵ)] = P[Z(ϵ) ∩ (δ < 2ϵ)].

Thus to understand stsp it suffices to analyse Z and δ. This is what we do in the next two lemmas under
the assumptions that A is exponentially, gaussian, or uniformly distributed.

Lemma 6.5. Let F be the cumulative distribution of a non-negative random variable X which is absolutely
continuous with respect to the Lebesgue measure in R and c > 0 be such that F (c) < 1. Suppose that
A(N) ∈ RN is a random vector with i.i.d. entries such that

∣∣A(N)
i

∣∣ is distributed as X . Let y ∈ R and
(bN )∞N=1 be a sequence of non-negative reals satisfying that bN < |y| and λ/(2|y| − 2bN ) + bN ≤ c for all
N sufficiently large. Then limN→∞ P(Z(y,A(N), bN )) = 1.

In particular, for all y ∈ R, and b > 0 and all random A ∈ RN ,

(1) limN→∞ P(Z(y,A, b)) = 1 for b < |y| and limN→∞ P(Z(y,A, b)) = 0 for b ≥ |y|, if each entry
of A is exponentially distributed with parameter 1.

(2) limN→∞ P(Z(y,A, bσ/
√
2 ln(N))) = 1, if y ̸= 0 and each entry of A is Gaussian with mean 1,

variance σ2.
(3) limN→∞ P(Z(y,A, b/N)) = 1, if |y| > λ/2 and each entry of A is uniformly distributed on [0, 1].

Lemma 6.6. Suppose that A ∈ RN is a random vector with i.i.d. entries. Then for each t > 0

(1) limN→∞ P(δ > t) = e−t if each entry of A is exponentially distributed.
(2) limN→∞ P(δ > tσ/

√
2 ln(N)) = e−t if each entry of A is Gaussian.

(3) limN→∞ P(δ > t/N) = e−t if each entry of A is uniformly distributed on [0, 1].

Assuming (for now) that these Lemmas hold, we proceed to prove Theorem 2.4.

Proof of Theorem 2.4. For any sequence of positive real valued functions (fn)∞n=1, we split P(stsp < fN (t)) =

P[(stsp < fN (t)) ∩ Z(fN (t))] + P[(stsp < fN (t)) ∩ Z(fN (t))c]. Using Lemma 6.4 with ϵ = fN (t) on the
first term this splitting becomes

P(stsp < fN (t)) = P[(δ < 2fN (t)) ∩ Z(fN (t))] + P[(stsp < fN (t)) ∩ Z(fN (t))c] (6.1)

Now take fN (t) = t when the entries of A are exponentially distributed and t < |y|, fN (t) = tσ√
2 lnN

if
they are Gaussian, and fN (t) = t

N if they are uniformly distributed on [0, 1]. In the three cases Lemma 6.5
shows that P(Z(fN (t))) → 1 when N → ∞. Consequently, in all three cases we have

lim
N→∞

P(stsp < fN (t)) = lim
N→∞

P[(δ < 2fN (t)) ∩ Z(fN (t))] = lim
N→∞

P[δ < 2fN (t)].

We can then apply Lemma 6.6 to deduce that

• limN→∞ P(stsp < t) = 1 − e−2t for t < |y| if each entry of A is exponentially distributed with
parameter 1.

• limN→∞ P(stsp < t/
√
2 ln(N)) = 1− e−2t/σ if each entry of A is a standard Gaussian.

• limN→∞ P(stsp < t/N) = 1 − e−2t if |y| > λ/2 and each entry of A is uniformly distributed on
[0, 1].

It only remains to deal with P(stsp < t) when t ≥ |y| and each entry of A is exponentially distributed
with parameter 1. We start by examining P[(stsp ≥ t) ∩ Z(t)c] in this setting.
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Assume that Z(t)c occurs. Then 0 ∈ SolUL(ỹ, Ã) for some perturbation (ỹ, Ã) of (y,A) satisfying that
d[(ỹ, Ã), (y,A)]∞ < t. If, in addition, stsp ≥ t then 0 ∈ SolUL(y,A) as well. Now, Lemma 6.3 and the
fact that |y| > 0 show that this occurs if and only maxi=1,2,...,N |Ai| ≤ λ/(2|y|). Since the entries of A are
independent, we conclude that

P(0 ∈ SolUL(y,A)) = ΠN
i=1P(|Ai| ≤ λ/(2|y|)) = [1− e−λ/(2y)]N

a quantity tending to 0 as N → ∞. Thus limN→∞ P[(stsp ≥ t)∩Z(t)c] ≤ limN→∞ P(0 ∈ SolUL(y,A)) =

0.
This last limit implies that limN→∞ P[(stsp < t) ∩ Z(t)c] = limN→∞ P(Z(t)c). As t ≥ |y|, Lemma 6.5

part (1) shows that limN→∞ P(Z(t)c) = 1. Hence limN→∞ P(stsp < t) ≥ limN→∞ P[(stsp < t) ∩
Z(t)c] = limN→∞ P(Z(t)c) = 1, completing the proof. □

We now prove Lemmas 6.3 to 6.6.

Proof of Lemma 6.3. The proof follows from the KKT conditions (UL5) in Section I.4. Suppose firstly that
|Aiy| > λ/2. Then 0 is not a solution to the lasso problem. Indeed, if it were the KKT conditions would
imply that |Aiy| = |(A∗(A0− y))i| = λ/2, contradicting our assumption. Moreover for all j ∈ supp(x) we
have that j is in the equicorrelation set and thus |Aj ||(Ax− y)| = |A∗

j (Ax− y)| = λ/2. This means that the
value of |Aj | is the same for all j ∈ supp(x). Our hypothesis then imply that supp(x) = {i}.

Suppose now that, instead, |Aiy| ≤ λ/2. Then ∥A∗(A0 − y)∥∞ = |A∗
i (A0 − y)| ≤ λ/2 and thus 0 is a

solution as it satisfies the KKT conditions. We claim that 0 is in fact the only solution. Indeed, by (UL4), all
lasso solutions have the same ℓ1 norm and hence all solutions have norm 0. Thus the only possible solution
is 0. □

Proof of Lemma 6.4. Write, for simplicity, ξ := stsp(y,A). It suffices to show that

P[(ξ < ϵ) ∩ Z(ϵ)] ≤ P[(δ < 2ϵ) ∩ Z(ϵ)] and P[(ξ ≥ ϵ) ∩ Z(ϵ)] ≤ P[(δ ≥ 2ϵ) ∩ Z(ϵ)]. (6.2)

As the distribution for the entries of A is absolutely continuous with respect to the Lebesgue measure on RN ,
we can assume that each entry of A is unique (this is true with probability 1). Assume that Z(ϵ) occurs and
let x ∈ SolUL(y,A). Because Z(ϵ) holds, x ̸= 0. This implies the existence of i ≤ N with supp(x) = {i}
and such that |Ai| > |Ak| for all k ̸= i by Lemma 6.3.

