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Abstract

We show that it is possible to compute spectra and pseudospectra of linear operators on separable
Hilbert spaces given their matrix elements. The core in the theory is pseudospectral analysis and in par-
ticular the n-pseudospectrum and the residual pseudospecrum. We also introduce a new classification
tool for spectral problems, namely, the Solvability Complexity Index. This index is an indicator of the
”difficultness” of different computational spectral problems.

1 Introduction
This article follows up on the ideas introduced in [3, 4, 2, 1, 33] and addresses the long standing open
question: Can one compute the spectrum and the pseudospectra of a linear operator on a separable Hilbert
space? We show that the answer to the question is affirmative.

The importance of determining spectra of linear operators does not need much explanation as such spectra
are essential in quantum mechanics, both relativistic and non-relativistic, and in general in mathematical
physics. However, we would like to emphasize the importance of non-self-adjoint operators and their spectra.
This is certainly not a new field, as the non-self-adjoint spectral theory of Toeplitz and Wiener-Hopf operators
has been studied for about a century by many mathematicians and physicists, however, it is an expanding area
of mathematics. The growing interest in non-Hermitian quantum mechanics [8, 7, 36, 35], non-self-adjoint
differential operators [23, 27] and in general non-normal phenomena [22, 49, 50, 48] has made non-self-
adjoint operators and pseudospectral theory indispensable.

Now returning to the main question, namely, can one compute spectra of arbitrary operators, we need to
be more precise regarding the mathematical meaning of this. Given a closed operator T on a separable Hilbert
spaceH with domain D(T ), we suppose that {ej}j∈N is a basis forH such that span{ej}j∈N ⊂ D(T ), and
thus we can form the matrix elements xij = 〈Tej , ei〉. Is it possible to recover the spectrum of T through
a construction only using arithmetic operations and radicals of the matrix elements? (Much more precise
definitions of this will be discussed in Section 3.) This obviously has to be a construction that involves
some limit operation, but in finite dimensions this is certainly possible. For a finite dimensional matrix one
may deduce that all its spectral information may be revealed through a construction using only arithmetic
operations and radicals of the matrix elements. More precisely, for a matrix {aij}ij≤N one can construct
{Ωn}n∈N, where Ωn ⊂ C can be constructed using only finitely many arithmetic operations and radicals of
the matrix elements {aij}ij≤N , and Ωn → σ({aij}ij≤N ) in the Hausdorff metric as n→∞. For a compact
operator C we may let Pm be the projection onto span{ej}j≤m and observe that σ(PmCdPmH) → σ(C)
in the Hausdorff metric as m → ∞. Thus, as we now are faced with a finite dimensional problem that we
can solve (at least as sketched above), we may deduce that, yes indeed, we can compute the spectrum of a
compact operator using only its matrix elements. The question is: can this be done in general?

As of today it is not known how to recover the spectrum of an arbitrary operator using its matrix elements
nor is it known how to approximate the spectrum using other methods. As pointed out by Arveson in [3]:
“Unfortunately, there is a dearth of literature on this basic problem, and so far as we have been able to tell,
there are no proven techniques.” This certainly is an obstacle to our possible understanding of non-Hermitian
quantum mechanics (we emphasize non-Hermitian because much more is known in the Hermitian case).
However, knowledge of spectra of linear operators is indispensable in other areas of mathematical physics,
and the lack of computational theory leads to serious restrictions to our possible understanding of some
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physical systems. The purpose of this paper is to show that there are ways of computing spectra of arbitrary
linear operators and hence filling the long standing gap in computational spectral theory. The literature is
vast on spectral approximation and we can only refer to a subset here. For selected papers and books we
consider to be important and related to the topic of this paper we refer to [9, 11, 10, 26, 32, 15, 14, 41, 19,
18, 28, 42, 47] for a functional analysis exposition and [50, 48, 25, 39] for a more applied mathematical
treatment.

The computational spectral problem in infinite dimensions is much more delicate than the finite-dimensional
case. One reason is the possibly discontinuous behavior of the spectrum as the following well known exam-
ple shows. Let Aε : l2(Z)→ l2(Z) be defined by

(Aεf)(n) =

{
εf(n+ 1) n = 0
f(n+ 1) n 6= 0.

Now for ε 6= 0 we have σ(Aε) = {z : |z| = 1} but for ε = 0 then σ(A0) = {z : |z| ≤ 1}.
This fact may cause serious concern to a numerical analyst. One can argue that if one should do a

computation of the spectrum on a computer, the fact that the arithmetic operations carried out are not exact
may lead to the result that one gets the true solution to a slightly perturbed problem. As suggested in the
previous example this could be disastrous. The problem above does not occur (in the bounded case) if we
are considering the pseudospectrum.

Definition 1.1. Let T be a closed operator on a Hilbert space H such that σ(T ) 6= C, and let ε > 0. The
ε-pseudospectrum of T is defined as the set

σε(T ) = σ(T ) ∪ {z /∈ σ(T ) : ‖(z − T )−1‖ > ε−1}.

The reason is that the pseudospectrum varies continuously with the operator T if T is bounded (we will
be more specific regarding the continuity below.) One may argue that the pseudospectrum may give a lot
of information about the operator and one should therefore estimate that instead, however, we are interested
in getting a complete spectral understanding of the operator and will therefore estimate both the spectrum
and the pseudospectrum. We would therefore like to introduce a set which has the continuity property of the
pseudospectrum but approximates the spectrum. For this we introduce the n-pseudospectrum. (This set was
actually first introduced in [33].)

Definition 1.2. Let T be a closed operator on a Hilbert space H such that σ(T ) 6= C, and let n ∈ Z+ and
ε > 0. The (n, ε)-pseudospectrum of T is defined as the set

σn,ε(T ) = σ(T ) ∪ {z /∈ σ(T ) : ‖(z − T )−2n‖1/2
n

> ε−1}.

As we will see in Section 4, the n-pseudospectrum has all the nice continuity properties that the pseu-
dospectrum has, but it also approximates the spectrum arbitrarily well for large n.

Another ingredient that may give spectral information about the operator is the spectral distribution.
More precisely, let A ⊂ B(H) be a C∗-algebra with a unique tracial state. Then a self-adjoint operator
A ∈ A determines a natural probability measure µA on R by∫

R
f(x) dµA(x) = τ(f(A)), f ∈ C0(R).

Also, if τ is faithful then supp(µA) = σ(A) and one refers to µA as the spectral distribution. Thus knowing
µA gives information about the density of the spectrum and hence is desirable to know. How to approximate
µA (in the spirit of Szegö) using only the matrix elements of the operator has been investigated in [3, 6, 5, 33].
We will consider a generalisation of µA that is suitable for some non-self-adjoint operators, namely, the
Brown measure and show how one can get Szegö-type theorems as in [3, 6, 5] for this measure.

We conclude the article with some examples suggesting that our rather abstract framework will indeed
be useful in applications.

2 Background and Notation
We will in this section review some basic definition and introduce the notation used in the article. Throughout
the paper H will always denote a separable Hilbert space, B(H) the set of bounded linear operators, C(H)
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the set of densely defined closed linear operators and SA(H) the set of self-adjoint operators on H. For
T ∈ C(H) the domain of T will be denoted by D(T ) and the spectrum by σ(T ). Also, if T − z is invertible,
for z ∈ C, we use the notation R(z, T ) = (T − z)−1. We will denote orthonormal basis elements of H by
ej , and if {ej}j∈N is a basis and ξ ∈ H then ξj = 〈ξ, ej〉. The word basis will always refer to an orthonormal
basis. If H is a finite dimensional Hilbert space with a basis {ej} then LTpos(H) will denote the set of
lower triangular matrices (with respect to {ej}) with positive elements on the diagonal. The closure of a sets
Ω ∈ C will be denoted by Ω or cl(Ω), and the interior will be denoted by Ωo.

Convergence of sets in the complex plane will be quite crucial in our analysis and hence we need the
Hausdorff metric as defined by the following.

Definition 2.1. (i) For a set Σ ⊂ C and δ > 0 we will let ωδ(Σ) denote the δ-neighborhood of Σ (i.e. the
union of all δ-balls centered at points of Σ).

(ii) Given two sets Σ,Λ ⊂ C we say that Σ is δ-contained in Λ if Σ ⊂ ωδ(Λ).

(iii) Given two compact sets Σ,Λ ⊂ C their Hausdorff distance is

dH(Σ,Λ) = max
{

sup
λ∈Σ

d(λ,Λ), sup
λ∈Λ

d(λ,Σ)
}

where d(λ,Λ) = infρ∈Λ |ρ− λ|.

If {Λn}n∈N is a sequence of compact subsets of C and Λ ⊂ C is compact such that dH(Λn,Λ) → 0 as
n→∞ we may use the notation Λn −→ Λ.

As for the convergence of operators we follow the notation in [38]. Let E ⊂ B and F ⊂ B be closed
subspaces of a Banach space B. Define

δ(E,F ) = sup
x∈E
‖x‖=1

inf
y∈F
‖x− y‖

and
δ̂(E,F ) = max[δ(E,F ), δ(F,E)].

If A and B are two closed operators, with domains D(A) and D(B), their graphs

G(A) = {(ξ, η) ∈ H ×H : ξ ∈ D(A), η = Aξ} (2.1)

and G(B) are closed subspaces of H × H. We can therefore define (with a slight abuse of notation) the
distance between A and B by

δ̂(A,B) = δ̂(G(A), G(B)).

If {Tn}n∈N is a sequence of closed operators converging in the distance suggested above to a closed operator
T then we may sometimes use the notation

Tn
δ̂−→ T, n→∞.

Note that δ̂ is not a metric. To define a metric on C(H) there are several possibilities. We will discuss two
approaches here that will be useful later on in the paper. For closed operators A and B define

d(A,B) = max

[
sup

ξ∈G(A),‖ξ‖=1

dist(ξ,G(B)), sup
ξ∈G(B),‖ξ‖=1

dist(ξ,G(A))

]
,

where
dist(ξ,G(A)) = inf

η∈G(A)
‖ξ − η‖.

As shown in [38] d is a metric on C(H) with the property that

δ̂(A,B) ≤ d(A,B) ≤ 2δ̂(A.B).

A more practical metric for our purpose is the one suggested in [20]. The definition is as follows

p(A,B) = [‖RA −RB‖2 + ‖RA∗ −R2
B∗‖+ 2‖ARA −BRB‖2]1/2,
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where RA = (1 + A∗A)−1. For our purposes it is important to link p to δ̂ and that follows from the fact, as
proved in [20], that p and d are equivalent as metrics on C(H) . In particular we have

d(A,B) ≤
√

2p(A,B) ≤ 2d(A,B).

The following fact will be useful in the later developments.

Theorem 2.2. ([38] p.204) Let T, S ∈ C(H) and A ∈ B(H). Then

δ̂(S +A, T +A) ≤ 2(1 + ‖A‖2)δ̂(S, T ).

Recall also the definition of a weighted shift.

Definition 2.3. Let {en}n∈N be a basis for the Hilbert space H. By a weighted shift on H we mean an
operator W ∈ C(H) with D(W ) ⊃ span{en}n∈N with the property that there is a sequence of complex
numbers {αj}j∈N and an integer k such that for ξ ∈ D(W ) we have (Wξ)j = αjξk+j . The set of weighted
shifts onH (with respect to {en}n∈N) will be denoted by WS(H).

Remark 2.1 Throughout the article we will only consider operators T such that σ(T ) 6= C and σ(T ) 6= ∅,
hence this assumption will not be specified in any of the upcoming theorems.

3 The Main Results

3.1 The Solvability Complexity Index
Before we discuss the slightly technical main results we would like to give the reader an overview of the
ideas and also justify the motivation for the essential definition of our main tool, namely, the Solvability
Complexity Index (SCI). As mentioned in the introduction, it is well known that for a matrix {aij}ij≤N one
can construct {Ωn}n∈N, where Ωn ⊂ C can be constructed using only finitely many arithmetic operations
and radicals of the matrix elements {aij}ij≤N , and Ωn → σ({aij}ij≤N ) as n → ∞. Also, for a compact
operatorC, if Pm is the projection onto span{ej}j≤m, then σ(PmCdPmH)→ σ(C) asm→∞. Thus, if we
were to compute the spectrum of C we must let Ωm,n denote the n-th output of the approximate computation
(now a finite-dimensional problem) of the spectrum of the matrix PmCdPmH, and then deduce that

σ(C) = lim
m→∞

lim
n→∞

Ωm,n.

What is crucial here is that we have to take two limits. Thus, if we are concerned with the accuracy of
the approximation Ωm,n to σ(C) we must control two limiting procedures as opposed to only one in the
finite-dimensional case. If there in fact had been more than two limits involved, this would have complicated
the issue of accuracy even further. Hence, when faced with the computational spectral problem in infinite
dimensions it is of great interest to know how many limits one must use in order to compute the spectrum
(or the pseudospectrum), and, of course, the fewer the better. In particular, it is of great importance to know
the number of the least amount of limits needed. This is the motivation for the Solvability Complexity
Index. The Solvability Complexity Index of a spectral problem is simply the least amount of limits required
to compute the desired set (spectrum, pseudospectrum, n-pseudospectrum, etc.). Hence, the Solvability
Complexity Index is an indicator of optimality.

Note that the Solvability Complexity Index of spectra of compact operators may be different than the
Solvability Complexity Index of spectra of bounded operators (since compact operators is a subset of bounded
operators). In particular, when defining the Solvability Complexity Index of a spectral problem it is crucial
to specify the class of operators considered. The ideas above are summarized in the following definitions.

Definition 3.1. LetH be a Hilbert space spanned by {ej}j∈N and let

Υ = {T ∈ C(H) : span{ej}n∈N ⊂ D(T )}. (3.1)

Let ∆ ⊂ Υ and Ξ : ∆→ Ω, where Ω denotes the collection of closed subsets of C. Let

Π∆ = {{xij}i,j∈N : ∃T ∈ ∆, xij = 〈Tej , ei〉}.
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A set of estimating functions of order k for Ξ is a family of functions

Γn1 : Π∆ → Ω,Γn1,n2 : Π∆ → Ω, . . . ,Γn1,...,nk−1 : Π∆ → Ω,

Γn1,...,nk :
{
{xij}i,j≤N(n1,...,nk) : {xij}i,j∈N ∈ Π∆

}
→ Ω,

where N(n1, . . . , nk) <∞ depends on n1, . . . , nk, with the following properties:

(i) The evaluation of Γn1,...,nk({xij}) requires only finitely many arithmetic operations and radicals of
the elements {xij}i,j≤N(n1,...,nk).

(ii) Also, we have the following relation between the limits:

Ξ(T ) = lim
n1→∞

Γn1({xij}),

Γn1({xij}) = lim
n2→∞

Γn1,n2({xij}),

...

Γn1,...,nk−1({xij}) = lim
nk→∞

Γn1,...,nk({xij}).

The limit is defined as follows: For ω ∈ Ω and {ωn} ⊂ Ω, then ω = limn→∞ ωn means that for any compact
ball K such that ω ∩Ko 6= ∅, we have dH(ω ∩K,ωn ∩K)→ 0, when n→∞.

Definition 3.2. Let H be a Hilbert space spanned by {ej}j∈N, define Υ as in (3.1), and let ∆ ⊂ Υ. A set
valued function

Ξ : ∆ ⊂ C(H)→ Ω

is said to have Solvability Complexity Index k if k is the smallest integer for which there exists a set of
estimating functions of order k for Ξ. Also, Ξ is said to have infinite Solvability Complexity Index if no set of
estimating functions exists. If there is a function

Γ : {{xij} : ∃T ∈ ∆, xij = 〈Tej , ei〉} → Ω

such that Γ({xij}) = Ξ(T ), and the evaluation of Γ({xij}) requires only finitely many arithmetic operations
and radicals of a finite subset of {xij}, then Ξ is said to have Solvability Complexity Index zero. The
Solvability Complexity Index of a function Ξ will be denoted by SCind(Ξ).