Let us now prove the first of the inequalities in (6.2). For this, assume that, in addition to Z(ϵ), we have
ξ < ϵ. Then there exists (ỹ, Ã) with dmax[(ỹ, Ã), (y,A)] < ϵ such that there is an x̃ ∈ SolUL(ỹ, Ã) with
supp(x̃) ̸= supp(x). Under the assumption that Z(ϵ) occurs, supp(x̃) ̸= ∅ and so there must exist a j

such that |Ãj | ≥ |Ãi| (otherwise Lemma 6.3 applied to (ỹ, Ã) implies that supp(x̃) = {i}, contradicting
the fact that supp(x̃) ̸= supp(x)). Since Ã is an ϵ-perturbation of A, the condition |Ãj | ≥ |Ãi| implies
|Aj | ≥ |Ai| − 2ϵ. In particular, δ ≤ 2ϵ, and we conclude that P(ξ < ϵ ∩ Z(ϵ)) ≤ P(δ < 2ϵ ∩ Z(ϵ)).

We proceed with the second inequality. For this, assume that, in addition to Z(ϵ), we have ξ ≥ ϵ. Then
for any j ̸= i, the perturbation Ã defined by Ãi = Ai − ϵ sgn(Ai), Ãj = Aj + ϵ sgn(Aj) and Ãk = Ak

whenever both k ̸= i and k ̸= j must be such that if x̃ ∈ SolUL(y, Ã) then supp(x̃) = {i} by the definition
of ξ = stsp(y,A). But for this to occur we must have |Ãi| ≥ |Ãj |, otherwise Lemma 6.3 applies to yield
either x̃ = 0 or supp(x̃) = {j}. The condition |Ãi| ≥ |Ãj | reduces to |Ai| − ϵ ≥ |Aj |+ ϵ. Since this occurs
for any j ̸= i, we must have δ ≥ 2ϵ. We conclude that if both Z(ϵ) and ξ ≥ ϵ then we must have δ ≥ 2ϵ and
thus P[(ξ ≥ ϵ) ∩ Z(ϵ)] ≤ P[(δ ≥ 2ϵ) ∩ Z(ϵ)]. □

Proof of Lemma 6.5. Assume Z
(
y,A(N), bN

)
does not hold. Then there exists (ỹ, Ã) in the ball of radius

bN (w.r.t. dmax) about
(
y,A(N)

)
such that 0 ∈ SolUL

(
ỹ, Ã

)
. This implies that∥∥A(N)

∥∥
∞ < ∥Ã∥∞ + bN and |ỹ| > |y| − bN (6.3)
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and that (by Lemma 6.3) ∥Ã∥∞|ỹ| ≤ λ/2. Together with (6.3) this inequality implies that∥∥A(N)
∥∥
∞ < ∥Ã∥∞ + bN ≤ λ

2|ỹ|
+ bN <

λ

2(|y| − bN )
+ bN .

Consequently, for sufficiently large N ,

P
(
Z
(
y,A(N), bN

))
≥ P

(∥∥A(N)
∥∥
∞ >

λ

2|y|+ 2bN
− bN

)
= 1− F

(
λ

2|y|+ 2bN
− bN

)N

≥ 1− F (c)N

the equality because the entries of A(N) are i.i.d. and our hypothsesis on their distribution, and the last
inequality by our hypothesis. We conclude (since we assume that F (c) < 1) that

lim
N→∞

P
(
Z
(
y,A(N), bN

))
= 1.

We use this result to easily prove each of (1), (2) and (3). Starting with (1), suppose first that b < |y|. The
result follows from setting bN = b for all N ≥ 0 and c = λ/(2|y| − 2b)+ b+1. In the case b ≥ |y| consider
the perturbation ỹ = 0, Ã = A. Then |y − ỹ| = |y| ≤ b and, obviously, ∥Ã − A∥∞ = 0 ≤ b. But 0 is the
unique solution to lasso for the pair (ỹ, Ã), so Z(y,A, b) does not hold and, consequently, P(Z(y,A, b)) = 0.

Similarly, in the Gaussian case (2) we set c := λ
|y| and bN := bσ√

2 lnN
. Clearly, c < ∞ so that F (c) < 1.

In addition, for N sufficiently large, bN < |y| and λ/(2|y| − 2bN ) + bN < c, both because bN → 0 when
N → ∞. The desired convergence follows.

Finally, in the uniform case (3) we set c = 1/2 + λ/(4|y|) (i.e. c is the midpoint between λ/(2|y|) and
1). Note that since c < 1, we must have F (c) < 1. Furthermore, since 1/N → 0 as N → ∞ we must
eventually have λ(2|y| − 2b/N)−1 + b/N < c. The result follows. □

Proof of Lemma 6.6. If the entries of |A| are i.i.d. with distribution with density function f and cumulative
distribution F , the formula for order statistics (see [25, Equation (2.3.1)] which we use with s = n and
r = n− 1) gives

P(δ < t) = N(N − 1)

∫ ∞

0

(F (u))N−2f(u)(F (u+ t)− F (u)) du. (6.4)

We will use this formula to study the case where A has exponential, uniform and Gaussian entries respec-
tively. Starting with the exponential distribution, we observe that A = |A| in this case and therefore we have
F (u) = 1− e−u and f(u) = e−u. Integrating (6.4) by parts yields

P(δ < t) = N lim
u→∞

(F (u))N−1[F (u+ t)− F (u)]−N

∫ ∞

0

(F (u))N−1[f(u+ t)− f(u)] du

and since F (u + t) − F (u) = e−u(1 − e−t), which tends to 0 when u → ∞, and f(u + t) − f(u) =

−e−u(1− e−t) = −f(u)(1− e−t) we obtain

P(δ < t) = N(1− e−t)

∫ ∞

0

(F (u))N−1f(u) du

= (1− e−t) lim
u→∞

[(F (u))N − (F (0))N ] = 1− e−t.