Example 3.3. Let H be a Hilbert space with basis {ej}, ∆ = B(H) and Ξ(T ) = σ(T ) for T ∈ B(H).
Suppose that dim(H) ≤ 4. Then Ξ must have Solvability Complexity Index zero, since one can obviously
express the eigenvalues of T using finitely many arithmetic operations and radicals of the matrix elements
xij = 〈Tej , ei〉.

For dim(H) ≥ 5 then obviously SCind(Ξ) > 0, by the much celebrated theory of Abel on the unsolv-
ability of the quintic using radicals.

Now, what about compact operators? Suppose for a moment that we can show that SCind(Ξ) = 1 if
dim(H) <∞. (It is straightforward to show this, but we consider this a problem in matrix analysis and shall
not discuss it any further, nor will any of the upcoming theorems rely on such a result.) A standard way
of determining the spectrum of a compact operator T is to let Pn be the projection onto span{ej}j≤n and
compute the spectrum of PnAdPnH. This approach is justified since σ(PnAdPnH) → σ(T ) as n → ∞. By
the assumption on the Solvability Complexity Index in finite dimensions, it follows that if ∆ denotes the set
of compact operators then SCind(Ξ) ≤ 2.

The reasoning in the example does not say anything about what the Solvability Complexity Index of
spectra of compact operators is, it only suggest that the standard way of approximating spectra of such
operators will normally make use of a construction requiring two limits. We will in this article discuss only
upper bounds on the Solvability Complexity Index, as we consider that the most important question to solve
first, since as of today there is no general approach to estimate the spectrum of an arbitrary bounded operator.
Now, after having established upper bounds, an important problem to solve would be to actually determine
the Solvability Complexity Index of spectra of subclasses of operators. These questions are left for future
work.
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Remark 3.1 Note that there is a close connection between the Solvability Complexity Index and the question
of computing zeros of polynomials. In particular, if one was to show that SCind(Ξ) = 1, where Ξ(T ) =
σ(T ) for T ∈ ∆ = Cn×n, n ≥ 5, then one first has to show the insolvability of the quintic using radicals,
and then show the existence of an algorithm to compute Ξ(T ) using only arithmetic operations and radicals
and taking one limit. Note also that although the ideas behind the Solvability Complexity Index deviates
slightly from the complexity theory a la Smale [44, 45, 46], they are very much in the same spirit and indeed
inspired by the concepts in [44, 45, 46].

3.2 The Main Theorems
The main theorems in this chapter state that indeed it is possible to compute spectra and pseudospectra of all
bounded operators given the matrix elements. For the unbounded case this is also possible if one also has
access to the matrix elements of the adjoint. In this case the choice of bases is not arbitrary. We would like
to emphasize that even though determining spectra and pseudospectra is the mathematical goal, another set
that may be of practical interest is ωδ(σ(T )) (the δ-neighborhood) for T ∈ C(H) and δ > 0. The reason is
that σ(T ) may contain parts that have Lebesgue measure zero, and therefore may be quite hard to detect. An
easier alternative may then be ωδ(σ(T )), although mathematically this set reveals less information about the
operator.

Theorem 3.4. Let {ej}j∈N be a basis for the Hilbert spaceH and let ∆ = B(H).Define, for n ∈ Z+, ε > 0,
the set valued functions

Ξ1,Ξ2,Ξ3 : ∆→ Ω, Ξ1(T ) = σn,ε(T ), Ξ2(T ) = ωε(σ(T )), Ξ3(T ) = σ(T ).

Then
SCind(Ξ1) ≤ 2, SCind(Ξ2) ≤ 3, SCind(Ξ3) ≤ 3.

Theorem 3.5. Let {ej}j∈N be a basis for the Hilbert spaceH and let

∆ = {T ∈ C(H) : T = W +A, W ∈WS(H), A ∈ B(H)

∩ {T ∈ C(H) : ‖R(T, ·)2n‖1/2
n

is never constant for anyn}.
(3.2)

(Recall Definition 2.3). Define, for n ∈ Z+, ε > 0, the set valued functions

Ξ1,Ξ2,Ξ3 : ∆→ Ω, Ξ1(T ) = σn,ε(T ), Ξ2(T ) = ωε(σ(T )), Ξ3(T ) = σ(T ).

Then
SCind(Ξ1) ≤ 3, SCind(Ξ2) ≤ 4, SCind(Ξ3) ≤ 4.

Remark 3.2 The assumption that ‖R(T, ·)2n‖1/2n is never constant for any n will be satisfied e.g. if C \
σ(T ) is connected and the numerical range of T is contained in a sector of the complex plane.

Theorem 3.6. Let {ej}j∈N be a basis for the Hilbert spaceH, Pm be the projection onto span{ej}mj=1 and
d be some positive integer. Let ∆ ⊂ C(H) have the following properties: For T ∈ ∆ we have

(i)
⋃
m PmH ⊂ D(T ),

⋃
m PmH ⊂ D(T ∗).

(ii) 〈Tej+l, ej〉 = 〈Tej , ej+l〉 = 0, for l > d.

(iii) TPmξ → Tξ, T ∗Pmη → T ∗η, as m→∞ for ξ ∈ D(T ) and η ∈ D(T ∗).

Let ε > 0 and n ∈ Z+ and Ξ1,Ξ2,Ξ3 : ∆→ Ω be defined by

Ξ1(T ) = σn,ε(T ), Ξ2(T ) = ωε(σ(T )), Ξ3(T ) = σ(T ).

Then
SCind(Ξ1) = 1, SCind(Ξ2) ≤ 2, SCind(Ξ3) ≤ 2.

The following corollary is immediate.
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Corollary 3.7. Let {ej}j∈N be a basis for the Hilbert spaceH and let d be a positive integer. Define

∆ = {T ∈ B(H) : 〈Tej+l, ej〉 = 〈Tej , ej+l〉 = 0, l > d}.

Let ε > 0 and n ∈ Z+ and Ξ1,Ξ2,Ξ3 : ∆ → Ω be defined by Ξ1(T ) = σn,ε(T ), Ξ2(T ) = ωε(σ(T )) and
Ξ3(T ) = σ(T ). Then

SCind(Ξ1) = 1, SCind(Ξ2) ≤ 2, SCind(Ξ3) ≤ 2.

Theorem 3.8. Let {ej}j∈N and {ẽj}j∈N be bases for the Hilbert spaceH and let

∆̃ = {T ∈ C(H⊕H) : T = T1 ⊕ T2, T1, T2 ∈ C(H), T ∗1 = T2}
∆ = {T ∈ ∆̃ : span{ej}j∈N is a core for T1, span{ẽj} is a core for T2}.

Let ε > 0, Ξ1 : ∆→ Ω and Ξ2 : ∆→ Ω be defined by Ξ1(T ) = σε(T1) and Ξ2(T ) = σ(T1). Then

SCind(Ξ1) ≤ 2, SCind(Ξ2) ≤ 3.

Corollary 3.9. Let {ej}j∈N be a basis for the Hilbert spaceH and let

∆ = {A ∈ SA(H) : span{ej}j∈N is a core forA}.

Let ε > 0 and Ξ1,Ξ2 : ∆→ Ω be defined by Ξ1(T ) = σ(T ) and Ξ2(T ) = ωε(σ(T )). Then

SCind(Ξ1) ≤ 3, SCind(Ξ2) ≤ 2.

Remark 3.3 What Theorem 3.8 essentially says is that given the matrix elements of the operator and its ad-
joint, where the matrix elements come from a reasonable choice of bases, one can compute the pseudospectra
and the spectrum. Also, computing the pseudospectrum of an unbounded operator is on the same level of
difficulty as computing the spectrum of a compact operator.

Remark 3.4 Note that all of our proofs regarding estimates on the Solvability Complexity Index are con-
structive and thus the display of a set of estimating functions yields actual algorithms for use in computations.
Although the implementation of algorithms is not the focus of this paper, we demonstrate the feasibility of
our approach with examples in Section 10.

4 Properties of the n-pseudospectra of Bounded Operators
We will prove some of the properties of the n-pseudospectrum, but before doing that we need a couple of
propositions and theorems that will come in handy.

Proposition 4.1. Let γ : C → [0,∞) be continuous and let {γk}k∈N be a sequence of functions such that
γk : C → [0,∞) and γk → γ locally uniformly. Suppose that one of the two following properties are
satisfied.

(i) γk → γ monotonically from above.

(ii) For ε > 0, then cl({z : γ(z) < ε}) = {z : γ(z) ≤ ε}.

Then for any compact ball K such that {z : γ(z) < ε} ∩Ko 6= ∅ it follows that

cl({z : γk(z) < ε}) ∩K −→ cl({z : γ(z) < ε}) ∩K, k →∞.

Proof. Let ε > 0. We first claim that, in each case, for any ν > 0 there exists an α > 0 such that

ων(cl({z : γ(z) < ε− α}) ∩K) ⊃ cl({z : γ(z) < ε}) ∩K. (4.1)

Arguing by contradiction and supposing the latter statement is false we deduce that there must be a sequence
{ζα} ⊂ cl({z : γ(z) < ε}) ∩K such that ζα /∈ ων(cl({z : γ(z) < ε− α}) ∩K). By compactness, we may
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assume without loss of generality that ζα → ζ as α → 0. By continuity we have that γ(ζα) → γ(ζ) and
since ζα /∈ ων(cl({z : γ(z) < ε− α}) ∩K) it follows that γ(ζ) = ε. Note that we must have

ζ ∈
⋂
α>0

C \ ων(cl({z : γ(z) < ε− α}) ∩K). (4.2)

But there is a ξ ∈ {z : γ(z) < ε}∩K such that |ξ− ζ| < ν. Now let α1 = γ(ζ)−γ(ξ). Then γ(ξ) = ε−α1

and hence ζ ∈ ων({z : γ(z) < ε− α2}), for some α2 < α1 contradicting (4.2). We are now ready to prove
the proposition, which will follow if we can show that for any ν > 0 we have

cl({z : γ(z) < ε}) ∩K ⊂ ων(cl({z : γk(z) < ε}) ∩K)

and ων(cl({z : γ(z) < ε}) ∩K) ⊃ cl({z : γk(z) < ε}) ∩K, for all sufficiently large k.
Note that the first inclusion follows by using the claim in the first part of the proof and the locally uniform

convergence of γk. Indeed, by the locally uniform convergence it follows that, for any α > 0, we have

cl({z : γk(z) < ε}) ∩K ⊃ cl({z : γ(z) < ε− α}) ∩K

for large k, thus by appealing to (4.1), we obtain the desired inclusion. To see the second inclusion, we first
assume (i). Then {z : γk(z) < ε} ⊂ {z : γ(z) < ε} and hence the inclusion follows. As for the second
case we assume (ii). By arguing by contradiction, we suppose the statement is false and deduce that there is
a sequence {zk} such that

zk ∈ cl({z : γk(z) < ε}) ∩K

and zk /∈ ων(cl({z : γ(z) < ε}) ∩ K). By compactness we may assume that zk → z and then (by (ii))
γ(z) > ε which contradicts the fact that γk(zk) → γ(z) which follows by continuity of γ and the local
uniform convergence of {γk}.

Theorem 4.2 (Shargorodsky [43]). Let Ω be an open subset of C, X be a Banach space and Y be a uniformly
convex Banach space. Suppose A : Ω→ B(X,Y ) is an analytic operator valued function such that A′(z) is
invertible for all z ∈ Ω. If ‖A(z)‖ ≤M for all z ∈ Ω then ‖A(z)‖ < M for all z ∈ Ω.

Before we continue let us define some functions that will be crucial throughout the paper.

Definition 4.3. Let {Pm} be an increasing sequence of projections converging strongly to the identity. De-
fine, for n ∈ Z+ and m ∈ N, the function Φn,m : B(H)× C→ R by

Φn,m(S, z) = min
{
λ1/2n+1

: λ ∈ σ
(
Pm((S − z)∗)2n(S − z)2n

⌈
PmH

)}
.

Define also
Φn(S, z) = lim

m→∞
Φn,m(S, z),

and for T ∈ B(H)
γn(z) = min[Φn(T, z),Φn(T ∗, z̄)]. (4.3)

Theorem 4.4. Let T ∈ B(H), γn be defined as in (4.3) and ε > 0. Then the following is true:

(i) σn+1,ε(T ) ⊂ σn,ε(T ).

(ii) σn,ε(T ) = {z ∈ C : γn(z) < ε}.

(iii) cl({z : γn(z) < ε}) = {z : γn(z) ≤ ε}.

(iv) Let ωε(σ(T )) denote the ε-neighborhood around σ(T ). Then

dH

(
σn,ε(T ), ωε(σ(T ))

)
−→ 0, n→∞.

(v) If {Tk} ⊂ B(H) and Tk → T in norm, it follows that

dH

(
σn,ε(Tk), σn,ε(T )

)
−→ 0, k →∞.
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Proof. Now (i) follows by the definition of σn,ε(T ) and the fact that

1/‖R(z, T )2n+1
‖1/2

n+1
≥ 1/

(
‖R(z, T )2n‖1/2

n+1
‖R(z, T )2n‖1/2

n+1
)

= 1/‖R(z, T )2n‖1/2
n

.
(4.4)

To prove (ii) we have to show that γn(z) = 1/‖R(z, T )2n‖1/2n when z /∈ σ(T ) and that γn(z) = 0 when
z ∈ σ(T ). The former is clear, so to see the latter we need to show that when z ∈ σ(T ) then either |(T−z)2n |
or |((T − z)2n)∗| is not invertible. To see that, we need to consider three cases: (1) (T − z)2n is not one to
one, (2) (T − z)2n is not onto, but the range of (T − z)2n is dense in H or (3) (T − z)2n is not onto and
ran((T − z)2n 6= H.

Case (1): Now, by the polar decomposition, we have (T − z)2n = U |(T − z)2n | where U is a partial
isometry, and it is easy to see that |(T − z)2n | is not invertible when (T − z)2n is not one to one.

Case (2): Recall that U is unitary if and only if ((T−z)2n)∗ is one to one. Thus, since ran((T − z)2n) =
H and ker(((T − z)2n)∗) = ran((T − z)2n)⊥, we have that U must be unitary. But that implies that
|(T − z)2n | cannot be invertible since (T − z)2n is not invertible.

Case (3): If ran((T − z)2n 6= H it follows that ker(((T − z)2n)∗) is nonzero, and since

((T − z)2n)∗ = U∗
∣∣∣((T − z)2n)∗

∣∣∣
we may argue as in Case (1) to deduce that |((T − z)2n)∗| is not invertible and this proves the claim.

To see (iii) we argue by contradiction and assume that cl({z : γn(z) < ε}) = {z : γn(z) ≤ ε}. is false.
Then there exists a z̃ ∈ σ(T )c such that γn(z̃) = ε and also a neighborhood θ around z̃ such that γn(z) ≥ ε
for z ∈ θ. Now, for z ∈ θ, it follows that 1/γn(z) = ‖R(z, T )2n‖1/2n . Thus, ‖R(z̃, T )2n‖ = 1/ε2

n

and
‖R(z̃, T )2n‖ ≤ 1/ε2

n

for z ∈ θ. But z 7→ R(z, T )2n is obviously holomorphic and d
dzR(z, T )2n is easily

seen to be invertible for all z ∈ θ. Thus, by Theorem 4.2, it follows that ‖R(z̃, T )2n‖ < 1/ε2
n

for all z ∈ θ,
contradicting ‖R(z̃, T )2n‖ = 1/ε2

n

.
It is easy to see that to prove (iv) it suffices to show that γn → γ locally uniformly, where

γ(z) = dist(z, σ(T )).