For the uniform distribution, assume that N is large enough so that t/N < 1. Integrating by parts (6.4)
again we obtain

P(δ < t/N) =N lim
u↑1

F (u)N−1[F (u+ t/N)− F (u)]

−N

∫ 1

0

F (u)N−1[f(u+ t/N)− f(u)] du

=−N

∫ 1

0

F (u)N−1[f(u+ t/N)− f(u)] du = N

∫ 1

1−t/N

F (u)N−1f(u) du
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=1− (F (1− t/N))N

where the second to last equality follows because f(u+ t/N) = f(u) provided u is in (0, 1− t/N) and for u
larger than 1−t/N we have f(u+t/N) = 0. Furthermore, for the uniform distribution F (1−t/N) = 1−t/N

and thus limN→∞ F (1− t/N) = limN→∞(1− t/N)N = e−t.
The process for the Gaussian is more involved. Without loss of generality, we can assume that σ = 1:

other σ reduce to this case by considering δ/σ. Let us calculate lim
N→∞

P(δ
√
2 ln(N) < t). From (6.4), we

must have

P(δ
√

2 ln(N) < t) = N(N − 1)

∫ ∞

0

(F (u))N−2f(u)

∫ u+ t√
2 ln(N)

u

f(v) dv du (6.5)

where f (u) =
√

2
π e

− (u2+µ2)
2 cosh(µu) for u ≥ 0 is the density function for the absolute value of a normal

random variable. By the mean value theorem, for each u we have∫ u+ t√
2 ln(N)

u

f(v) dv =
tf(cu)√
2 ln(N)

for some cu ∈ (u, u + t√
2 ln(N)

). Hence, integrating by parts in (6.5) and noting that limu→∞ f(cu) = 0

yields

P(δ
√
2 ln(N) < t) = N

[
lim
u→∞

(F (u))N−1f(cu)− (F (0))N−1f(c0)
]

−N

∫ ∞

0

(F (u))N−1

(
f

(
u+

t√
2 ln(N)

)
− f(u)

)
du

= −N

∫ ∞

0

(F (u))N−1

(
f

(
u+

t√
2 ln(N)

)
− f(u)

)
du.

Because of the form of f and using cosh((u+ tα)µ) = cosh(uµ) cosh(tαµ) + sinh(uµ) sinh(tαµ) we can

write f

(
u+ t√

2 ln(N)

)
as√

2

π
e−(u2+µ2)/2e

−tu√
2 ln(N) e

−t2

4 ln(N) cosh(µu)

(
cosh

(
tµ√

2 ln(N)

)
+ tanh(µu) sinh

(
tµ√

2 ln(N)

))

= f(u)e
−tu√
2 ln(N) e

−t2

4 ln(N)

(
cosh

(
tµ√

2 ln(N)

)
+ tanh(µu) sinh

(
tµ√

2 ln(N)

))
= f(u)g(u)

where

g(u) := e
−tu√
2 ln(N) e

−t2

4 ln(N)

(
cosh

(
tµ√

2 ln(N)

)
+ tanh(µu) sinh

(
tµ√

2 ln(N)

))
and thus

g′(u) =
−tg(u)√
2 ln(N)

+ e
−tu√
2 ln(N) e

−t2

4 ln(N)

(
µ sech2(µu) sinh

(
tµ√

2 ln(N)

))
=

−tg(u)√
2 ln(N)

+ cNh(u)

with

cN = e
−t2

4 ln(N)

(
µ sinh

(
tµ√

2 ln(N)

))
h(u) = e

−tu√
2 ln(N) sech2(µu)

Therefore,

P(δ
√

2 ln(N) < t) = −N

∫ ∞

0

(F (u))N−1f(u) (g(u)− 1) du

= lim
u→∞

−(F (u))N (g(u)− 1)

+

∫ ∞

0

−tg(u)√
2 ln(N)

(F (u))N du+ cN

∫ ∞

0

h(u)(F (u))N du



14 ALEXANDER BASTOUNIS, FELIPE CUCKER, AND ANDERS C. HANSEN

where the last equality holds by a further integration by parts. Note that as u → ∞, F (u) → 1 and g(u) → 0.
Thus

P(δ
√
2 ln(N) < t) = 1 +

∫ ∞

0

−tg(u)√
2 ln(N)

(F (u))N du+ cN

∫ ∞

0

h(u)(F (u))N du

For the second of these two integrals, note cN → 0 as N → ∞ and so∣∣∣∣cN ∫ ∞

0

h(u)(F (u))N du

∣∣∣∣ ≤ cN

∫ ∞

0

sech2(µu) du = cN/µ → 0.

For the first integral
∫∞
0

tg(u)√
2 ln(N)

(F (u))N du = I1+I2 where (using the change of variables v = tu/
√
2 ln(N))

I1 := CN

∫ ∞

0

e−v

(
F

(
v
√
2 ln(N)

t

))N

dv

I2 := SN

∫ ∞

0

e−v tanh

(
µv
√
2 ln(N)

t

)(
F

(
v
√
2 ln(N)

t

))N

dv

CN := e
−t2

4 ln(N)

(
cosh

(
tµ√

2 ln(N)

))
, SN := e

−t2

4 ln(N)

(
sinh

(
tµ√

2 ln(N)

))

Now we note that since F is the cumulative density function of the absolute value of the normal distribution
we have F (x) = [erf((x+ µ)/

√
2) + erf((x− µ)/

√
2)]/2. Thus we can use (e.g. [1, Inequality 7.1.13]) to

obtain, for any x > µ, that F (x) ∈ [1− h(x, 8/π), 1− h(x, 4)], with

h(x, y) =

√
2

π

[
e−( x+µ

2 )2

x+ µ+
√
(x+ µ)2 + y

+
e−( x−µ

2 )2

x− µ+
√
(x− µ)2 + y

]
In particular, for x > 0 large enough and y fixed it is easy to see that there exist positive constants C1,C2 so
that C2e

− x2

2 ex|µ|/x ≥ h(x, y) ≥ C1e
− x2

2 /x and therefore when N is sufficiently large1− C2tN
−v2/t2e

v
√

2 ln(N)|µ|
t

v
√

2 ln(N)

N

≤
(
F (v

√
2 ln(N)/t)

)N
≤

(
1− C1tN

−v2/t2

v
√
2 ln(N)

)N

.

Hence, pointwise in v,

lim
N→∞

(
F (v

√
2 ln(N)/t)

)N
=

 1 if v2/t2 > 1

0 if v2/t2 < 1.

Thus the integrands of I1 and I2 defined for non-negative v converge pointwise as N → ∞ to the function
g(v) = e−v for v > t and g(v) = 0 otherwise. Furthermore the integrands of I1 and I2 are dominated
(uniformly in N ) by the integrable function e−v Thus we can apply the dominated convergence theorem to
see that I1/CN , I2/SN both tend to e−t as N → ∞. Since CN → 1 and SN → 0 as N → ∞, we conclude
that

lim
N→∞

P(δ
√
2 ln(N) < t) = 1− e−t.

□

7. PROOF OF THEOREM 3.3

To prove Theorem 3.3 our strategy is to use Proposition 5.4 to get a bound on stsp(y,A) that depends
on the random quantities α := [[(y,A)]]2 and σ := σ(y,A). The following two lemmas yield probabilistic
bounds on α and σ for the randomly generated data (y,A) according to the setup described by (Si–iii). We
assume throughout the next two statements that (a0)-(aii) are satisfied.
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Lemma 7.1. Set α̂ = max
{
1, 5

2

√
m(η + Cmax∥v∥2), ∥Σ∥1/22 (3

√
m+ 6

√
N)
}

. Then P(α ≥ α̂) ≤ 3e−m.

Lemma 7.2. There exists universal constants c4, c5 and c6 such that the following is true. For any t > 0

such that

t < min

{
C2

min(
√
s+

√
m)−4,

γλ

2
,min
j∈S

|vj | − g(λ)

}
we have

P(σ ≤ t) ≤ 4e−c6 min{mϵ2,s} + 2(N − s)e
− (γ−2t/λ)2

2ρuMN (ϵ) + c4e
−c5 min{s,ln(N−s)}]

+ 2e
− (

√
Cmin−(

√
s+

√
m)t

1
4 )2

2t
1
2 (7.1)

where

MN (ϵ) :=
(1 + ϵ)

Cminθum

(
sθu +

m

2 ln(N)ϕN

)
. (7.2)

In particular, there exists constants c7, c8 such that

P(σ ≤ σ̂) ≤ c7e
−c8 min{s,ln(N−s)} (7.3)

where σ̂ = min

{
C2

min

4(
√
s+

√
m)4

, γλ
4 ,min

j∈S
|vj | − g(λ)

}
.

Assuming for now Lemmas 7.1 and 7.2, the proof of Theorem 3.3 is simple.

Proof of Theorem 3.3. Recall the function q(ν, ξ) defined in (3.4) (and I.7.1). Note that for any fixed ν ≥ 1

the function f(ξ) = ξ2/q(ν, ξ) is increasing on [0,∞). Indeed, it suffices to show that g(ξ) := f(ξ2) is
increasing on [0,∞) and this can be done by noting that g(ξ) takes the form g(ξ) = ξ4/(C + Dξ + Eξ2)

for positive C,D,E and thus, for ξ ≥ 0,

g′(ξ) =
4ξ3(C +Dξ + Eξ2)− ξ4(D + 2Eξ)

(C +Dξ + Eξ2)2
≥ 3Dξ4 + 2Eξ5

(C +Dξ + Eξ2)2
≥ 0.

It is also clear that if we instead fix ξ then ξ2/q(ν, ξ) is decreasing in ν. Similarly, the function
√
ξ/6ν is

increasing in ξ and decreasing in ν for ν ∈ [1,∞).
Thus if we take σ = σ(y,A) ≥ σ̂ and 1 ≤ α = [[(y,A)]]2 < α̂, we have (by Proposition 5.4)

stsp(y,A) ≥ (mN)−
1
2 min

(
σ2

q(α, σ)
,

√
σ

6α
, α

)
≥ (mN)−

1
2 min

(
σ̂2

q(α̂, σ̂)
,

√
σ̂

6α̂
, 1

)
= ξ̂

where we set ξ̂ = K̂−1.
We conclude that for stsp(y,A) ≤ ξ̂ we must have either σ < σ̂ or α > α̂. Therefore P(CUL(y,A) ≥

K̂) = P(stsp(y,A) ≤ ξ̂) ≤ P(σ < σ̂ ∪ α > α̂) ≤ P(σ < σ̂) + P(α > α̂). By Lemmas 7.1 and 7.2, this
is bounded above by 3e−m + c7e

−c8 min{s,ln(N−s)} ≤ c1e
−c2 min{s,ln(N−s)} for some universal constants

c1, c2, the last inequality by (ai), completing the proof. □

The remainder of this section is dedicated to proving Lemmas 7.1 and 7.2. Since α = max{∥y∥2, ∥A∥2, 1},
we devise probabilistic bounds for ∥y∥2 and ∥A∥2 separately.

Lemma 7.3. We have P
(
∥A∥2 ≥ ∥Σ∥

1
2
2 (3

√
m+ 6

√
N)
)
≤ e−m.

Proof. Write A = U
√
Σ, where

√
represents the matrix square root. Then, the entries of U ∈ Rm×N are

i.i.d. with distribution N (0, 1). Furthermore, for any t > 0,

P
(
∥A∥2 ≥ ∥Σ∥

1
2
2 (

√
m(1 + t) + 6

√
N)
)
≤ P

(
∥U∥2 ≥

√
m(1 + t) + 6

√
N
)

≤ e−
2(

√
m(1+t))2

π2 = e−m
2(1+t)2

π2

the second line by [15, (4.6) and Lemma 4.14]. The result follows by setting t = 2. □
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Lemma 7.4. P
(
∥y∥2 ≥ 5

2

√
m(η + Cmax∥v∥2)

)
≤ 2e−m.

Proof. As y = Av + w, for all t > 0, we have

P(∥y∥2 ≥ t) ≤ P

(
∥Av∥2 ≥ t

√
vTΣv

η +
√
vTΣv

)
+ P

(
∥w∥2 ≥ tη

η +
√
vTΣv

)
= P

(
∥Av∥2√
vTΣv

≥ t

η +
√
vTΣv

)
+ P

(
∥w∥2
η

≥ t

η +
√
vTΣv

)
.

We next observe that ∥w∥2/η and ∥Av∥2/
√
vTΣv are independent random variables, both Chi distributed

with parameter m (this is obvious for ∥w∥2/η whereas for ∥Av∥2/
√
vTΣv, note that for each i = 1, 2, . . . ,m

the random variable ΣN
j=1Aijvj is normally distributed with variance vTΣv and the claim follows by the

independence of the rows of A). Let ζ denote any of these two random variables. By [15, Corollary 4.6],
P(ζ ≥

√
m + u) ≤ e−

u2

2 . Hence, taking t = 5
2

√
m(η + Cmax∥v∥2) and noting that

√
vTΣv ≤ Cmax∥v∥2

we get

P(∥y∥2 ≥ t) ≤ 2P

(
ζ ≥

5
2

√
m(η + Cmax∥v∥2)
(η +

√
vTΣv)

)
≤ 2P

(
ζ ≥ 5

2

√
m

)
≤ 2e−

9
8m ≤ 2e−m.

□

We can now prove Lemma 7.1.

Proof of Lemma 7.1. By the definition of α,

P(α ≥ α̂) ≤ P(∥y∥2 ≥ α̂) + P(∥A∥2 ≥ α̂)

≤ P
(
∥y∥2 ≥ 5

2

√
m(η + Cmax∥v∥2)

)
+ P

(
∥A∥2 ≥ ∥Σ∥

1
2
2 (3

√
m+ 6

√
N)
)

≤ 3e−m

where the last inequality holds by Lemmas 7.3 and 7.4. □

The proof of Lemma 7.2 relies on three results from Wainwright [52]: Theorem 3.2 and the following two
lemmas.

Lemma 7.5. ( [52, p. 2193]) Under the setup in Section 3 and assumptions (a0) and (ai), there exists a
universal constant c0 such that, for any t ≤ γ we have

P(max
j∈Sc

|Zj | ≥ 1− t) ≤ 4e−c0 min{mϵ2,s} + 2(N − s)e
− (γ−t)2

2ρuMN (ϵ)

where MN (ϵ) is defined as in (7.2), Zj is defined by

Zj = A∗
j

[
AS(A

∗
SAS)

−1 sgn(ẑ) +R

(
2w

λ

)]
, R = Im −AS(A

∗
SAS)

−1A∗
S (7.4)

and where ẑ solves a restricted lasso problem, specifically, ẑ is a solution of

argmin
x̂∈R|S|

∥AS x̂− y∥22 + λ∥x̂∥1. (7.5)

□

Note that by (UL4) and (UL5), the definition of Zj is independent of the choice of ẑ in the lemma above.