To see the latter, let δ > 0 and let ωδ denote the open δ-neighborhood around σ(T ). Let also Ω be a compact
set such σ(T ) ⊂ Ωo and Ωδ = Ω \ ωδ. Note that for z ∈ Ω \ σ(T ) we have

γ(z) = 1/ρ(R(z, T )),

where ρ(R(z, T )) denotes the spectral radius of R(z, T ), and also by (4.4) it follows that γn+1(z) ≥ γn(z).
Thus, by the continuity of γ and γn together with the spectral radius formula we may appeal to Dini’s
Theorem to deduce that γn → γ locally uniformly on Ωδ. By choosing n large enough we can guarantee that
|γn(z)−γ(z)| ≤ δ when z ∈ Ωδ. Also, since γn(z) ≤ γ(z) for z ∈ Ω\σ(T ) and γ(z) = dist(z, σ(T )) ≤ δ
for z ∈ ωδ we have that |γn(z) − dist(z, σ(T ))| ≤ δ when z ∈ Ω \ σ(T ) Since, by (ii), it is true that
γn(z) = dist(z, σ(T )) = γ(z) = 0 when z ∈ σ(T ) we are done with (iv).

To see that (v) is true let γn,k(z) = min[Φn(Tk, z),Φn(T ∗k , z̄)]. Then, by (ii), σn,ε(Tk) = {z ∈ C :
γn,k(z) < ε}. Also, since T is bounded and Tk → T in norm, there is a compact set K ⊂ C containing both
σn,ε(T ) and σn,ε(Tk). Thus, by appealing to (iii) and Proposition 4.1 we conclude that to prove (v) we only
need to show that γn,k → γn locally uniformly as k → ∞. It suffices to show that γ2n+1

n,k → γ2n+1

n locally
uniformly. Now

|Φn(Tk, z)2n+1
− Φn(T, z)2n+1

|

≤ dH
(
σ
(

((Tk − z)∗)2n(Tk − z)2n
)
, σ
(

((T − z)∗)2n(T − z)2n
))

≤
∥∥∥((Tk − z)∗)2n(Tk − z)2n − ((T − z)∗)2n(T − z)2n

∥∥∥ −→ 0,

(4.5)

locally uniformly as k →∞. Similar estimate holds for∣∣∣Φn(T ∗k , z̄)
2n+1

− Φn(T ∗, z̄)2n+1
∣∣∣ ,

and this yields the assertion.
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Remark 4.1 The advantage of the (n, ε)-pseudospectrum is that in addition to the continuity property stated
above, we now have two parameters n and ε to tweak in order to estimate the spectrum. It is quite easy
to construct examples (even 2-by-2 matrices) of operators {Tn} for which σ1,ε(Tn) ⊂ σε/10n(Tn). And of
course, in the self-adjoint case it would not make sense to take n > 0 as σn,ε(A) = σε(A) for self-adjoint A.

5 Properties of the n-pseudospectra of Unbounded Operators
The theory of n-pseudospectra for unbounded operators has a lot in common with the theory of n-pseudospectra
for bounded operators, however, there is a major difference; the n-pseudospectrum of an unbounded operator
can “jump”. We will be more specific about this below.

Theorem 5.1. Let T ∈ C(H), n ∈ Z+, ε > 0 and let K ⊂ C be a compact ball such that σε(T ) ∩Ko 6= ∅.
Then the following is true

(i) σn+1,ε(T ) ⊂ σn,ε(T ).

(ii) Let ωε(σ(T )) denote the ε neighborhood around σ(T ). Then

dH

(
σn,ε(T ) ∩K,ωε(σ(T )) ∩K

)
−→ 0, n→∞.

Proof. Follows by almost identical arguments as in the proof of Theorem 4.4.

The difference between the bounded and the unbounded case is that if T ∈ C(H), z ∈ C and we define

γn(z) =

{
0 z ∈ σ(T )

1
‖R(z,T )2n‖1/2n z ∈ σ(T )c,

(5.1)

then we might have that cl({z : γn(z) < ε}) 6= {z : γn(z) ≤ ε}. The reason is that there exists un-
bounded operators for where the norm of the resolvent is constant on an open set in C. This was proven by
Shargorodsky in [43]. However, we have the following.

Theorem 5.2. Let T ∈ C(H) and let γn be defined as in (5.1). Suppose that ‖R(·, T )2n‖ can never be
constant on an open set, then cl({z : γn(z) < ε}) = {z : γn(z) ≤ ε}.

Proof. Follows by arguing similar to the argument in the proof of Theorem 4.4 (iii).

Theorem 5.3. Let T ∈ C(H) with domain D(T ) and let {Tk} ⊂ C(H) be a sequence such that Tk
δ̂−→ T.

Define, for z ∈ C

ζ(z) =

{
0 z ∈ σ(T )

1
‖R(z,T )‖ z ∈ σ(T )c,

ζk(z) =

{
0 z ∈ σ(Tk)

1
‖R(z,Tk)‖ z ∈ σ(Tk)c, k ∈ N.

(i) If z ∈ K, where K is a compact ball, it follows that there is a CK > 0 depending on K such that

|ζ(z)2 − ζk(z)2| ≤ CK(1 + |z|2)δ̂(Tk, T )

for sufficiently large k.

(ii) Suppose that ‖R(·, T )2n‖ can never be constant on an open set. Then if K ⊂ C is a compact ball
such that Ko ∩ σn,ε(T ) 6= ∅, then

dH

(
σn,ε(Tk) ∩K,σn,ε(T ) ∩K

)
−→ 0, k →∞, ε > 0.

Proof. To show (i) we first claim that

ζ(z) = min
[

inf{
√
λ : λ ∈ σ((T − z)∗(T − z))},

inf{
√
λ : λ ∈ σ((T − z)(T − z)∗)}

]
ζk(z) = min

[
inf{
√
λ : λ ∈ σ((Tk − z)∗(Tk − z))},

inf{
√
λ : λ ∈ σ((Tk − z)(Tk − z)∗)}

]
.

(5.2)
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We will show this for ζ, and the argument is identical for ζk. Indeed, for z /∈ σ(T ) this is quite straightforward
and hence we are left to show that either |T−z| or |(T−z)∗| is not invertible for z ∈ σ(T ). This is essentially
the same argument as in Theorem 4.4, but we include it for completeness and to make sure that the same
conclusions can be drawn using the polar decomposition of unbounded operators. We need to consider three
cases. (1), (T − z) is not one to one, (2), (T − z) is not onto, but the range of (T − z) is dense in H or (3),
(T − z) is not onto and ran((T − z)) 6= H.

Case (1): Now, by the polar decomposition, we have (T −z) = U |(T −z)| where U is a partial isometry.
Note that ker(T − z) = ker(|T − z|) and |T − z| is not invertible.

Case (2): Note that (T − z)∗ is one to one if and only if U is unitary and so U must be unitary since
ran((T − z) = H and ker((T − z)∗) = ran(T − z)⊥. But that implies that |(T − z)| cannot be invertible
since (T − z) is not invertible.

Case (3): If ran((T − z) 6= H it follows that ker((T−z)∗) is nonzero, and since (T−z)∗ = U∗|(T−z)∗|
we may argue as in Case (1) to deduce that |(T − z)∗| is not invertible, and thus we have shown (5.2).

Note that by the spectral mapping theorem we have that

σ((T − z)∗(T − z)) = ψ(σ(R(T−z)), σ((T − z)(T − z)∗) = ψ(σ(R(T−z)∗))

where ψ(x) = 1/x − 1 (recall that R(T−z) is short for (1 + (T − z)∗(T − z))−1). Now let ζ2(z) = ζ(z)2

and ζ2
k(z) = ζk(z)2. Then it follows that

ζ2(z) = min
(
inf{ψ(λ) : λ ∈ σ(R(T−z))}, inf{ψ(λ) : λ ∈ σ(R(T−z)∗)}

)
= min

(
ψ(‖R(T−z)‖), ψ(‖R(T−z)∗‖)

)
,

by self-adjointness of (T − z)∗(T − z) and (T − z)(T − z)∗. Similarly,

ζ2
k(z) = min

(
{ψ(‖R(Tk−z)‖), ψ(‖R(Tk−z)∗‖)

)
.

Recall from the definition of p and Theorem 2.2 that for z ∈ C we have

‖RTk−z −RT−z‖2 + ‖R(Tk−z)∗ −R(T−z)∗‖2 ≤ p(Tk − z, T − z)2

≤ 8δ̂(Tk − z, T − z)2

≤ 24(1 + |z|2)2δ̂(Tk, T )2.

(5.3)

Also, since K is compact, there is a δ > 0 such that

0 /∈ Ω = ωδ({ψ−1 ◦ ζ2(z) : z ∈ K}),

where ωδ({ψ−1 ◦ ζ2(z) : z ∈ K}) denotes the δ-neighborhood around {ψ−1 ◦ ζ2(z) : z ∈ K}, and by (5.3)
it follows that

{ψ−1 ◦ ζ2
k(z) : z ∈ K} ⊂ ωδ({ψ−1 ◦ ζ2(z) : z ∈ K})

for sufficiently large k. Let C be the Lipschitz constant of ψdΩ. Then if z ∈ C \ σ(T ) we have that
ψ(‖R(T−z)‖) = ψ(‖R(T−z)∗‖) so by (5.3)

|ζ(z)2 − ζ̃2
k(z)| ≤ C

√
24(1 + |z|2)δ̂(Tk, T ). (5.4)

If z ∈ σ(T ) then at least one of ‖R(T−z)‖ and ‖R(T−z)∗‖ is equal to one. Now, suppose that ‖R(T−z)‖ = 1.
If ζ2

k(z) = ψ(‖R(Tk−z)‖) then (5.4) follows, so suppose that ζ2
k(z) = ψ(‖R(Tk−z)∗‖) then ‖R(Tk−z)∗‖ >

‖R(Tk−z)‖ so

|ζ(z)2 − ζ2
k(z)| ≤ C(1− ‖R(Tk−z)∗‖) ≤ C(‖R(T−z)‖ − ‖R(Tk−z)‖),

and hence (5.4) follows by (5.3). Similar reasoning gives the same result for

ζ2
k(z) = ψ(‖R(Tk−z)∗‖)

and ‖R(T−z)∗‖ = 1 and we deduce that (5.4) holds for all z ∈ K.
To show that

dH

(
σn,ε(Tk) ∩K,σn,ε(T ) ∩K

)
−→ 0, k →∞, ε > 0
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in order to deduce (ii), we will deviate substantially from the techniques used in the proof of Theorem 4.4
(v). Before getting to the argument note that, since for any z0 ∈ C we have

σn,ε(T + z0) = {z + z0 : z ∈ σn,ε(T )},

we may assume that T is invertible. For m ∈ N consider the operator Tm defined inductively on

D(Tm) = {ξ : ξ ∈ D(Tm−1), Tm−1ξ ∈ D(T )},

by Tmξ = T (Tm−1ξ). Then Tm is a closed operator [29]. Also, since T is invertible and T is densely
defined, T−1 has dense range and so has T−m which yields that Tm is densely defined. Note also that
since D(Tm) ⊂ D(Tm−1) it follows that p(T ) is closed and densely defined for any polynomial p and
D(p(T )) = D(T d) where d is the degree of the polynomial p. Thus for any z ∈ C we can define the adjoint
((T − z)m)∗. We can now continue with the argument. The reasoning above allows us to define

γn,k(z) = min
[

inf{λ1/2n : λ ∈ σ(|(Tk − z)2n |)},

inf{λ1/2n : λ ∈ σ(|((Tk − z)∗)2n |)}
]
.

Appealing to Proposition 4.1 and Theorem 5.2 (and recalling the assumption in (ii)), it suffices to show that
γn,k → γn locally uniformly, where

γn(z) =

{
0 z ∈ σ(T )

1
‖R(z,T )2n‖1/2n z ∈ σ(T )c.

Claim I: We claim that γn,k → γn locally uniformly on σ(T ). To see that, note that for z ∈ σ(T ) then,
by the spectral mapping theorem for polynomials of unbounded operators [29], (T − z)2n is not invertible.
Hence, by reasoning similar to what we did in the proof of (i), either

inf
‖ξ‖=1, ξ∈D(T 2n )

‖(T − z)2nξ‖1/2
n

= 0,

or inf
‖ξ‖=1, ξ∈D((T 2n )∗)

‖((T − z)2n)∗ξ‖1/2
n

= 0,
(5.5)

(or both are equal to zero). Suppose that the first part of (5.5) is true. Then, for δ > 0, we can find for any
z0 ∈ σ(T ) ∩K a vector ξz0 ∈ D(T 2n) such that ‖(T − z0)2nξz0‖1/2

n ≤ δ/3. Recall that, for any m ∈ N
we have δ̂(Tmk , T

m) = δ̂(T−mk , T−m) and that R(Tmk ) → R(Tm) if and only if δ̂(Tmk , T
m) → 0, and

since R(Tk) → R(T ) so R(Tk)m → R(T )m we get that δ̂(Tmk , T
m) → 0. Hence, by the definition of δ̂, it

follows that

sup
ξ∈D(Tm)

‖ξ‖+‖Tmξ‖=1

inf
η∈D(Tmk )

‖ξ − η‖+ ‖Tmξ − Tmk η‖ −→ 0, k →∞.

Thus, there exists a sequence of unit vectors {ηz0,k} inD(Tmk ) such that ηz0,k → ξz0 and Tmk ηz0,k → Tmξz0
as k →∞. Now, since for any integer r we have T−rk → T−r in norm, it follows that

T lkηz0,k = T
−(m−l)
k Tmk ηz0,k −→ T−(m−l)Tmξz0 = T lξz0 , k →∞.

for all l ≤ m. In particular, it is true that z 7→ (Tk − z)2nηz0,k → z 7→ (T − z)2nξz0 locally uniformly as
k → ∞. Note that z 7→ ‖(T − z)2nξz0‖ is continuous. Thus, there is a neighborhood Θz0 around z0 such
that ‖(T − z)2nξz0‖ ≤ 2

3δ for z ∈ Θz0 and hence ‖(Tk − z)2nηz0,k‖ ≤ δ for z ∈ Θz0 and sufficiently large
k. Covering σ(T ) ∩ K with finitely many neighborhoods {Θzj}Mj=1, of the type just described, for some
{zj}Mj=1 ⊂ σ(T ) ∩K and some M ∈ N, we deduce that there are sequences {ηzj ,k} and an integer k0 such
that

max
j≤M

sup
z∈Θzj

∥∥∥(Tk − z)2nηzj ,k

∥∥∥ ≤ δ2n , k ≥ k0.

And hence it follows that that for z ∈
⋃
zj

Θzj

inf{λ1/2n : λ ∈ σ(|(Tk − z)2n |)} = ( inf
‖ξ‖=1, ξ∈H

‖(Tk − z)2nξ‖)1/2n ≤ δ, k ≥ k0.
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Similar reasoning holds for the second part of (5.5) and hence we deduce that γn,k → γn locally uniformly
on σ(T ).

Note that we have actually proved more than what we claimed, namely that if δ > 0, z0 ∈ ∂σ(T ) and ω
is a neighborhood around z0 such that γn(z) ≤ δ/2 for z ∈ ω, then

γn,k(z) ≤ δ, z ∈ ω, k ≥ K, (5.6)

for some K.
Claim II: We claim that γn,k → γn locally uniformly on C \ σ(T ). Note that z 7→ R(z, T ) is analytic

on C \ σ(T ) and also, since

Tk
δ̂−→ T

and σ(T )c 6= ∅, it follows that ifBr(a) is an open disc with center a ∈ C, radius r andBr(a) ⊂ C\ων(σ(T ))
for some ν > 0 (recall that ων(Ω) denotes the ν-neighborhood around Ω ⊂ C), then R(z, Tk) exist and is
bounded on a neighborhood ofBr(a) for sufficiently large k and hence z 7→ R(z, Tk) is analytic there. Now,

R(z, Tk) −→ R(z, T ), k →∞, z ∈ Br(a) (5.7)

pointwise. Let fk(z) = R(z, Tk) then, by Cauchy’s formula, we have for z ∈ Br(a)

‖fk(a)− fk(z)‖ ≤ 1
2π

∥∥∥∥∥
∫
∂Br(a)

fk(ω)(a− z)
(ω − a)(ω − z)

dω

∥∥∥∥∥
≤ 4M

R
|a− z|,

where M is the bound on fk on Br(a). Hence, {fk} is locally uniformly Lipschitz and therefore the con-
vergence in (5.7) must be locally uniform. Using the reasoning above, the fact that we have γn,k(z) =
1/‖R(z, Tk)2n‖1/2n for z ∈ C \ ων(σ(T )) and sufficiently large k, and the reasoning leading to (5.6), then
Claim II easily follows.