Lemma 7.6. [52, Lemma 9] Let X be an m×s matrix such that each row is an i.i.d random column vector
with distribution N (0,W ) for some covariance matrix W . Then, for all τ > 0

P

(∥∥∥∥∥
(
X∗X

m

)−1

−W−1

∥∥∥∥∥
2

≥ u(m, s, τ)

Cmin

)
≤ 2e−

mτ2

2

where u(m, s, τ) = 2(
√
s/m+ τ) + (

√
s/m+ τ)2. □
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Proof of Lemma 7.2. We define E to be the event that σ(y,A) ≤ t and E1 to be the event that the conclusion
of Theorem 3.2 does not hold. Note that the matrix A∗

SAS is invertible with probability 1, so we assume
throughout that it is indeed invertible.

On the event Ec
1, there is a unique minimiser x in SolUL(y,A). Furthermore, x has support S and

sgn(xS) = sgn(vS). Thus if Ec
1 occurs,

(1) σ1(y,A) = λ/2− ∥A∗
Sc(Ax− y)∥∞,

(2) σ2(y,A) := (∥(A∗
SAS)

−1∥2)−1,
(3) σ3(y,A) := mini∈S |xi|.

Our proof starts from the observation that

P(E) ≤ P(E ∪ E1) = P(E1) + P[Ec
1 ∩ (σ1 ≤ t)] + P[Ec

1 ∩ (σ2 ≤
√
t)] + P[Ec

1 ∩ (σ3 ≤ t)] (7.6)

together with the fact that Theorem 3.2 gives us a bound for P(E1). We must thus analyse the events
Ec

1 ∩ (σ1 ≤ t), Ec
1 ∩ (σ2 ≤

√
t) and Ec

1 ∩ (σ3 ≤ t).
Starting with Ec

1 ∩ (σ1 ≤ t), if Ec
1 occurs then the only solution to the lasso problem is the vector x with

support exactly S. Thus the solution to the restricted lasso problem (7.5) is given by xS .
By the KKT conditions for (7.5) at xS , we have A∗

S(ASxS − ASvS − w) = A∗
S(ASxS − y) =

−λ sgn(xS)/2 so that xS − vS = (A∗
SAS)

−1[A∗
Sw − λ sgn(xS)/2]. Therefore for j ∈ Sc,

A∗
j (Ax− y) = A∗

j (AS(xS − vS)− w)

= A∗
j (AS(A

∗
SAS)

−1[A∗
Sw − λ sgn(xS)/2]− w)

= −
λA∗

j

[
R
(
2w
λ

)
+AS(A

∗
SAS)

−1 sgn(xS)
]

2
= −λZj

2

where Zj is defined as in (7.4).
Thus if σ1 ≤ t then we must have λ/2 − t ≤ ∥A∗

Sc(Ax − y)∥∞ = λmax
j∈Sc

|Zj |/2 and it follows that for

any γ ≥ t,

P(σ1 ≤ t) ≤ P
(
max
j∈Sc

|Zj | > 1− 2t

λ

)
≤ 4e−c0 min{mϵ2,s} + 2(N − s)e

− (γ−2t/λ)2

2ρuMN (ϵ) (7.7)

the last inequality from Lemma 7.5.
Next, let us analyse σ2 assuming that the event Ec

1 occurs. If σ2 ≤
√
t then since x is supported on S, we

must have ∥(A∗
SAS)

−1∥2 ≥ 1/
√
t. In particular, if this occurs then∥∥∥∥∥ (A∗

SAS)

m

−1

− (ΣSS)
−1

∥∥∥∥∥
2

≥ (
√
tm)−1 − ∥(ΣSS)

−1∥2 =
1

m
√
t
− 1

Cmin
=

Cmin −m
√
t

Cmin m
√
t

Because t < C2
min(

√
s+

√
m)−4, some simple algebra gives τ :=

√
Cmin

m
√
t
−
√

s
m − 1 > 0 and moreover

if u(m, s, τ) = 2(
√

s/m+τ)+(
√
s/m+τ)2 then some more simple algebra yields u(m, s, τ)+1 = Cmin

m
√
t
.

Thus

P(∥(A∗
SAS)

−1∥2 ≥ 1/
√
t) ≤ P

(∥∥∥∥∥
(
A∗

SAS

m

)−1

− (ΣSS)
−1

∥∥∥∥∥
2

≥ Cmin −m
√
t

Cmin m
√
t

)

= P

(∥∥∥∥∥
(
A∗

SAS

m

)−1

− (ΣSS)
−1

∥∥∥∥∥
2

≥ u(m, s, τ)

Cmin

)

≤ 2e
− (

√
Cmin−(

√
s+

√
m)t1/4)

2

2t1/2 (7.8)

where the final inequality follows from Lemma 7.6.
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We can immediately see that σ3(y,A) ≤ t and Ec
1 cannot occur simultaneously: if Ec

1 occurs then for
j ∈ S we have |vj | − |xj | ≤ |vj − xj | ≤ g(λ) and so σ3(y,A) = min

j∈S
|xj | ≥ min

j∈S
|vj | − g(λ) > t. We

conclude that
P[Ec

1 ∩ (σ3 ≤ t)] = 0. (7.9)

Equation (7.1) follows from (7.6), Theorem 3.2, (7.7), (7.8) and (7.9).
All that remains is to prove (7.3). We first claim that with the specific choice of σ̂ we have

(N − s)e
− (γ−2σ̂/λ)2

2ρuMN (ϵ) ≤ e
− ln(N−s)

2 . (7.10)

Indeed, since σ̂ < γλ/4 we have −(γ − 2σ̂/λ)2/(2ρuMN (ϵ)) ≤ −γ2/(8ρuMN (ϵ)). Using the definition
of ρu gives γ2/(8ρuMN (ϵ)) = (8CminθuMN (ϵ))−1. Also, equation (3.3) implies

m

1 + ϵ
> 12s ln(N − s)θu +

6m ln(N − s)

ln(N)ϕN
(7.11)

and hence,

1

8CminθuMN (ϵ)
=

(7.2)

m

8(1 + ϵ)

(
sθu +

m

2 ln(N)ϕN

)−1

>
(7.11)

ln(N − s)

(
1

8

(
12sθu +

6m

ln(N)ϕN

))(
sθu +

m

2 ln(N)ϕN

)−1

=
3

2
ln(N − s).

It follows that

ln(N − s)− 1

8CminθuMN (ϵ)
< ln(N − s)− 3

2
ln(N − s) = − ln(N − s)

2

and thus

e
ln(N−s)− (γ−2σ̂/λ)2

2ρuMN (ϵ) ≤ e
ln(N−s)− 1

8CminθuMN (ϵ) ≤ e
− ln(N−s)

2

proving the claim.
We further claim that

2e
−

(√
Cmin−(

√
s+

√
m)t

1
4

)2

t
1
2

is increasing in t when (
√
s +

√
m)t

1
4 ≤

√
Cmin. Indeed, the function f(t4) := −(

√
Cmin − (

√
s +

√
m)t)2/t2 = −(

√
Cmin/t− (

√
s+

√
m))2 is increasing in t provided that t <

√
Cmin/(

√
s+

√
m). With

this result and using that σ̂ ≤ C2
min

4(
√
s+

√
m)4

(see Lemma 7.2), we see that

2e
−

(√
Cmin−(

√
s+

√
m)σ̂

1
4

)2

σ̂
1
2 ≤ 2e

−2(
√
s+

√
m)2

[√
Cmin−

√
Cmin/(4

1
4 )

]2
Cmin (7.12)

= 2e−2(1−4−1/4)2(
√
s+

√
m)2 ≤ 2e−s/3

since 2(1− 4−1/4)2(
√
s+

√
m)2 ≥ (

√
2− 1)2s ≥ s/3.

We can now conclude (7.3) in the following way, starting from (7.1),

P(σ ≤ t) ≤ 4e−c6 min{mϵ2,s} + 2(N − s)e
− (γ−2t/λ)2

2ρuMN (ϵ) + c4e
−c5 min{s,ln(N−s)} + 2e

−

(√
Cmin−(

√
s+

√
m)t

1
4

)2
t
1
2

≤
(7.10)

4e−c6 min{mϵ2,s} + 2e− ln(N−s)/2 + c4e
−c5 min{s,ln(N−s)} + 2e

−

(√
Cmin−(

√
s+

√
m)t

1
4

)2
t
1
2

≤
(7.12)

4e−c6 min{mϵ2,s} + 2e− ln(N−s)/2 + c4e
−c5 min{s,ln(N−s)} + 2e−s/3

≤
(ai)

max{4, c4}e−min{c6,1/2,c5,1/6}min{s,ln(N−s)}
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and thus we have shown both (7.1) and (7.3), completing the proof. □

8. PROOF OF THEOREM 2.5

Lemma 8.1. Let w ∈ Rq be random with i.i.d. components distributed as N (0, 1). Then, for all t > 0,

P(∥w∥∞ ≤ t) ≥ 1− 2q

t
√
2π

e−
t2

2 .

Proof. We have P(|wi| ≥ t) ≤ 2
t
√
2π

e−
t2

2 by [15, Lemma 2.16]. Hence,

P(∥w∥∞ ≥ t) = P(∨i≤q|wi| ≥ t) ≤ 2q

t
√
2π

e−
t2

2

and the result follows. □

Proof of Corollary 2.5. We will use the notations in Theorem 3.3 and Corollary 3.4. Also, we take c :=

max{c3, 1} where c3 is the universal constant in (aii’).
Because m, s ≤ N/9 < N/8 we have 1

4(
√
s+

√
m)4

> 1
N2 . Also, by hypothesis (ii) and since η = 0,

min
j∈S

|vj | − g(λ) ≥ 1
N2 . Along with hypothesis (iii) it follows that

σ̂ ≥ 1

N2
. (8.1)

Similarly, using that m ≤ N/9,

α̂ ≤ max
{√

2N∥v∥2,
√
N + 6

√
N
}
≤ 7 [[v]]2

√
N. (8.2)

Finally, because λ ≤ 2N [[v]]2
c (by (ii)) and c ≥ 1, λ

√
N ≤ 2N1.5[[v]]2 and, hence,

(1 + λ
√
N) ≤ 3N1.5[[v]]2. (8.3)

It follows that

q(α̂, σ̂)

σ̂2
=

96α̂5

σ̂2
+

12α̂3(1 + λ
√
N)

σ̂1.5
+

(
2α̂3

λ
+ 3α̂

)
1

σ̂

≤
(8.3),(iii)

96α̂5

σ̂2
+

36α̂3N1.5[[v]]2
σ̂1.5

+
α̂3N2 + 3α̂

σ̂

≤
(8.2)

96 · 75 ·N2.5[[v]]52
σ̂2

+
36 · 73 ·N3[[v]]42

σ̂1.5
+

73N3.5[[v]]32 + 21N0.5[[v]]2
σ̂

≤
(8.1)

96 · 75 ·N6.5[[v]]52 + 36 · 73 ·N6[[v]]42 + 73N5.5[[v]]32 + 21N2.5[[v]]2

≤ 1626184N6.5[[v]]52.

Also, 6α̂√
σ̂
≤ 42N1.5[[v]]2. We conclude that

K̂ ≤ (mN)
1
2 max

{
q(α̂, σ̂)

σ̂2
,
6α̂√
σ̂

}
≤ 1626184

3
N7.5[[v]]52 < 542062N7.5[[v]]52. (8.4)

We next note that hypotheses (i) and (ii) in our statement imply that (ai’) and (aii’) are satisfied. Hence,
Corollary 3.4 (with η = 0) may be applied to deduce that

P(CUL(b, U) ≥ K̂) ≤ c1e
−c2 min{ln(N−s),s} ≤ c1e

−c2 ln(N/2) ≤ c1

(
N

2

)−c2

the second inequality by our hypothesis on s.
Because of Lemma 8.1 with q = mN and t = N2, we have

P(∥U∥max ≤ N2) ≥ 1− 2mN

N2
√
2π

e−
t2

2 ≥ 1− e−
N4

2 .

Also, ∥b∥∞ ≤ ∥U∥2∞∥v∥2 ≤
√
N∥U∥max∥v∥2. Therefore, [[(b, U)]]max ≤ N2.5[[v]]2 and

λ+ λ−1 ≤ 2N∥v∥2
c

+N2/2 ≤ 2N2[[v]]2, (8.5)
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[[(b, U)]]S ≤ mN [[(b, U)]]max ≤ N4.5[[v]]2, (8.6)

with probability at least 1− e−
N4

2 .
Using (8.4) and Theorem I.1.2, we conclude that the cost of the algorithm for random (b, U) satisfying our

assumptions is bounded by O
(
N3(log2 N

14.5[[v]]72)
2
)

and using (8.4), (8.5) and (8.6), the maximum number
of digits accessed by the algorithm is bounded by

O(
⌈
log2

(
max{λ+ λ−1, N, [[(b, U)]]S,CUL(b, U)}

)⌉
) = O(log2(N [[v]]2))

with probability at least 1− (c1
(
N
2

)−c2
+e−

N4

2 ) ≥ 1−C1N
−C2 for some appropriately chosen constants

C1,C2. Because the hypotheses of Theorem 3.2 hold it follows that with probability greater than 1 −
c1e

−c2 min{ln(N−s),s} ≥ 1 − c1
(
N
2

)−c2 we also have that supp(x) = supp(v) (here SolUL(b, U) = {x}).
The result follows by changing, if necessary, the values of C1 and C2. □

9. PROOF OF THEOREM 2.3

9.1. Definitions for the computational problem. We start by recalling some definitions from [7]:

Definition 9.1 (The LASSO computational problem). For some set Ω ⊂ Rm × Rm×N , which we call the
input set, the LASSO computational problem on Ω is the collection {Ξ,Ω,BN ,Λ} where Ξ : Ω → 2B

N

is
defined as in (1.1) and

Λ = {fvec, fmat} with fvec : Ω → Rm, fmat : Ω → Rm×N

are defined by fvec(y,A) = y and fmat(y,A) = A for all (y,A) ∈ Ω.