By adding Claim I and Claim II we deduce (ii).

6 Proofs of the Main Theorems
We are now ready to prove the main theorems, but before we do that we need a couple of preliminary results.

Proposition 6.1. T ∈ B(H) and {Pm} is an increasing sequence of finite rank projections converging
strongly to the identity. Let Φn,m be as in Definition 4.3. Define, for k ∈ N, the functions γn,m, γn,m,k :
C→ R by

γn,m(z) = min[Φn,m(T, z),Φn,m(T ∗, z̄)],
γn,m,k(z) = min[Φn,m(PkTPk, z),Φn,m(PkT ∗Pk, z̄)],

(6.1)

and let γn be defined as in (4.3). Then γn,m → γn as m → ∞ and γn,m,k → γn,m as k → ∞ locally
uniformly. The convergence γn,m → γn is monotonically from above.

Proof. To see that γn,m → γn monotonically from above and locally uniformly as m→∞, define γ1
n(z) =

Φn(T, z), γ2
n(z) = Φn(T ∗, z̄), γ1

n,m(z) = Φn,m(T, z) and γ2
n,m(z) = Φn,m(T ∗, z̄), where Φn and Φn,m

are defined as in Definition 4.3. It follows, by the definition of γn,m, that to prove the claim it suffices
to show that γ1

n,m → γ1
n and γ2

n,m → γ2
n monotonically from above and locally uniformly as m → ∞.

Now, γjn,m is obviously continuous as well as γjn and also, since Pn+1 ≥ Pn and Pn → I , we have that
γjn,m+1(z) ≤ γjn,m(z) and limm→∞ γjn,m(z) = γjn(z) for z ∈ C. Thus, by appealing to Dini’s Theorem, we
deduce that γjn,m → γjn locally uniformly.

To see that γn,m,k → γn,m as k →∞, locally uniformly we argue as follows. Using self-adjointness of

Tm(z) = Pm((T − z)∗)2n(T − z)2n
⌈
PmH

Tm,k(z) = Pm((Pk(T − z)Pk)∗)2n(Pk(T − z)Pk)2n
⌈
PmH

,

T̃m(z) = Pm(T − z)2n((T − z)∗)2n
⌈
PmH

T̃m,k(z) = Pm(Pk(T − z)Pk)2n((Pk(T − z)Pk)∗)2n
⌈
PmH

(6.2)
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and the fact that for self-adjoint A,B ∈ B(H) we have dH(σ(A), σ(B)) ≤ ‖A−B‖ it suffices to show that
Tm,k(z) → Tm(z) and T̃m,k(z) → T̃m(z), as k → ∞, uniformly for all z in a compact set. To see that we
observe that

SOT-lim
k→∞

Pk(T − z)Pk = T − z, SOT-lim
k→∞

(Pk(T − z)Pk)∗ = (T − z)∗,

so since multiplication is strongly continuous on bounded sets and the fact Pm has finite rank it follows
that the strong convergence implies norm convergence and we deduce that Tm,k → Tm and T̃m,k → T̃m
pointwise as k →∞.

A closer examination shows that the operator valued functions z 7→ Tm,k(z) and z 7→ T̃m,k(z) are
Lipschitz continuous on compact sets with a uniformly bounded Lipschitz constant, thus the convergence
asserted is locally uniform.

The following two theorems will be essential in the developments below.

Theorem 6.2 (Treil [51]). LetH1 andH2 be Hilbert spaces and let H∞H1→H2
denote the set of all bounded

analytic function on the open unit disk D whose values are in B(H1,H2). Let F ∈ H∞H1→H2
and suppose

that there is a δ > 0 such that F ∗(z)F (z) ≥ δI for all z ∈ D. If there is a constant operatorA ∈ B(H1,H2)
such that

sup
z∈D
‖A− F ∗(z)F (z)‖1 <∞,

where ‖ · ‖1 denotes the trace-norm, then there is a G ∈ H∞H2→H1
such that G(z)F (z) = I for all z ∈ D.

Theorem 6.3 (Shargorodsky [43]). Let Ω0 be a connected open subset of C and Z a Banach space. Suppose
that F : Ω0 → Z is an analytic vector valued function, ‖F (z)‖ ≤ M for all z in an open subset Ω ⊂ Ω0,
and ‖F (z0)‖ < M for some z0 ∈ Ω0. Then ‖F (z)‖ < M for all z ∈ Ω.

We are now ready to prove the main theorems.

Proof. (Proof of Theorem 3.4 and 3.5) Note that if T ∈ ∆ it follows that, for compact K ⊂ C intersecting
σn,ε(T ) or σ(T ) we have

σ(T ) ∩K = lim
ε→0

σn,ε(T ) ∩K, ωε(σ(T )) ∩K = lim
n→∞

σn,ε(T ) ∩K,

(the first assertion is obvious and the second follows from Theorem 5.1) thus, it suffices to show, in both
cases, the bound on SCind(Ξ1). We will first show that if ∆ = B(H) then SCind(Ξ1) ≤ 2, and then use this
to show that if ∆ is defined as in (3.2) then SCind(Ξ1) ≤ 3. Let Pn be the projection onto span{e1, . . . , en}
and xij = 〈Tej , ei〉 for T ∈ B(H). Also, define the set

Θk = {z ∈ C : Re z, Im z = rδ, r ∈ Z, |r| ≤ k}, δ =

√
1
k
, (6.3)

and define the set of estimating functions Γn1,n2 and Γn1 in the following way. Let

Γn1,n2({xij}) = {z ∈ Θn2 : @L ∈ LTpos(Pn1H), Tε,n1,n2(z) = LL∗}

∪ {z ∈ Θn2 : @L ∈ LTpos(Pn1H), T̃ε,n1,n2(z) = LL∗},
Γn1({xij}) = {z ∈ C : (−∞, 0] ∩ σ(Tε,n1(z)) 6= ∅}

∪ {z ∈ C : (−∞, 0] ∩ σ(T̃ε,n1(z)) 6= ∅},

(6.4)

where LTpos(PmH) denotes the set of lower triangular matrices in B(PmH) (with respect to {ej}) with
strictly positive diagonal elements and

Tε,n1,n2(z) = Tn1,n2(z)− ε2
n+1

I,

T̃ε,n1,n2(z) = T̃n1,n2(z)− ε2
n+1

I,

Tε,n1(z) = Tn1(z)− ε2
n+1

I,

Tε,n1(z) = Tn1(z)− ε2
n+1

I,

(6.5)
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where Tn1,n2 , T̃n1,n2 , Tn1 and T̃n1 are defined as in (6.2). Note that, clearly, from the definition, Γn1,n2

depends only on {xij}i,j≤n2 . We claim that Γn1,n2({xij}) can be evaluated using only finitely many arith-
metic operations and radicals of elements in {xij}i,j≤n2 . Indeed, Tε,n1,n2(z) and T̃ε,n1,n2(z) are both in
B(Pn1H). Also, aij = 〈Tε,n1,n2(z)ej , ei〉 and ãij = 〈T̃ε,n1,n2(z)ej , ei〉, for i, j ≤ n1, are, by the definition
of Tε,n1,n2(z) and T̃ε,n1,n2(z), polynomials in {xij}i,j≤n2 . Since the existence of L ∈ LTpos(Pn1) such that
Tε,n1,n2(z) = LL∗ can be determined using finitely many arithmetic operations and radicals of {aij}i,j≤n1

(this is known as the Cholesky decomposition), similar reasoning holds for T̃ε,n1,n2(z) and the fact that Θn2

is finite, the assertion follows.
Step I: We will show that for any compact ball K ⊂ C such that Γn1,n2({xij}) ∩Ko 6= ∅, then

dH(Γn1,n2({xij}) ∩K,Γn1({xij}) ∩K) −→ 0, n2 →∞.

Note that since dH(Θn2 ∩K,K)→ 0, as n2 →∞, and by the observations that for n2 ≥ n1 we have

{z ∈ C : @L ∈ LTpos(Pn1H), Tε,n1,n2(z) = LL∗}

∪ {z ∈ C : @L ∈ LTpos(Pn1H), T̃ε,n1,n2(z) = LL∗}

= {z ∈ C : (−∞, 0] ∩ σ(Tε,n1,n2(z)) 6= ∅} ∪ {z ∈ C : (−∞, 0] ∩ σ(T̃ε,n1,n2(z)) 6= ∅}
= {z ∈ C : γn,n1,n2(z) ≤ ε},

where γn,n1,n2 is defined in (6.1), and

{z ∈ C : γn,n1(z) ≤ ε} = {z ∈ C : (−∞, 0] ∩ σ(Tε,n1(z)) 6= ∅}

∪ {z ∈ C : (−∞, 0]∩ ∈ σ(T̃ε,n1(z)) 6= ∅}
(6.6)

where γn,n1 is defined in (6.1), the assertion will follow if we can demonstrate that

dH({z ∈ C : γn,n1,n2(z) ≤ ε} ∩K, {z ∈ C : γn,n1(z) ≤ ε} ∩K) −→ 0, (6.7)

as n2 →∞. Now, by Proposition 6.1 it follows that γn,n1,n2 → γn,n1 locally uniformly hence, by Proposi-
tion 4.1, (6.7) will follow if we can prove the following.

Claim: We claim that

cl({z ∈ C : γn,n1(z) < ε}) = {z ∈ C : γn,n1(z) ≤ ε}. (6.8)

Now, letting ζ1,n1 and ζ2,n1 be defined by ζ1,n1(z) = Φn,n1(T, z) and ζ2,n1(z) = Φn,n1(T ∗, z̄), where
Φn,n1 is defined as in Definition 4.3. Then

γn,n1 = min[ζ1,n1 , ζ2,n1 ].

Thus, (6.8) will follow if we can show that

cl({z ∈ C : ζj,n1(z) < ε}) = {z ∈ C : ζj,n1(z) ≤ ε}, j = 1, 2. (6.9)

We will demonstrate the latter, but before we do so we need to establish some facts about the set of points
where ζ1,n1 does not vanish. Let

Ω = {z ∈ C : ζ1,n1(z) 6= 0},
then Ω is obviously open and we claim that C\Ω is finite. To see that we argue by contradiction and suppose
that ζ1,n1 vanishes at infinitely many points. If that was the case we would have

inf
‖ξ‖=1,ξ∈H

‖(T − z)2nPn1ξ‖ = 0, (6.10)

for infinitely many zs. This is indeed impossible because, since Pn1 has finite rank, there is a finite dimen-
sional subspaceH1 ⊂ H such that ran(T−z)2n−1Pn1 ⊂ H1 for all z ∈ C. Thus , ifE is the projection onto
H1 then, by (6.10), infη∈H1 ‖(ETE − zE)η‖ = 0 for infinitely many zs. But the infimum in the equation
above is actually attained since H1 is finite dimensional and hence the finite rank operator ETE must have
infinitely many eigenvalues and this is impossible. Armed with this fact we return to the task of showing
(6.9). To do this for j = 1 we argue by contradiction and suppose that there is a

z0 /∈ cl({z ∈ C : ζ1,n1(z) < ε}) (6.11)
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such that ζ1,n1(z0) = ε. This implies that there is a neighborhood θ around z0 such that ζ1,n1(z) ≥ ε for
z ∈ θ.We will now demonstrate that this is impossible. First note that by the definition of ζ1,n1 we can make
ζ1,n1(z) arbitrary large for large |z|. In particular, we can find an open set θ̃ ⊂ Ω such that ζ1,n1(z) > ε for
z ∈ θ̃. Now choose a simply connected open set Ω0 ⊂ Ω such that θ ∪ θ̃ ⊂ Ω0 and ζ1,n1 does not vanish on
cl(Ω0). Note that this is possible by the fact that C \ Ω is finite. Now define, for z ∈ Ω0, the operator

F (z) : Pn1H → H, F (z) = (T − z)2nPn1 .

Now, obviously F is holomorphic. Note that, by continuity of ζ1,n1 and the choice of Ω0, there is a δ > 0
such that

inf
z∈Ω0

ζ1,n1(z) ≥ δ.

By possibly composing F with a holomorphic function we may assume that Ω0 = D, the open disk with
radius one centered at the origin. Hence we get that F ∈ H∞Pn1H→H

and F ∗(z)F (z) ≥ δI, for all z ∈ D,
where I is the identity on Pn1H. Obviously, since Pn1 is a finite rank projection, it follows that

sup
z∈D
‖F ∗(z)F (z)‖1 <∞,

where ‖ · ‖1 denotes the trace norm. Thus, we may appeal to Theorem 6.2 and deduce that there is a
G ∈ H∞H→Pn1H

such that G(z)F (z) = I for all z ∈ D. Again, by possibly composing with another
holomorphic function (and with a slight abuse of notation) we have a holomorphic function G on Ω0 such
that G(z) : H → Pn1H and

1/ζ1,n1(z) = 1/( inf
ξ∈Pn1H,‖ξ‖=1

‖F (z)ξ‖) = ‖G(z)‖, z ∈ Ω0.

Then, by the reasoning above, it follows that ‖G(z)‖ ≤ 1/ε for z ∈ θ and ‖G(z)‖ < 1/ε for z ∈ θ̃. This
implies, by Theorem 6.3, that ‖G(z)‖ < 1/ε for z ∈ θ, but ‖G(z0)‖ = 1/ε and z0 ∈ θ (recall (6.11)) and
we have finally reached the desired contradiction. By a similar argument one can show (6.9) for j = 2 and
hence we are done with step I.

Step II: We will show that for any compact ball K ⊂ C such that σn,ε(T ) ∩Ko 6= ∅, then

dH(Γn1({xij}) ∩K,σn,ε(T ) ∩K) −→ 0, n1 →∞.

But, by (6.6) and Theorem 4.4 (ii), this will follow if

dH({z ∈ C : γn,n1(z) ≤ ε} ∩K, {z ∈ C : γn(z) ≤ ε} ∩K) −→ 0, n1 →∞,

where γn is defined in (4.3), and by Theorem 4.4 (iii) and Proposition 4.1 this is true if γn,n1 → γn locally
uniformly, which in fact was established in Proposition 6.1. Now, adding Step I and Step II together we have
shown that SCind(Ξ1) ≤ 2 for Ξ1 : ∆ → Ω when ∆ = B(H), and we will now use this to establish the
assertion of the theorem.

Step III: We will now show that if ∆ is defined as in (3.2) then SCind(Ξ1) ≤ 3. Suppose that we have
T = W + A, where W is a weighted shift and A is bounded. Letting xij = 〈Tej , ei〉 we will define the
set of estimating functions Γn1,...,n3 , . . . ,Γn1 in the following way. Now, for ξ ∈ H we may without loss
of generality assume that (Wξ)j = xj,j+kξj for some integer k. Define a new set {x̃ij(n)}, depending on
an integer n, in the following way: x̃j,j+k(n) = n if |xj,j+k| > n and x̃ij(n) = xij elsewhere. Note that
{x̃ij(n)} gives rise to a bounded operator Sn whose matrix elements are {x̃ij(n)}. Thus we can define

Γn1,...,n3({xij}) = Γn2,n3({x̃ij(n1)}),

where Γn2,n3 is defined as in (6.4). If we let Γn1({xij}) = Ξ1(Sn1), and since we have shown above that
Γn2,n3 and Γn2 is a set of estimating functions for Ξ1 : B(H) → Ω, it follows that Γn1,...,n3 , . . . ,Γn1 is a
set of estimating functions for Ξ1 if we can show that

lim
n1→∞

Ξ1(Sn1) = Ξ1(T ).