We want to generalise the LASSO computational problem so that we work with inexact inputs. To do so,
we will consider the collection of all functions fvec

n : Ω → Rm and fmat
n : Ω → Rm×N satisfying

∥fvec
n (y,A)− y∥∞ ≤ 2−n, ∥fmat

n (y,A)−A∥max ≤ 2−n (9.1)

Definition 9.2 (Inexact LASSO computational problem). The inexact LASSO computational problem on Ω

(ILCP) is the quadruple {Ξ̃, Ω̃,BN , Λ̃}, where

Ω̃ =
{
ι̃ = {(fvec

n (ι), fmat
n (ι)}n∈N | ι = (y,A) ∈ Ω and

fvec
n : Ω → Rm, fmat

n : Ω → Rm×N satisfy (9.1) respectively
} (9.2)

It follows from (9.1) that there is a unique ι = (y,A) ∈ Ω for which ι̃ =
{
(fvec

n (ι), fmat
n (ι))

}
n∈N. We say

that this ι ∈ Ω corresponds to ι̃ ∈ Ω̃ and we set Ξ̃ : Ω̃ ⇒ BN so that Ξ(ι̃) = Ξ(ι), and Λ̃ = {f̃vec
n , f̃mat

n }n∈N,
with f̃vec

n (ι̃) = fn(ι), f̃mat
n (ι̃) = fmat

n (ι) where ι corresponds to ι̃.

Definition 9.3 (General Algorithms for the ILCP). A general algorithm for {Ξ̃, Ω̃,BN , Λ̃}, is a mapping
Γ : Ω̃ → BN such that, for every ι̃ ∈ Ω̃, the following conditions hold:

(i) there exists a nonempty subset of evaluations ΛΓ(ι̃) ⊂ Λ̃ with |ΛΓ(ι̃)| < ∞,
(ii) the action of Γ on ι̃ is uniquely determined by {f(ι̃)}f∈ΛΓ(ι̃),

(iii) for every ι′ ∈ Ω such that f(ι′) = f(ι̃) for all f ∈ ΛΓ(ι̃), it holds that ΛΓ(ι
′) = ΛΓ(ι̃).

Specific to this paper is the study of finite precision algorithms and algorithms that are correct on all
inputs that can be represented exactly. To define these concepts, we first define the following, which is
similar to [8, Definition 8.23].

Definition 9.4 (Number of correct ‘digits’ for the ILCP). Given a general algorithm Γ for the inexact LASSO
computational problem, we define the ‘number of digits’ required on the input according to

DΓ(ι̃) := sup{m ∈ N | at least one of fvec
m , fmat

m ∈ ΛΓ(ι̃)}.
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Definition 9.5 (Finite precision algorithm). A finite precision general algorithm with precision 2−k for
{Ξ̃, Ω̃,BN , Λ̃}, is a general algorithm Γ : Ω̃ → BN such that, for every ι̃ ∈ Ω̃, the number of correct digits
DΓ(ι̃) ≤ k.

Definition 9.6. A general algorithm Γ for the ILCP defined on Ω ⊂ Rm × Rm×N is said to be correct on
all inputs that can be represented exactly in Ω if for all y ∈ Dm and A ∈ Dm×N with (y,A) ∈ Ω, we have
Γ(ι̃) ∈ Ξ(y,A) whenever

ι̃ = ((fvec
1 (y,A), fmat

1 (y,A))(fvec
2 (y,A), fmat

2 (y,A)), . . . )

with fvec
n : Ω → Rm and fmat

n : Ω → Rm×N defined for all n ∈ N so that fvec
n (y,A) = y fmat

n (y,A) =

A.

9.2. Proof of Theorem 2.3. We begin by stating and proving two preliminary lemmas:

Lemma 9.7. Suppose that the open set T ∈ Rm × Rm×N contains a point with condition infinity. Then for
any S1 ⊆ {1, 2, . . . , N} there exists a point P = (yP , Ap) ∈ T and an ϵ > 0 so that if ∥y − yP ∥∞ ≤ ϵ,
∥A−Ap∥∞ ≤ ϵ then Ξ(y,A) = {S2} with S2 ̸= S1.

Proof. Since there is a point with condition infinity inside T , there must exist some point y1, A1 so that
{S1} ≠ Ξ(y1, A1) (otherwise Ξ(b, U) = {S1} for all (b, U) ∈ T and hence cond(b, U) < ∞ since T is
open). In particular, either Ξ(y1, A1) = {W} ̸= {S1} in which case Ξms(y1, A1) = Ξ(y1, A1) = {W} ̸=
{S1} or, by Lemma I.8.2 |SolUL(y1, A1)| ≥ 2 in which case there must exist W ∈ Ξms(y1, A1) with W ̸= S.

From Lemma I.8.8 if we set x ∈ SolUL(y1, A1) with supp(x) = W and E to be the diagonal matrix with
entries (11∈W c ,12∈W c ,13∈W c , . . .1N∈W c) on the diagonal, then x = SolUL(y1, A1(I − δE)) for δ > 0

sufficiently small. Since x1 is the unique vector in Sol(y1, A1(I−δE)), we must have σ2(y
1, A1(1−δE)) >

0. We also have

∥[A1(I − δE)]∗Sc(A1x− y1)∥∞ = ∥(ISc − δESc)(A1)∗Sc(A1x− y1)∥∞
= ∥(1− δ)I(A1)∗Sc(A1x− y1)∥∞
= (1− δ)∥(A1)∗Sc(A1x− y1)∥∞ ≤ (1− δ)λ/2

and thus σ1(y
1, A1(I − δE)) ≥ δλ/2. Finally, σ3(y

1, A1(I − δE)) > 0 since SolUL(y1, A1(I − δE))

is a singleton. We have thus shown that σ(y1, A1(I − δE)) > 0. Thus by Proposition 5.4 we must have
stsp(y1, A1(I − δE)) > 0 and thus if we choose δ sufficiently small and positive so that P = (y1, A1(I −
δE)) ∈ S then there exists an ϵ > 0 so that if ∥y − yP ∥∞ ≤ ϵ, ∥A−Ap∥∞ ≤ ϵ then Sol(y,A) = x1 and in
particular Ξ(y,A) = supp(x) = W ̸= S. □

Lemma 9.8. Suppose that an inexact algorithm Γ : Ω̃ → M is a finite precision algorithm with precision
k. If there are sequences {s1n}∞n=1 ∈ Ω̃ and {s2n}∞n=1 ∈ Ω̃ such that s1i = s2i for i = 1, 2, . . . , k, then
Γ({s1n}∞n=1) = Γ({s2n}∞n=1).

Proof. By the definition of a finite precision algorithm, the set DΓ({s1n}∞n=1) has cardinality at most k. In
particular, f({s1n}∞n=1) = f({s2n}∞n=1) for all f ∈ ΛΓ({s1n}∞n=1) and thus ΛΓ({s1n}∞n=1) = ΛΓ({s2n}∞n=1)

by Definition 9.3 (iii). We conclude that Γ({s1n}∞n=1) = Γ({s2n}∞n=1) by by Definition 9.3 (ii). □

Proof of Theorem 2.3. For shorthand, we write B = B∞(b, U, r). Since cond(b, U) = α, we have stsp(b, U) =

α−1. In particular, Ξ(b, U) = {S1} for some set S1 ⊆ {1, 2, . . . N}, otherwise, this would contradict Defi-
nition 5.1. Furthermore there exists a point (ŷ, Â) with cond(ŷ, Â) = ∞ and (ŷ, Â) ∈ B∞(b, U, α−1) ⊂ B

since r > α−1.
We can thus apply Lemma 9.7 to the open set B and the support set S1 to obtain a point (yP , AP ) and an

ϵ > 0 so that B∞(yP , AP , ϵ) ⊆ B and if (y,A) ∈ B∞(yP , AP , ϵ) then S1 /∈ Ξ(y,A) = {S2}.
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We next define three sets

F1 := {(y,A) ∈ B |Ξ(y,A) = {S1}}, F2 := {(y,A) ∈ B |Ξ(y,A) = {S2}},

F3 := {(y,A) ∈ B | |Ξ(y,A)| = 1, Ξ(y,A) ̸= {S1}, Ξ(y,A) ̸= {S2}}.

and note that the above argument shows that both F1 and F2 each contain an open ball. We now proceed to
argue separately for Γ1 and Γ2

The result for Γ1: We will first construct ∆1 information for F := F1 ∪ F2 ∪ F3 so that Γ1 fails on this
∆1 information for F . Note that F is the set of points (y,A) in B so that |Ξ(y,A)| = 1. We have already
noted that stsp(b, U) = α−1 implies that B∞(b, U, α−1) ∈ F1. Furthermore, by [51, Lemma 4], B \ F has
measure 0. so this will suffice to show that Γ1 fails on F .

We thus define the ∆1 information requireed. Since F1 and F2 each contain an open set they each must
contain at least one point in Dm ×Dm×N , say, (dvec1 , dmat

1 ) and (dvec2 , dmat
2 ) respectively.

Take arbitrary f̂vec
n : B → Dm and f̂mat

n : B → Dm×N so that for all (y,A) ∈ B we have

∥f̂vec
n (y,A)− y∥∞ ≤ 2−n, ∥f̂mat

n (y,A)−A∥max ≤ 2−n

and f̂vec
n ((dveci , dmat

i )) = dveci f̂mat
n ((dveci , dmat

i )) = dmat
i for i ∈ {1, 2}.

We now define the following ∆1 information:

fvec
n (ι) =

 dvec1 if n ≤ k

f̂vec
n (ι) if n > k

, fmat
n (ι) =

 dmat
1 if n ≤ k

f̂mat
n (ι) if n > k

for ι ∈ F2 ∪ F3

and

fvec
n (ι) =

 dvec2 if n ≤ k

f̂vec
n (ι) if n > k

, fmat
n (ι) =

 dmat
2 if n ≤ k

f̂mat
n (ι) if n > k

for ι ∈ F1

and fn(ι) = f̂n(ι) whenever ι ∈ B \ F .
This defines ∆1 information for (y,A) = ι ∈ B: this is clear for ι ∈ B \ F . For ι ∈ F2 ∪ F3 this

holds because ∥dvec1 − y∥∞ ≤ ∥dvec1 − b∥∞ + ∥b − y∥∞ ≤ 2−r+1 ≤ 2−k ≤ 2−n and ∥dmat
1 − A∥max ≤

∥dmat
1 − U∥max + ∥U − A∥∞ ≤ 2−r+1 ≤ 2−k ≤ 2−n for n ≤ k and similarly for ι ∈ F1 we have

∥dvec2 −y∥∞, ∥dmat
2 −A∥∞ ≤ 2−n. Slightly abusing notation, we denote Γ(ι) = Γ({fvec

n (ι), fmat
n (ι)}∞n=1).

With this ∆1 information, we now use the precondition that Γ is correct on all inputs that can be rep-
resented exactly in Ω to see that if {gin}∞n=1 is the constant sequence given by gin = (dveci , dmat

i ) then
Γ({gin}∞n=1) = Si. We now apply Lemma 9.8 to obtain Γ(ι) = S1 when ι ∈ F2 ∪ F3 and Γ(ι) = S2 when
ι ∈ F1. By the definitions of F1, F2, F3 and F this proves that Γ(ι) /∈ Ξ(ι) for all ι ∈ F .

The result for Γ2: As before, there exists a point (dvec1 , dmat
1 ) ∈ B with Ξ(dvec1 , dmat

1 ) = S1 = Ξ(b, U).
Take arbitrary f̂vec

n : B → Dm and f̂mat
n : B → Dm×N so that for all (y,A) ∈ B we have

∥f̂vec
n (y,A)− y∥∞ ≤ 2−n, ∥f̂mat

n (y,A)−A∥max ≤ 2−n

We now define the following ∆1 information:

fvec
n (ι) =

 dvec1 if n ≤ k

f̂vec
n (ι) if n > k

, fmat
n (ι) =

 dmat
1 if n ≤ k

f̂mat
n (ι) if n > k

The same arguments as in the previous part show that this provides ∆1 information for every ι ∈ B. We
again slightly abuse notation by setting Γ(ι) = Γ({fvec

n (ι), fmat
n (ι)}∞n=1).

By Lemma 9.8, if we define {gin}∞n=1 as before we must have that Γ2(ι) = Γ2({g1n}∞n=1) for all ι ∈ B.
Now if Γ2({g1n}∞n=1) = S1 then Γ2(ι) ̸= Ξ(ι) for all ι ∈ F2 ∪ F3. Similarly, if Γ2({g1n}∞n=1) ̸= S1 then
Γ2(ι) ̸= Ξ(ι) for all ι ∈ F1. Either way, since both F1 and F2 contain an open set, we have shown that Γ2

fails on an open set. □
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