Note that, by Theorem 5.3 (and assumption), the latter will follow if we can show that

Sn
δ̂−→ T, n→∞. (6.12)
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Define the operator Wn by (Wnξ)j = x̃j,j+k(n)ξj for ξ ∈ H. Then Sn = Wn + A. Thus, by Theorem 2.2,
(6.12) will follow if we can show that δ(Wn,W ) → 0 and δ(W,Wn) → 0 as n → ∞. To show the former
we need to demonstrate that

sup
ϕ∈G(Wn),‖ϕ‖≤1

inf
ψ∈G(W )

‖ϕ− ψ‖ −→ 0, n→∞,

where G(W ) denotes the graph of W as defined in (2.1). Let ϕ ∈ G(Wn) such that ‖ϕ‖ ≤ 1. Then there is
a ξ ∈ H such that ϕ = (ξ,Wnξ) and ‖Wnξ‖+ ‖ξ‖ ≤ 1. Now, choose η ∈ D(W ) in the following way:

ηj =

{
ξj if x̃j,j+k(n) = xj,j+k
x̃j,j+k(n)
xj,j+k

ξj if x̃j,j+k(n) 6= xj,j+k.

Let also Θ = {j ∈ N : ηj = ξj} and θ = {j ∈ N : ηj 6= ξj}. Then,

‖ξ − η‖+‖Wnξ −Wη‖

=
∑
j∈Θ

|ξj − ηj |2 +
∑
j∈θ

|ξj − ηj |2

+
∑
j∈Θ

|x̃j,j+k(n)ξj − xj,j+kηj |2 +
∑
j∈θ

|x̃j,j+k(n)ξj − xj,j+kηj |2

=
∑
j∈θ

|ξj − ηj |2 +
∑
j∈θ

|x̃j,j+k(n)ξj − xj,j+kηj |2.

Now
∑
j∈θ |x̃j,j+k(n)|2|ξj |2 ≤ 1 and x̃j,j+k(n) = n for j ∈ θ so

∑
j∈θ |ξj+k|2 ≤ 1/n2. So by the fact that

|x̃j,j+k(n)/xj+k| ≤ 1 and the choice of η it follows that∑
j∈θ

|ξj − ηj |2 ≤ 4/n2.

Also,
∑
j∈θ |x̃j,j+k(n)ξj − xj,j+kηj |2 = 0, by the choice of η, and thus ‖ξ − η‖ + ‖Wnξ −Wη‖ ≤ 2/n.

Hence infψ∈G(W ) ‖ϕ− ψ‖ ≤ 2/n and so since ϕ was arbitrary we have

sup
ϕ∈G(AN ),‖ϕ‖≤1

inf
ψ∈G(A)

‖ϕ− ψ‖ ≤ 2/n −→ 0, n→∞.

The fact that δ(W,Wn)→ 0 as n→∞ follows by similar reasoning.

Proof. (Proof of Theorem 3.8) Arguing as in the proof of Theorem 3.5, it suffices to show that SCind(Ξ1) ≤
2. Let Pm and P̃m be the projections onto span{ej}mj=1 and span{ẽj}mj=1 respectively and define

Sm : ∆× C→ B(PmH,H), S̃m : ∆× C→ B(P̃mH,H)

by
Sm(T, z) = (TE1 − z)Pm, S̃m(T, z) = (TE2 − z̄)P̃m,

where E1 : H ⊕ H → H and E2 : H ⊕ H → H are the projections onto the first and second component,
respectively. (Note that there is a slight abuse of notation here since TE1 actually denotes TE1dH, similarly
with TE2, however, this should be clear from the context.) Also, define

Sm,k : ∆× C→ B(PmH,H), S̃m,k : ∆× C→ B(P̃mH,H)

by
Sm,k(T, z) = (PkTE1Pk − z)Pm S̃m(T, z) = (P̃kTE2P̃k − z̄)P̃m.

Now, for T ∈ ∆, let {xij} be some ordering of the matrix elements

{〈T1ej , ei〉} ∪ {〈T2ẽj , ẽi〉}i,j∈N,
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and define the estimating functions Γn1,n2 and Γn1 by

Γn1,n2({xij}) = {z ∈ Θn2 : @L ∈ LTpos(Pn1H), Tε,n1,n2(z) = LL∗}

∪ {z ∈ Θn2 : @L ∈ LTpos(P̃n1H), T̃ε,n1,n2(z) = LL∗},
Γn1({xij}) = {z ∈ C : (−∞, 0] ∩ σ(Tε,n1(z)) 6= 0}

∪ {z ∈ C : (−∞, 0] ∩ σ(T̃ε,n1(z)) 6= ∅},

where Θn2 is defined as in (6.3) and

Tε,n1,n2(z) = Sn1,n2(z)∗Sn1,n2(z)− ε2I, T̃ε,n1,n2(z) = S̃n1,n2(z)∗S̃n1,n2(z)− ε2I

and Tε,n1(z) = Sn1(z)∗Sn1(z) − ε2I, T̃ε,n1(z) = S̃n1(z)∗S̃n1(z) − ε2I. As argued in the proof of Theo-
rem 3.5, Γn1,n2 depends on only finitely many elements in {xij}, and its evaluation requires finitely many
arithmetic operations and radicals of the matrix elements {xij}. We are now ready to prove:

Step I. We will show that
Γn1({xij}) = lim

n2→∞
Γn1,n2({xij}).

Before we can do that, we must establish a couple of facts first. Now, let Φm : ∆×C→ R, Φ̃m : ∆×C→ R,
Φm,k : ∆× C→ R and Φ̃m,k : ∆× C→ R be defined by

Φm(T, z) = min{
√
λ : λ ∈ σ(Sm(T, z)∗Sm(T, z))},

Φ̃m(T, z) = min{
√
λ : λ ∈ σ(S̃m(T, z)∗S̃m(T, z))},

Φm,k(T, z) = min{
√
λ : λ ∈ σ(Sm,k(T, z)∗Sm,k(T, z))},

Φ̃m,k(T, z) = min{
√
λ : λ ∈ σ(S̃m,k(T, z)∗S̃m,k(T, z))}.

Claim: We claim that

{z ∈ C : Φm(T, z) ≤ ε} = cl({z ∈ C : Φm(T, z) < ε}). (6.13)

Indeed, this is the case, and the proof is almost identical to the argument used in the proof of Theorem 3.5.
Let

Ω = {z ∈ C : Φm(T, z) 6= 0},

then Ω is obviously open and we claim that C\Ω is finite. To see that, we argue by contradiction and suppose
that Φm(T, ·) vanishes at infinitely many points. If that was the case we would have

inf
‖ξ‖=1,ξ∈H

‖(T1 − z)Pmξ‖ = 0 (6.14)

for infinitely many zs. But the infimum in (6.14) is attained since Pm has finite rank, so this implies that
the operator PmT1dPmH has infinitely many eigenvalues. This is, of course, impossible since Pm has finite
rank. Armed with this fact we return to the task of showing (6.13). Observe that since Pm has finite rank we
can make inf‖ξ‖=1,ξ∈H ‖(T1 − z)Pmξ‖ arbitrary large for large |z|, and in particular, Φm(T, ·) can be made
arbitrary large as long as |z| is large. Using this we may argue exactly as in the proof of Theorem 3.5 and
deduce that if there is a

z0 /∈ cl({z ∈ C : Φm(T, z) < ε})

such that Φm(T, z0) = ε then there is an open connected set Ω0 ⊂ Ω containing z0 and an operator valued
holomorphic function G on Ω0 such that we have G(z) : H → PmH,

1/Φm(T, z) = ‖G(z)‖, z ∈ Ω0,

and ‖G(z1)‖ < 1/ε for some z1 ∈ Ω0. By the assumption on z0, there is a neighborhood θ around z0 such
that

‖G(z)‖ ≤ 1/ε, z ∈ θ

and since ‖G(z1)‖ < 1/ε it follows, by Theorem 6.3, that ‖G(z)‖ < 1/ε for all z ∈ θ. But ‖G(z0)‖ = 1/ε
and this is a contradiction.
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Note that similar reasoning gives that

{z ∈ C : Φ̃m(T, z) ≤ ε} = cl({z ∈ C : Φ̃m(T, z) < ε}). (6.15)

So, by observing that

Γn1,n2({xij}) = {z ∈ Θn2 : min[Φn1,n2(T, z), Φ̃n1,n2(T, z)] ≤ ε},

Γn1({xij}) = {z ∈ C : min[Φn1(T, z), Φ̃n1(T, z)] ≤ ε}
(6.16)

it suffices to show, by Proposition 4.1 that

min[Φn1,n2(T, z), Φ̃n1,n2(T, z)]→ min[Φn1(T, z), Φ̃n1(T, z)]

locally uniformly as n2 →∞, which again will follow if we can show that the mappings

z 7→ 〈Sn1,n2(T, z)∗Sn1,n2(T, z)ej , ei〉 −→ z 7→ 〈Sn1(T, z)∗Sn1(T, z)ej , ei〉

z 7→ 〈S̃n1,n2(T, z)∗S̃n1,n2(T, z)ẽj , ẽi〉 −→ z 7→ 〈S̃n1(T, z)∗S̃n1(T, z)ẽj , ẽi〉
(6.17)

locally uniformly as n2 → ∞, where ej , ei ∈ Pn1H and ẽj , ẽi ∈ P̃n1H. Note that for k ≥ m we have
〈Sn1,n2(T, z)∗Sn1,n2(T, z)ej , ei〉 = 〈Pn2(T − z)ej , Pn2(T − z)ei〉, yielding the first part of (6.17), and
similar reasoning yields the second part.

Step II: We will show that
lim

n1→∞
Γn1({xij}) = σε(T1). (6.18)

To do that we will first demonstrate the following;

γ1(z) = lim
n1→∞

Φn1(T, z), γ2(z) = lim
n1→∞

Φ̃n1(T, z)

exist, the convergence is monotonically from above and locally uniform and

σε(T1) = {z ∈ C : min[γ1(z), γ2(z)] < ε}. (6.19)

Now, note that

Φn1(T, z) = min
ξ∈Pn1H

‖(T1 − z)ξ‖, Φ̃n1(T, z) = min
ξ∈ ePn1H

‖(T1 − z)∗ξ‖.

So, by the assumption that span{ej}j∈N is a core for T1 and span{ẽj}j∈N is a core for T2, it follows that the
limits exist and that

γ1(z) = inf{λ : λ ∈ σ(|(T1 − z)|}, γ2(z) = inf{λ : λ ∈ σ(|(T1 − z)∗|)}.

By Dini’s theorem it follows that the convergence is as asserted. Using this fact and by arguing as in the
proof of Theorem 5.3 we get (6.19). The previous reasoning implies that

min[Φn1(T, z), Φ̃n1(T, z)] −→ min[γ1(z), γ2(z)]

monotonically from above and locally uniformly as n1 → ∞. So, by Proposition 4.4 and (6.19), it follows
that, for a compact ball K such that σε(T1) ∩Ko 6= ∅, we have

cl({z ∈ C : min[Φn1(T, z), Φ̃n1(T, z)] < ε}) ∩K −→ σε(T1) ∩K,

as n1 →∞. But by (6.13),(6.16) and (6.15) it follows that

Γn1({xij}) = cl({z ∈ C : min[Φn1(T, z), Φ̃n1(T, z)] < ε}),

and hence (6.18) follows.
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Proof. (Proof of Theorem 3.6) As in the proof of Theorem 3.5 it suffices to demonstrate that SCind(Ξ1) =
1. Now, obviously we have SCind(Ξ) > 0, so it suffices to show that SCind(Ξ) ≤ 1. We follow the proof of
Theorem 3.5 closely. Let Pn be the projection onto span{e1, . . . , en} and xij = 〈Tej , ei〉 for T ∈ ∆. For
k ∈ N define T k inductively by T kξ = T (T k−1ξ) on

D(T k) = {ξ : ξ ∈ D(T k−1), T k−1ξ ∈ D(T )},

and defineD((T ∗)k) similarly. Then it is easy to see that
⋃
m PmH ⊂ D(T k), so T k is densely defined. The

fact that T k is closed is well known [29](p. 603), and it follows (by a straightforward argument using the
assumptions (ii) and (iii)) that

⋃
m PmH is a core for T k. Similarly, we get that (T ∗)k is closed and densely

defined and that
⋃
m PmH ⊂ D((T ∗)k) is a core for (T ∗)k. Using this, it is easy to see that we can, for

integers m, k, define Tε,m,k(z) = Tm,k(z)− ε2n+1
I and T̃ε,m,k(z) = T̃m,k(z)− ε2n+1

I, where Tm,k(z) and
T̃m,k(z) are defined in (6.2). Let, for k ∈ N, Θk be defined as in (6.3) and

Ψk = {z ∈ C : @L ∈ LTpos(PkH), Tε,k,2nd+k(z) = LL∗}

∪ {z ∈ C : @L ∈ LTpos(PkH), T̃ε,k,2nd+k(z) = LL∗},
(6.20)

where LTpos(PmH) denotes the set of lower triangular matrices in PmH (with respect to {ej}) with strictly
positive diagonal elements. Now, define Γk by

Γk({xij}) = Ψk ∩Θk.

By the same reasoning as in the proof of Theorem 3.5, it follows that Γn1,n2 depends only on finitely
many of the xijs and requires only finitely many arithmetic operations and radicals of {xij} for its evaluation.
Now, to show that

Ξ(T ) = lim
k→∞

Γk({xij}),

we need to show that for any compact ball K such that σn,ε(T ) ∩Ko 6= ∅ then

dH(σn,ε(T ) ∩K,Γk({xij}) ∩K) −→ 0, k →∞.

But, since obviously dH(Θk ∩K,K)→ 0 as k →∞ it suffices to show that

dH(Ψk ∩K,σn,ε(T ) ∩K) −→ 0. (6.21)

To prove that, note that by the reasoning in the beginning of the proof we may define Φn,m : ∆×C→ R by

Φn,m(S, z) = min
{
λ1/2n+1

: λ ∈ σ
(
Pm((S − z)∗)2n(S − z)2n

⌈
PmH

)}
.

Let

γn,k = min[Φn,k(T, ·),Φn,k(T ∗, ·)]
γn,k,m = min[Φn,k(PmTPm, ·),Φn,k(PmT ∗Pm, ·)].

Before we can continue with the proof of (6.21) we need the following fact.
Claim: We claim that Ψk = {z ∈ C : γn,k(z) ≤ ε}. To deduce the claim it suffices to show that

γn,k(z) = γn,k,2nd+k(z), z ∈ C, (6.22)

and why becomes clear after we make the observation that we have

Ψk = {z ∈ C : (−∞, 0] ∩ σ(Tε,k,2nd+k(z)) 6= ∅}

∪ {z ∈ C : (−∞, 0] ∩ σ(T̃ε,k,2nd+k(z)) 6= ∅}
= {z ∈ C : γn,k,2nd+k(z) ≤ ε}.

Now (6.22) will follow if we can prove that

〈((T − z)∗)2n(T − z)2nξ, η〉
= 〈(P2nd+k(T − z)P2nd+k)∗)2n(P2nd+k(T − z)P2nd+k)2nξ, η〉.

〈(T − z)2n((T − z)∗)2nξ, η〉
= 〈(P2nd+k(T − z)P2nd+k)2n(P2nd+k(T − z)P2nd+k)∗)2nξ, η〉,
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for ξ, η ∈ PkH. To show the latter it is easy to see that it suffices to show that

(P2nd+kTP2nd+k)lξ = T lξ, ξ ∈ PkH, l ≤ 2n,

(P2nd+kT
∗P2nd+k)lξ = T lξ, ξ ∈ PkH, l ≤ 2n.

(6.23)

To show the first part of (6.23), let µ ∈ N such that µ > d, and note that, by assumption, we can write
T dS

m PmH as (with a slight abuse of notation)

T = PµTPµ + P⊥µ TP
⊥
µ +

d−1∑
j=−d

ζj ⊗ eµ−j ,

where ζj ∈ (Pµ+d − Pµ−d)H. Now this gives us that, for l ∈ N,

T l = (PµTPµ)l + terms of the form

(P⊥µ TP
⊥
µ +

d−1∑
j=−d

ζj ⊗ eµ−j)p1 × (PµTPµ)q1

× (P⊥µ TP
⊥
µ +

d−1∑
j=−d

ζj ⊗ eµ−j)p2 × (PµTPµ)q2 × · · ·

× (P⊥µ TP
⊥
µ +

d−1∑
j=−d

ζj ⊗ eµ−j)pt × (PµTPµ)qt ,

where qi ≤ l− 1 and pi ≤ l. Note that since T ∈ ∆ (using assumption (ii)) it is straightforward to show that

〈(PµTPµ)qer, ej〉 = 0, r ≤ k, j > qd+ k,

for any integer q. Hence,

(P⊥2nd+kTP
⊥
2nd+k +

d−1∑
j=−d

ζj ⊗ e2nd+k−j)p × (P2nd+kTP2nd+k)qer = 0, (6.24)

for r ≤ k, q ≤ 2n − 1 and p ≤ 2n yielding the first part of (6.23). The second part of (6.23) follows by
similar reasoning.

Armed with the claim we have reduced the problem to showing that if K is a compact ball such that Ko

intersects σn,ε(T ), then
lim
k→∞

{z ∈ C : γn,k(z) ≤ ε} ∩K = σn,ε(T ) ∩K. (6.25)

Now, the fact that T ∈ ∆ and the reasoning in the beginning of the proof allows us to define

γn(z) = min
[

inf
{
λ2n+1

: λ ∈ σ
(
|(T − z)2n |

)}
,

inf
{
λ2n+1

: λ ∈ σ
(
|((T − z)∗)2n |

)}]
.

Note that, by arguing similarly as in the proof of (ii) and (iii) in Theorem 4.4, we deduce that σn,ε(T ) =
{z ∈ C : γn(z) < ε}. By arguing as in Proposition 6.1, using the fact that

⋃
m PmH is a core for T k and

(T ∗)k we deduce that γn,k → γn locally uniformly and monotonically from above. By arguing as in the
proof of Theorem 3.8 we deduce that

cl({z ∈ C : γn,k(z) < ε}) = {z ∈ C : γn,k(z) ≤ ε}.

Thus, using Proposition 4.1 we conclude that (6.25) is true, and we are done.
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7 Other Types of Pseudospectra
The disadvantage of the n-pseudospectrum is that even though one can estimate the spectrum by taking n
very large, n may have to be too large for practical purposes. Thus, since we only have the estimate for
T ∈ C(H), ε > 0 that σ(T ) ⊂ σn,ε(T ), it is important to get a “lower” bound on σ(T ) i.e. we want to find a
set Ω ⊂ C such that Ω ⊂ σ(T ). A candidate for this is described in the following.

Definition 7.1. Let T ∈ B(H) and Φ0 be defined as in Definition 4.3. Let ζ1(z) = Φ0(T, z) ζ2(z) =
Φ0(T ∗, z̄). Now let ε > 0 and define the ε-residual pseudospectrum to be the set

σres,ε(T ) = {z : ζ1(z) > ε, ζ2(z) = 0}

and the adjoint ε-residual pseudospectrum to be the set

σres∗,ε(T ) = {z : ζ1(z) = 0, ζ2(z) > ε}.

Theorem 7.2. Let T ∈ B(H) and let {Tk} ⊂ B(H) such that Tk → T in norm, as k →∞. Then for ε > 0
we have the following,

(i) σ(T ) ⊃
⋃
ε>0 σres,ε(T ) ∪ σres∗,ε(T )

(ii) cl({z ∈ C : ζ1(z) < ε}) = {z ∈ C : ζ1(z) ≤ ε}

(iii) cl({z ∈ C : ζ2(z) < ε}) = {z ∈ C : ζ2(z) ≤ ε}

(iv) For any compact ball K ⊂ C such that cl(σres,ε(T )) ∩Ko 6= ∅ it follows that

dH(cl(σres,ε(Tk)) ∩K, cl(σres,ε(T )) ∩K) −→ 0, k →∞.

(v) For any compact ball K ⊂ C such that σres∗,ε(T ) ∩Ko 6= ∅ it follows that

dH(cl(σres∗,ε(Tk)) ∩K, cl(σres∗,ε(T ) ∩K)) −→ 0, k →∞.

Proof. Note that (i) follows by arguing as in the proof of Theorem 4.4, so we will not be repeating that
reasoning here. Now, we will show (ii), namely, that

{z ∈ C : ζ1(z) ≤ ε} = cl({z ∈ C : ζ1(z) < ε}). (7.1)

We argue by contradiction. Suppose that there is a z0 ∈ C \ cl({z ∈ C : ζ1(z) < ε}) such that ζ1(z0) = ε.
Then, there is a neighborhood ω around z0 such that ζ1(z) ≥ ε for z ∈ ω. We claim that this is impossible.
Indeed, let ϕ be defined on ω by ϕ(z) = 1/ζ1(z). Now

ϕ(z) = 1/ inf
‖ξ‖=1,ξ∈H

‖(T − z)ξ‖,

so T − z is bounded from below by ε for z ∈ ω. LetH1 = ran(T − z0) and let H̃ be an infinite dimensional
Hilbert space. Choose an isomorphism V : H̃ → H⊥1 ⊕ H̃, and define the following operator

T̃c = (T − z0)⊕ cV : H⊕ H̃ → H1 ⊕H⊥1 ⊕ H̃, c ∈ R.

Note that T̃c is invertible and for sufficiently large c we have

ϕ(z0) =
(

inf
‖ξ‖=1,ξ∈H

‖T̃ ξ‖
)−1

.

Moreover, for z sufficiently close to z0 it follows that

ϕ(z) =
(

inf
‖ξ‖=1,ξ∈H

‖T̃c − (z0 − z)ξ‖
)−1

.

Let G(z) be the inverse of T̃c − (z0 − z) for z in a neighborhood ω̃ around z0. Then ϕ(z) = ‖G(z)‖. Now
ϕ(z0) = 1/ε and ϕ(z) ≤ 1/ε for z ∈ ω̃. But, clearly, G′(z) is invertible for all z ∈ ω̃ so by Theorem 4.2 it
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follows that ‖G(z)‖ < 1/ε for z ∈ ω̃, contradicting ϕ(z0) = 1/ε and we have shown (7.1). To show (iii)
one argues almost exactly as in the proof of (ii).

We will now prove (iv). Firstly, to see the fact that dH(σres,ε(Tk) ∩K,σres,ε(T ) ∩K)→ 0, as k →∞,
define Φ0 as in Definition 4.3 and let ζ1,k(z) = Φ0(Tk, z). Note that ζ1,k → ζ1 locally uniformly as k →∞,
by reasoning as in (4.5). Secondly, note that, for δ ∈ (0, ε), we have

cl({z ∈ C : ζ1(z) > ε, ζ2(z) ≤ δ}) = cl({z ∈ C : ζ1(z) > ε, ζ2(z) = 0}).

So if we define ζ2,k(z) = Φ0(T ∗k , z̄), it suffices to show that

dH(cl({z ∈ C : ζ1,k(z) > ε}) ∩K, cl({z ∈ C : ζ1(z) > ε}) ∩K) −→ 0, k →∞ (7.2)

and, by (ii), that dH({z ∈ C : ζ2,k(z) ≤ δ} ∩ K, {z ∈ C : ζ2(z) ≤ δ} ∩ K) → 0 as k → ∞. The latter
follows from arguing similarly to the proof of Theorem 3.5, and hence we will concentrate on the former.
Now, it is easy to see, by the definition of the Hausdorff metric and (ii), that (7.2) follows if we can show that

dH({z ∈ C : ζ1,k(z) ≤ ε}, {z ∈ C : ζ1(z) ≤ ε}) −→ 0, k →∞,

but the latter follows by the locally uniform convergence of {ζ1,k} and Proposition 4.1. Also, (v) follows by
similar reasoning, and we are done.

Theorem 7.3. Let {ej}j∈N be a basis for H and define Ξ1,Ξ2 : B(H) → Ω, for ε > 0, by Ξ1(T ) =
cl(σres,ε(T )) and Ξ2(T ) = cl(σres∗,ε(T )). Then SCind(Ξ1) ≤ 2 and SCind(Ξ2) ≤ 2.

Proof. To show that SCind(Ξ1) ≤ 2 let Θk be defined as in (6.3) and define the estimating functions Γn1,n2

and Γn1 in the following way. Define Pn to be the projection onto span{e1, . . . , en}, choose δ ∈ (0, ε) and
define

Γn1,n2({xij}) = {z ∈ Θn2 : ∃L ∈ LTpos(Pn1H), Tε,n1,n2(z) = LL∗}

∩ {z ∈ Θn2 : @L ∈ LTpos(Pn1H), T̃δ,n1,n2(z) = LL∗},
Γn1({xij}) = cl({z ∈ C : (−∞, 0] ∩ σ(Tε,n1(z)) = ∅})

∩ {z ∈ C : (−∞, 0] ∩ σ(T̃δ,n1(z)) 6= ∅},

where Tε,n1,n2 , T̃δ,n1,n2 , Tε,n1 and T̃δ,n1 as defined as in (6.5). As the rest of the proof is just epsilon
away from the proof of Theorem 3.5 we will just sketch the ideas. By letting ζ1,n1(z) = Φ0,n1(T, z),
ζ2,n1(z) = Φ0,n1(T ∗, z̄) and

ζ1,n1,n2(z) = Φ0,n1(Pn2TPn2 , z), ζ2,n1,n2(z) = Φ0,n1(Pn2T
∗Pn2 , z̄),

where Φ0 is defined as in Definition 4.3, one observes that

{z ∈ Θn2 : ζ1,n1,n2(z) > ε, ζ2,n1,n2(z) ≤ δ}
= {z ∈ C : ∃L ∈ LTpos(Pn1H), Tε,n1,n2(z) = LL∗}

∩ {z ∈ C : @L ∈ LTpos(Pn1H), T̃δ,n1,n2(z) = LL∗},
(7.3)

and
Γn1({xij}) = cl({z : ζ1,n1(z) > ε, ζ2,n1(z) ≤ δ}).

Now, let ζ1 and ζ2 be defined as in Definition 7.1. By using (ii) in Theorem 7.2 and reasoning as in the proof
of Theorem 3.5 (StepI and StepII) using arguments similar to the last part of the proof of Theorem 7.2 one
deduces that, for compact ball K ⊂ C with Ko intersecting the appropriate sets,

cl({z ∈ C : ζ1,n1(z) > ε}) ∩K −→ cl({z ∈ C : ζ1(z) > ε}) ∩K
{z ∈ C : ζ2,n1(z) ≤ δ} ∩K −→ {z ∈ C : ζ2(z) ≤ δ} ∩K, n1 →∞,

{z ∈ Θn2 : ζ1,n1,n2(z) > ε} ∩K −→ cl({z ∈ C : ζ1,n1(z) > ε}) ∩K
{z ∈ Θn2 : ζ2,n1,n2(z) ≤ δ} ∩K −→ {z ∈ C : ζ2,n1(z) ≤ δ} ∩K, n2 →∞,
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hence

cl({z ∈ C : ζ1,n1(z) > ε, ζ2,n1(z) ≤ δ}) ∩K −→ cl({z : ζ1(z) > ε, ζ2(z) ≤ δ}) ∩K

as n1 →∞, and

{z ∈ Θn2 : ζ1,n1,n2(z) > ε, ζ2,n1,n2(z) ≤ δ} ∩K
−→ cl({z ∈ C : ζ1,n1(z) > ε, ζ2,n1,n2(z) ≤ δ}) ∩K

as n2 →∞. But

cl({z : ζ1(z) > ε, ζ2(z) ≤ δ}) = cl({z : ζ1(z) > ε, ζ2(z) = 0}) = cl(σres,ε(T )),

and hence we have shown that SCind(Ξ1) ≤ 2. The fact that SCind(Ξ2) ≤ 2 follows by similar reasoning.

8 Applications to Schrödinger and Dirac Operators
Non-Hermitian quantum mechanics has been an increasingly popular field in the last decades [35, 36, 8, 50].
As the importance of non-Hermitian operators in physics has been established, the spectral theory of such
operators has been given a substantial amount of attention [21, 23, 24, 16] (Note also that non-Hermitian
spectral problems in quantum mechanics occur in the theory of Resonances [52, 40] ). Since the spectral
theory of non-Hermitian operators is very different from the self-adjoint case, very little is known in general,
and the same is true for the theory of approximating spectra. In fact it is an open problem how to approximate
the spectrum and the pseudospectrum of an arbitrary Schrödinger operator. In this section we will show how
to use the theory from the previous sections to get some insight on how to estimate spectra and pseudospectra
of non-hermitian Schrödinger and Dirac operators with bounded potential. Let

Pj = −i ∂
dxj

Qj = multiplication byxj

with their appropriate domains inH = L2(Rd) . Let v ∈ L∞(Rd) be a complex valued, continuous function,
and define the Schrödinger operator

H =
1
2

∑
1≤j≤d

P 2
j + v(Q1, . . . , Qd), D(H) = W2,2(Rd),

where W2,2(Rd) is the Sobolev space of functions whose second derivative (in the distributional sense) is
square integrable.

Similarly we can define the Dirac operator. LetH =
⊕4

k=1 L
2(R3) and define (formally) P̃j onH by

P̃j =
4⊕
k=1

Pj , Pj = −i ∂
∂xj

, j = 1, 2, 3,

where Pj is formally defined on L2(R3). Let

H0 =
3∑
j=1

αjP̃j + β,

where αj and β are 4-by-4 matrices satisfying the commutation relation

αjαk + αkαj = 2δjkI, j, k = 1, 2, 3, 4, α4 = β. (8.1)

Then it is well known that H0 is self-adjoint on
⊕4

k=1W2,1(R3) where

W2,1(R3) = {f ∈ L2(R3) : Ff ∈ L2
1(R3)}
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and L2
1(R3) = {f ∈ L2(R3) : (1 + | · |2)1/2f ∈ L2(R3)}. Let v ∈ L∞(Rd) and define the Dirac operator

HD = H0 +
4⊕
k=1

v(Q1, Q2, Q3), D(H) =
4⊕
k=1

W2,1(R3).

Note that H is closed since v is bounded. It is easy to see that

H∗ =
1
2

∑
1≤j≤d

P 2
j + v̄(Q1, . . . , Qd), D(H∗) = W2,2(Rd)

and

H∗D = H0 +
4⊕
k=1

v̄(Q1, Q2, Q3), D(H∗D) =
4⊕
k=1

W2,1(R3).

Thus, in order to estimate the pseudospectra of H and HD, we may follow the ideas in the proof of
Theorem 3.8. We will give a description of this for H and note that the procedure is exactly the same for
HD. Choose a basis {ϕj}j∈N for W2,2(Rd) that is orthonormal in L2(Rd), and let Pn be the projection onto
span{ϕj}nj=1. Now let {xij} be defined by xij = 〈Hϕj , ϕi〉 and note that if we let x̃ij = 〈H∗ϕj , ϕi〉 then
x̃ij = x̄ji. This allows us to define the set of estimating functions in the following way. Let ε > 0 and define

Γn1,n2({xij}) = {z ∈ Θn2 : @L ∈ LTpos(Pn1H), Tε,n1,n2(z) = LL∗}

∪ {z ∈ Θn2 : @L ∈ LTpos(Pn1H), T̃ε,n1,n2(z) = LL∗}

and

Γn1({xij})

= {z ∈ C : (−∞, 0] ∩ σ(Tε,n1(z)) 6= ∅} ∪ {z ∈ C : (−∞, 0] ∩ σ(T̃ε,n1(z)) 6= ∅},

where where Θn2 is defined as in (6.3) and

Tε,n1,n2(z) = Sn1(Pn2HPn2 , z)
∗Sn1(Pn2HPn2 , z)− ε2I,

T̃ε,n1,n2(z) = Sn1(Pn2H
∗Pn2 , z)

∗Sn1(Pn2H
∗Pn2 , z)− ε2I

and Tε,n1(z) = Sn1(H, z)∗Sn1(H, z)−ε2I, T̃ε,n1(z) = S̃n1(H∗, z)∗S̃n1(H∗z)−ε2I,where Sm : ∆×C→
B(PmH,H) is defined by Sm(T, z) = (T−z)Pm and ∆ denotes the set of closed operators havingW2,2(Rd)
as their domain. Arguing as in the proof of Theorem 3.8 one deduces that

σε(H) = lim
n1→∞

Γn1({xij}), Γn1({xij}) = lim
n2→∞

Γn1,n2({xij}).

Hence we get the following corollaries to Theorem 3.8.

Corollary 8.1. Let {ϕj}j∈N be a (not necessarily orthonormal) basis for W2,2(Rd) that is orthonormal in
L2(Rd) and let ∆ denote the set of Schrödinger operators on L2(Rd) with potential function in L∞(Rd).
Let ε > 0, Ξ1 : ∆ → Ω and Ξ2 : ∆ → Ω be defined by Ξ1(H) = σε(H) and Ξ2(H) = σ(H). Then
SCind(Ξ1) ≤ 2 and SCind(Ξ2) ≤ 3.

Corollary 8.2. Let {ϕj}j∈N be a (not necessarily orthonormal) basis for the space
⊕4

k=1W2,1(R3) that is
orthonormal in

⊕4
k=1 L

2(R3), and let ∆ denote the set of Dirac operators on the Hilbert space
⊕4

k=1 L
2(R3)

with bounded potential function. Let ε > 0, Ξ1 : ∆→ Ω and Ξ2 : ∆→ Ω be defined by Ξ1(HD) = σε(HD)
and Ξ2(T ) = σ(HD). Then SCind(Ξ1) ≤ 2 and SCind(Ξ2) ≤ 3.

Remark 8.1 As the proof of Theorem 3.8, and hence also the proofs of Corollaries 8.1 and 8.2, are con-
structive, we have a constructive way of recovering spectra and pseudospectra of a large class of important
operators in mathematical physics and hence the previous results may have impact in applications.
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9 Convergence of Densities

9.1 Arveson’s Szegö-type Theorem
Let A ⊂ B(H) be a C∗-algebra with a unique tracial state. Then a self-adjoint operator A ∈ A determines a
natural probability measure µA on R by∫

R
f(x) dµA(x) = τ(f(A)), f ∈ C0(R).

Also, if τ is faithful then supp(µA) = σ(A) and one refers to µA as the spectral distribution (we will follow
the setup in [3] and assume thatA is unital). Now, suppose that {Pn} is an increasing sequence of finite rank
projections converging strongly to the identity. As we have seen above we can approximate the spectrum of
A by using the techniques demonstrated in Section 6. We now turn the attention to the task of approximating
µA. Define the tracial state

τn(B) =
1
dn

trace(PnB), dn = dim(PnH).

Now τn restricts to the normalised trace on PnB(H)Pn and similar to τ induces a measure µPnAdPnH on R
such that ∫

R
f(x) dµPnAdPnH(x) = τn(f(PnAdPnH)), f ∈ C0(R). (9.1)

The question is then: what is the relationship between µPnAdPnH and µA. In particular under which assump-
tions (if any) can one guarantee that

µPnAdPnH
weak∗−→ µA, n→∞.

This has been investigated in [3, 6, 5, 33]. The crucial ingredient in Arveson’s framework is the definition of
the degree of an operator with respect to a certain filtration F = {H1,H2, . . .}.

Definition 9.1. (i) A filtration of H is a sequence F = {H1,H2, . . .} of finite dimensional subspaces of
H such thatHn ⊂ Hn+1 and

∞⋃
n=1

Hn = H.

(ii) Let F = {Hn} be a filtration of H and let Pn be the projection onto Hn. The degree of an operator
A ∈ B(H) is defined by

deg(A) = sup
n≥1

rank(PnA−APn).

Definition 9.2. Let A ⊂ B(H) be a C∗-algebra. An A-filtration is a filtration of H such that the ∗-
subalgebra of all finite degree operators in A is norm dense in A.

Proposition 9.3 (Arveson [3]). Let A ⊂ B(H) be a C∗-algebra with a unique tracial state τ and suppose
that {Hn} is an A-filtration. Let τn be the state of A defined by

τn(A) =
1
dn

trace(PnA), dn = dim(Hn).

Then
τn(A)→ τ(A), for all A ∈ A.

Proposition 9.4 (Arveson [3]). Let F = {H1,H2, . . .} be a filtration of H, let Pn be the projection onto
Hn and let A1, A2, . . . , Ap be a finite set of operators in B(H). Then for every n = 1, 2, . . . we have

trace|PnA1A2 . . . ApPn − PnA1PnA2Pn . . . PnApPn| ≤ ‖A1‖ . . . ‖Ap‖
p∑
k=1

degAk.
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Theorem 9.5 (Arveson [3]). Let A ⊂ B(H) be a C∗-algebra with a unique tracial state τ , and let F =
{Hn} be an A-filtration. For a self-adjoint operator A ∈ A denote the spectral distribution by µA and let
µPnAdPnH be defined as in (9.1). Then

µPnAdPnH
weak∗−→ µA, n→∞.

Our next goal is to prove an analogue of Theorem 9.5 for non-normal operators. But as there is no
spectral distribution for non-normal operators we first need to introduce the Brown measure.

9.2 The Brown Measure
LetM be a finite von Neumann algebra of operators onH with a faithful, normal tracial state τ. Let T ∈M,
then the Fuglede-Kadison determinant ∆(T ) [30] is defined as

∆(T ) = exp
(∫ ∞

0

log t dµ|T |(t)
)
,

where
µ|T |(ω) = τ(E|T |(ω)), ω ∈ Borel(R),

and E|T | denotes the spectral projection measure corresponding to |T |. Now define

f(z) = log(∆(T − z)), z ∈ C. (9.2)

It can be shown [31] that f is subharmonic and therefore gives rise to a measure (see Section 3 in [37])

dµT =
1

2π
∇2f dm,

where m denotes the Lebesgue measure on R2 and ∇2f is understood to be in the distributional sense i.e.∫
ϕdµT = 1

2π

∫
f∇2ϕdm, for ϕ ∈ C∞c (R2). The measure µT satisfies supp(µT ) ⊂ σ(T ) and is often

referred to as Brown’s spectral distribution measure. Now the inclusion supp(µT ) ⊂ σ(T ) can be proper,
but (by Remark 4.4 in [17]) if λ ∈ σ(T ) is isolated then µT ({λ}) 6= 0. Thus, knowing µT would be a nice
tool for locating isolated eigenvalues of T.

Note that if T ∈ M is normal, then µT = τ ◦ ET , and also, ifM = Mn(C) for some n ∈ N then the
Fuglede-Kadison determinant and the Brown measure is defined for T ∈M and

∆(T ) = |detT | 1n , µT =
1
n

n∑
j=1

δλj ,

where δλj denotes the point measure at λj and λ1, . . . , λn are the eigenvalues of T , repeated according to
multiplicity.

Our approach is to extend Arveson’s ideas regarding approximating the spectral distribution of self-
adjoint operators to Browns spectral distribution. Let F be a filtration with corresponding projections {Pn},
and define the tracial state

τn(B) =
1
dn

trace(PnB), B ∈ B(H), dn = dim(PnH).

In order to approximate f defined in (9.2), it could be tempting to define, for z ∈ C and T ∈ B(H), a
measure by

µ|Pn(T−z)Pn|(ω) = τn(E|Pn(T−z)Pn|(ω)), ω ∈ Borel(R),

but knowing how bad the spectrum of PnTPn may approximate σ(T ) when T is non-self-adjoint we abandon
that idea immediately and instead define the measure µT,z,n by

µT,z,n(ω) = τn(EPn(T−z)∗(T−z)dPnH(ω)), ω ∈ Borel(R). (9.3)

Using this measure we obtain the following results.
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Theorem 9.6. Let M be a finite von Neumann algebra of operators on H with a faithful, normal tracial
state τ. Suppose that A ⊂ M is a C∗-algebra such that the restriction of τ to A is the unique tracial state
on A, and that {Hn} is an A-filtration with corresponding projections {Pn}. Define the tracial state τn by

τn(B) =
1
dn

trace(PnB), B ∈M, dn = dim(PnH).

For z ∈ C and T ∈ A, define the measure µT,z,n as in (9.3). Let

fn(z) =
1
2

∫ ∞
0

log t dµT,z,n(t)

and d νn = 1
2π∇

2fndm, where m is Lebesgue measure on R2. Then νn defines a positive Borel measure
on R2 satisfying νn(C) ≤ 1. Moreover, there exists a positive Borel measure ν on R2 with supp(ν) ⊂ σ(T )
and a subsequence {νnk} such that

νnk
weak∗−→ ν, k →∞.

Theorem 9.7. Suppose the assumptions in Theorem 9.6 are true and that T ∈ A.

(i) Then, if ρ : C→ C defined by

ρ(z) =

{
log(1/‖(T − z)−1‖) z ∈ C \ σ(T )
−∞ z ∈ σ(T )

is locally integrable, the measure ν from Theorem 9.6 is equal to the Brown measure µT , and

νn
weak∗−→ µT , n→∞,

where νn is defined as in Theorem 9.6.

(ii) Suppose that ω ⊂ C is an open set such that ω ∩ σ(T ) = {λ1, . . . λk}, where λj is an isolated
eigenvalue. Suppose also that there is an α > 0 such that

inf
z∈∂D(λj ,r)

1/(‖(T − z)−1‖) ≥ rα

for all sufficiently small r, where D(λj , r) denotes the disk with center λj and radius r. Then

νndω
weak∗−→ µT dω, n→∞.

Proof. (Proof of Theorem 9.6) The proof will be done in several steps.
Step I. We first need to show that νn indeed is a positive Borel measure. To prove that, it suffices, by

Lemma 3.6 and Section 3.5 in [37], to demonstrate that fn is subharmonic. To do that, let ε > 0 and define

gn,ε(z) =
1
2
τn(log(Pn(T − z)∗(T − z)Pn + εI)).

We claim that gn,ε is subharmonic. The method we use here is quite close to the techniques used in [31].
Note that gn,ε is infinitely smooth. Indeed, since

z 7→ Pn(T − z)∗(T − z)Pn + εI

is obviously infinitely smooth and so is log on {z : Rez ≥ ε} so

z 7→ trace (log(Pn(T − z)∗(T − z)Pn + εI)dPnH)

is infinitely smooth, thus gn,ε is infinitely smooth. Thus, we need to show that ∇2gn,ε = 0. This we will do
using brute force computations. Using the standard notation

∂

∂λ
=

1
2

(
∂

∂λ1
− i ∂

∂λ2

)
and

∂

∂λ̄
=

1
2

(
∂

∂λ1
+ i

∂

∂λ2

)
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and letting z = λ1 + iλ2 we have

∇2gn,ε =
(
∂2

∂λ2
1

+
∂2

∂λ2
2

)
gn,ε = 4

∂2

∂λ̄∂λ
gn,ε.

Let ϕ(z) = Pn(T − z)∗(T − z)Pn + εI. By the definition of the derivative, linearity and boundedness of τn
we have that

∂2gn,ε
∂λ̄∂λ

=
1
2
∂2τn(log ◦ϕ)

∂λ̄∂λ
=

1
2
τn

(
∂2 log ◦ϕ
∂λ̄∂λ

)
so it is straightforward to show that

∂2gn,ε
∂λ̄∂λ

=
1
2
τn

(
−ϕ−1 ∂ϕ

∂λ̄
ϕ−1 ∂ϕ

∂λ
+ ϕ−1 ∂2ϕ

∂λ̄∂λ

)
=

1
2
τn

(
ϕ−1/2

(
−∂ϕ
∂λ̄

ϕ−1 ∂ϕ

∂λ
+

∂2ϕ

∂λ̄∂λ

)
ϕ−1/2

)
.

Thus, it suffices to show that −∂ϕ
∂λ̄
ϕ−1 ∂ϕ

∂λ + ∂2ϕ
∂λ̄∂λ

is positive. Now,

∂ϕ

∂λ
= −Pn(T − z)∗Pn,

∂ϕ

∂λ̄
= −Pn(T − z)Pn,

∂2ϕ

∂λ̄∂λ
= Pn.

Thus, we can compute

−∂ϕ
∂λ̄

ϕ−1 ∂ϕ

∂λ
+

∂2ϕ

∂λ̂∂λ

= −Pn(T − z)Pn(Pn(T − z)∗(T − z)Pn + εI)−1Pn(T − z)∗Pn + Pn

= −PnB(B∗B + εI)−1B∗Pn + Pn, B = (T − z)Pn
= −Pn((BB∗ + εI)−1BB∗ + I)Pn
= −Pn(−ε(BB∗ + εI)−1)Pn
= εPn((T − z)Pn(T − z)∗ + εI)−1Pn,

(9.4)

which is clearly positive. Observe also that

fn(z) =
1
2
τn(log(Pn(T − z)∗(T − z)Pn)) =

1
2

∫ ∞
0

log t dµT,z,n(t)

and

gn,ε(z) =
1
2

∫ ∞
0

log(t+ ε) dµT,z,n(t).

In particular gn,ε decreases pointwise to fn as ε→ 0. Thus, fn must be subharmonic or identically−∞. But
fn(z) > −∞ for z /∈ σ(T ), and thus fn must be subharmonic.

Step II. We will now show that νn(C) ≤ 1 for all n. Define

ψR(z) =


logR |z| ≤ 1
log( R|z| ) 1 < |z| < R

0 |z| ≥ R.

Then, since 1
logRψR increases monotonically to 1, it follows by monotone convergence that

νn(C) = lim
R→∞

∫
C

1
logR

ψR dνn.

Now, by Lemma 2.12 in [31] it is true that∫
C

1
logR

ψR dνn =
1

logR

(
1

2π
(
∫ 2π

0

fn(Reiθ) dθ −
∫ 2π

0

fn(eiθ) dθ)
)
.
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Thus, it suffices to show that limR→∞
1

2π logR (
∫ 2π

0
fn(Reiθ) dθ ≤ 1. Now,

1
2
π logR

∫ 2π

0

fn(Reiθ) dθ

=
1

4π logR

∫ 2π

0

τn(log(|Pn(T −Reiθ)∗(T −Reiθ)Pn|)) dθ

≤ 1
2 logR

‖τn‖ log( sup
θ∈[0,2π]

‖|Pn(T −Reiθ)∗(T −Reiθ)Pn|‖)

≤ 1
2 logR

log((‖T‖+R)2) −→ 1, R→∞.

Step III. The existence of ν now follows from the weak* compactness of the unit ball of C0(C)∗ since
we have proved in Step II that {νn} is uniformly bounded as elements in C0(C)∗.

We are left with the task of proving that

supp(ν) ⊂ σ(T ), (9.5)

and this will be done in Step IV and V.
Step IV. We will show that fn(z) → f(z) when z /∈ σ(T ) and f is defined in (9.2). To prove that we

need to demonstrate that

lim
n→∞

1
2

∫ ∞
0

log t dµT,z,n(t) =
∫ ∞

0

log t dµ|(T−z)|(t), z /∈ σ(T ). (9.6)

Before we can prove (9.6) we need the following observation. Note that since z /∈ σ(T ) then there is an
ε > 0 and M <∞ such that

σ(|T − z|2) ⊂ [ε,M ], σ(Pn(T − z)∗(T − z)dPnH) ⊂ [ε,M ]. (9.7)

Indeed, letting
ε = ( inf

‖ξ‖=1,ξ∈H
〈(T − z)∗(T − z)ξ, ξ〉)1/2

and
εn = ( inf

‖ξ‖=1,ξ∈H
〈(Pn(T − z)∗(T − z)Pnξ, ξ〉)1/2

then σ(|T − z|) ⊂ [ε,∞) and σ(Pn(T − z)∗(T − z)Pn) ⊂ [εn,∞) so

µ|T−z|([0, ε)) = τ(E|T−z|([0, ε))) = 0
µT,z,n([0, ε)) = τn(E|Pn(T−z)∗(T−z)Pn([0, εn))) = 0,

since (E|T−z|([0, ε)) = EPn(T−z)∗(T−z)Pn([0, εn)) = 0. Also,

εn = ( inf
‖ξ‖=1,ξ∈H

〈(Pn(T − z)∗(T − z)Pnξ, ξ〉)1/2

= ( inf
‖ξ‖=1,ξ∈Hn

〈(T − z)∗(T − z)ξ, ξ〉)1/2

≥ ( inf
‖ξ‖=1,ξ∈H

〈(T − z)∗(T − z)ξ, ξ〉)1/2

= ε.

Thus, since
ε = ( inf

‖ξ‖=1,ξ∈H
〈(T − z)∗(T − z)ξ, ξ〉)1/2 = 1/‖(T − z)−1‖ > 0

and T is bounded then (9.7) follows. We can now return to the task of proving (9.6). Now, using (9.7), we
have that

fn(z) =
1
2

∫ ∞
0

log t dµT,z,n(t) = τn(χ[ε,M ] log ◦g(Pn(T − z)∗(T − z)dPnH))

f(z) =
∫ ∞

0

log t dµ|T−z|(t) = τ(χ[ε,M ] log ◦g((T − z)∗(T − z))),
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where g(t) =
√
t, t ∈ [0,∞). Thus, we are left with the task of showing that

lim
n→∞

τn((χ[ε,M ] log ◦g(Pn(T − z)∗(T − z)dPnH)) = τ((χ[ε,M ] log ◦g)((T − z)∗(T − z))).

But, by the uniqueness of τ and Proposition 9.3 we have that

lim
n→∞

τn(B) = τ(B), B ∈ A,

thus our problem is reduced to showing

lim
n→∞

|τn((χ[ε,M ] log ◦ g((T − z)∗(T − z)))

− τn((χ[ε,M ] log ◦g)(Pn(T − z)∗(T − z)Pn))| = 0.
(9.8)

Thus, by the fact that the norm of the linear functionals

f ∈ C[ε,M ] 7→τn(f((T − z)∗(T − z)))
− τn(f((Pn(T − z)∗(T − z)Pn)∗(Pn(T − z)∗(T − z)Pn)))

is bounded by 2, the Stone-Weierstrass Theorem, (9.7) and linearity of τn it is true that (9.8) follows if we
can show that

lim
n→∞

|τn(((T − z)∗(T − z))p)− τn(((Pn(T − z)Pn)∗(Pn(T − z)Pn))p)| = 0

for p = 1, 2, . . . . Also, since the sequence of p-linear forms

Bn(T1, T2, . . . , T2p) = τn(T1T2 · · ·T2n)− τn(PnT1PnT2Pn · · ·PnT2n), Tj ∈ A

is uniformly bounded (by 2) we may assume that T and T ∗ have finite degree. By Proposition 9.4 we have
that

|τn(((T − z)∗(T − z))p)− τn(((Pn(T − z)Pn)∗(Pn(T − z)Pn))p)|

≤ ‖T − z‖p‖(T − z)∗‖p 1
dn
p(deg(T ) + deg(T ∗)) −→ 0, n→∞,

where dn = dim(Hn), and thus we have shown Step IV.
Step V. We claim that∫

R2
fn∇2ϕdm −→

∫
R2
f∇2ϕdm, n→∞, ϕ ∈ C∞c , (9.9)

when supp(ϕ) ⊂ C \ σ(T ). Let δ > 0 and

Ωδ = {z ∈ C : dist(z, σ(T )) ≤ δ}.

We claim that there is a constant C > −∞ such that

inf{fn(z) : z ∈ C \ Ωδ} ≥ C. (9.10)

Indeed, this is the case. Firstly, observe that for z /∈ σ(T ) it follows that

fn(z) ≥ 1
2

∫ 1

0

log t dµT,z,n(t),

thus (9.10) will follow if we can show that there is an ε > 0 such that

supp(µT,z,n) ⊂ [ε,∞) for all z ∈ C \ Ωδ.

Secondly, note that
inf{1/‖(T − z)−1‖ : z ∈ C \ Ωδ} > 0.
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So let

ε = inf
z∈C\Ωδ

( inf
‖ξ‖=1,ξ∈H

〈(T − z)∗(T − z)ξ, ξ〉)1/2 = inf{1/‖(T − z)−1‖ : z ∈ C \ Ωδ}.

Then, as argued in Step IV, we have that

µT,z,n([0, ε)) = τn(EPn(T−z)∗(T−z)Pn([0, εn))) = 0,

since σ(|Pn(T − z)∗(T − z)Pn|) ⊂ [εn,∞), where

εn = inf
z∈C\Ωδ

( inf
‖ξ‖=1,ξ∈H

〈(Pn(T − z)∗(T − z)Pn)ξ, ξ〉)1/2 ≥ ε

Pick δ > 0 so small that supp(ϕ) ⊂ C \ Ωδ. Let

g(z) =

{
inf{fn(z) : z ∈ C \ Ωδ} z ∈ C \ Ωδ
0 z ∈ Ωδ.

Then, by the reasoning above, g is integrable and dominates {fn} from below. Hence, (9.9) follows by Step
IV and dominated convergence.

Note that (9.5) follows from Step V and the fact that supp(µT ) ⊂ σ(T ), and thus we have proved the
theorem.

Proof. (Proof of Theorem 9.7) To prove (i) we need to show that∫
R2
fn∇2ϕdm −→

∫
R2
f∇2ϕdm, n→∞, ϕ ∈ C∞c , (9.11)

where f is defined in (9.2). Now, for z /∈ σ(T ) we have

fn(z) ≥ inf
n∈N

τn(log(Pn(T − z)∗(T − z)dPnH))

=
1
dn

dn∑
j

λj(log(Pn(T − z)∗(T − z)dPnH))

=
1
dn

dn∑
j

log(λj(Pn(T − z)∗(T − z)dPnH))

≥ 1
dn

dn∑
j

log( min
j∈{1,...,dn}

{λj(Pn(T − z)∗(T − z)dPnH}))

= log(( inf
‖ξ‖=1,ξ∈H

〈Pn(T − z)∗(T − z)Pnξ, ξ〉)1/2)

≥ log(( inf
‖ξ‖=1,ξ∈H

〈(T − z)∗(T − z)ξ, ξ〉)1/2)

= log(1/‖(T − z)−1‖),

where dn = dim(Hn) and λj(B) denotes the j-th eigenvalue of B ∈ B(Hn) according to some ordering,
where the eigenvalues of B are repeated according to multiplicity (obviously, the ordering is irrelevant in
this context). Hence, fn is dominated from below by ρ and since ρ is integrable, (9.11) follows by Step IV
in the proof of Theorem 9.6 and dominated convergence.

Now (ii) follows by noting that z 7→ log(|z|α) is locally integrable and arguing as in the proof of (i) using
dominated convergence.

10 Examples
In this section we will demonstrate that the abstract framework developed in the previous sections is indeed
applicable in actual computations. For more examples see [34].
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Figure 1: The left figure shows Γk({xij}) with n = 1, ε = 0.005 and k = 1500, where Γk({xij} is defined
in (10.2). The right figure shows σ(T ), where T is the Toeplitz operator with symbol defined in (10.1).

10.1 Toeplitz Operators
Toeplitz operators are excellent test objects in computational spectral theory since their spectral theory is
very well understood. In particular, the spectral theory of banded Toeplitz operators is completely under-
stood [13, 12] and determined by the symbols of the operators. Recall from Theorem 3.6 that the Solvability
Complexity Index for the n-pseudospectra of banded operators is equal to one. Recall also that the construc-
tive proof of Theorem 3.6 gives us a numerical algorithm for computing n-pseudospectra. In particular, if T
is a Toeplitz operator with symbol

f(z) = 2iz−3 + 5z−2 + 2iz − 2iz2 + 2z3, (10.1)

xij = 〈Tej , ei〉, i, j ∈ N and ε > 0 we can, for integers m, k, n, define Tε,m,k(z) = Tm,k(z)− ε2n+1
I and

T̃ε,m,k(z) = T̃m,k(z)− ε2n+1
I, where Tm,k(z) and T̃m,k(z) are defined in (6.2) and z ∈ C . Let, for k ∈ N,

Θk be defined as in (6.3) and

Γk({xij}) = {z ∈ Θk : @L ∈ LTpos(PkH), Tε,k,2nd+k(z) = LL∗}

∪ {z ∈ Θk : @L ∈ LTpos(PkH), T̃ε,k,2nd+k(z) = LL∗},
(10.2)

where LTpos(PmH) denotes the set of lower triangular matrices in B(PmH) (with respect to {ej}) with
strictly positive diagonal elements and d is the bandwith of T (in this case d = 3), then

lim
k→∞

Γk({xij}) = σn,ε(T ).

In Figure 1 we have plotted Γk({xij}) for k = 1500, n = 1 (we have computed an approximation to
the 1-pseudospectrum) and ε = 0.005 together with the spectrum of T . One observes that at least up to the
resolution of the image, the two plots are indistinguishable.

10.2 The Fourier Transform
Another test example is the Fourier transform F on L2(R). The spectrum of F is of course σ(F) =
{1,−1, i,−i}. In this example we have chosen a basis for L2(R) by first considering a basic Gabor basis,
namely, a basis of the form

e2πimxχ[0,1](x− n), m, n ∈ Z,

(where χ is the characteristic function) and then chosen some enumeration of Z × Z into N to obtain a
basis {ϕj} that is just indexed over N. Letting T be the infinite matrix defined by Tij = 〈Fϕj , ϕi〉, we can
apply the techniques from the constructive proof of Theorem 3.4 to find a set of estimating functions for
the spectrum of F . In particular, by letting {xij} denote the matrix elements of T and by recalling (6.4) we
know that for n ∈ Z+ and ε > 0 we get that

σn,ε(F) = lim
n1→∞

lim
n2→∞

Γn1,n2({xij}),
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Figure 2: The left figure shows Γn1,n2({xij}) with n = 1 ,ε = 0.02, n1 = 500 and n2 = 1300 where
Γn1,n2({xij}) is defined in (10.3). The right figure shows the spectrum of the Fourier transform.

where

Γn1,n2({xij}) = {z ∈ Θn2 : @L ∈ LTpos(Pn1H), Tε,n1,n2(z) = LL∗}

∪ {z ∈ Θn2 : @L ∈ LTpos(Pn1H), T̃ε,n1,n2(z) = LL∗},
(10.3)

and
Tε,n1,n2(z) = Tn1,n2(z)− ε2

n+1
I,

T̃ε,n1,n2(z) = T̃n1,n2(z)− ε2
n+1

I,

Θk is defined as in (6.3) and Tn1,n2 , T̃n1,n2 are defined in (6.2). In Figure 2 we have plotted Γn1,n2({xij})
for n = 1, ε = 0.02, n1 = 500 and n2 = 1300 together with the spectrum of F .

10.3 The Operator Φ(Q) for Φ ∈ L∞(R)

When constructing other examples, the functional calculus and the spectral mapping theorem come in
handy. By defining Q on L2(R) (on its appropriate domain) by (Qf)(x) = xf(x) we obviously have
that σ(Φ(Q)) = ess ran(Φ) (the essential range) for Φ ∈ L∞(R). In this example we let

Φ(x) = eixχ[−π/2,π/2](x), x ∈ R,

where χ is the characteristic function. Then the spectrum is obviously

σ(Φ(Q)) = {z ∈ C : Re(z) ≥ 0, |z| = 1} ∪ {0}.

In this example we have chosen a basis forL2(R) by first choosing a basis {ψj,k : j, k ∈ Z}where ψj,k(x) =
2j/2ψ(2jx−k) for j, k ∈ Z and ψ is the Haar wavelet, and then some enumeration of Z×Z into N to obtain
a basis {ϕj} that is just indexed over N. Letting T be the infinite matrix defined by Tij = 〈Φ(Q)ϕj , ϕi〉
and {xij} denote the matrix elements of T we can use Γn1,n2({xij}) from (10.3) exactly as in the previous
example. In Figure 3 we have plotted Γn1,n2({xij}) with ε = 0.06, n = 2 and n2 = 8000, n1 = 1600 as
well as ωε(σ(Φ(Q))) (the ε-neighborhood of the spectrum).

10.4 The Residual Pseudospectrum
In this final example we recall the computational tool (residual pseudospectra from Section 7) for estimating
the spectrum both from “above” and “below”, meaning that for T ∈ B(H) we have

σres,ε(T ) ∪ σres∗,ε(T ) ⊂ σ(T ) ⊂ σn,ε(T ). (10.4)
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Figure 3: The left figure shows Γn1,n2({xij}) with ε = 0.06, n = 2 and n2 = 8000, n1 = 1600. The right
figure shows ωε(σ(Φ(Q))) .
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Figure 4: The figure shows σres,ε(T ) ∪ σres∗,ε(T ) (left) and σε(T ) for ε = 0.01 (right).

Consider the infinite matrix

T =



0 a b c 0 0 . . .
d 0 a b c 0 . . .
f e 0 a b c . . .
g f d 0 a b . . .
0 g f e 0 a . . .
0 0 g f d 0 . . .
...

...
...

...
...

...
. . .


,

where a = 1+2i, b = −1, c = 5+i, d = −2, e = 1+2i, f = −4, g = −1−2i. In Figure 4 we have plotted
σres,ε(T )∪ σres∗,ε(T ) and σε(T ) for ε = 0.01 (the computational techniques used are the ones from Section
7)). In view of (10.4) one observes that this computation gives a rather precise estimate of the spectrum of
T .

11 Concluding Remarks
We have shown that it is possible to construct/compute spectra of arbitrary linear operators from the matrix
elements, and the Solvability Complexity Index has been introduced as a tool for determining how complex
such a construction may be. The first question that arises is then: What is the Solvability Complexity Index
for spectra of different classes of operators? We have so far only presented upper bounds, and this suggests
that the theory is far from complete. Let us for simplicity consider bounded operators. Could it be that the
Solvability Complexity Index for the spectrum, when considering all bounded operators, is actually one?
This cannot be ruled out, although, we strongly believe that this is not the case. However, suppose for a
moment that it is indeed one, what would that mean? That means that there exists an algorithm that could
handle all (bounded) spectral problems and it would require just one limit. If one could give a constructive
proof and actually display such an algorithms, that would be a spectacular result.
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Although desirable, such a spectacular outcome seems a little too good to be true. Note also that a trained
eye will immediately spot that any attempts on reducing the bound on the Solvability Complexity Index by
clever use of subsequences, with the type of estimating functions used in this paper, is doomed to fail.

We would like to emphasize that the definition of the Solvability Complexity Index in this paper is a first
attempt to shed light on the rather intricate general computational spectral problem, and further thoughts
towards a deeper understanding of this and related notions should be the subject of future work.

As a motivation for future work on the Solvability Complexity Index we mention that better bounds than
three may be established for certain subclasses of operators (we have already seen this in Theorem 3.6). We
may consider for example Toeplitz operators with continuous symbols. For this subclass of operators the
Solvability Complexity Index of the spectrum is equal to one. We will sketch the ideas. Let T be a Toeplitz
operator with continuous symbol. Equip the complex plane with a grid of step size 1/n and consider the n-th
partial sum Sna(z) of the symbol a(z) of the operator T . Evaluating Sna(z) at the n-th roots of unity gives
n points in the plane, and one can in finitely many steps find all points on the grid whose winding number
with respect to the piecewise linear curve determined by the n points is nonzero (this requires an argument,
but is fairly straightforward). Denoting this set by Ωn, and then observing that Ωn → σ(T ) yields the result.

Similarly, one can show that the Solvability Complexity Index of the pseudospectra of Toeplitz operators
with continuous symbols is one. This is done by letting Pn be the usual projection onto the span of the first
n basis elements, and then using the fact (from [9]) that σε(PnT dPnH)→ σε(T ). A similar argument holds
for compact operators, however, we omit the details as more careful analysis of these questions will appear
in future papers.
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[12] A. Böttcher and S. M. Grudsky. Spectral properties of banded Toeplitz matrices. Society for Industrial
and Applied Mathematics (SIAM), Philadelphia, PA, 2005.
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