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Abstract

We consider the problem of reconstructions from linear measurements
with binary functions. That is, the samples of the function are given by
inner products with functions taking only the values 0 and 1. We consider
three particular methods for this problem, the parametrised-background
data-weak (PBDW)-method, Generalised sampling and infinite-dimensional
compressed sensing (CS). The first two methods are dependent on knowing
the stable sampling rate when considering samples by Walsh function and
wavelet reconstruction. We establish linearity of the stable sampling rate,
which is sharp, allowing for optimal use of these methods. In addition we
provide recovery guaranties for infinite-dimensional compressed sensing with
Walsh functions and wavelets.

1 Introduction

A classical problem in sampling theory is to reconstruct a function f , that is
typically in L2([0,1]d), from linear measurements in the form of inner products.
One of the most famous problems of this type is to reconstruct f from its Fourier
coefficients, where one can view the Fourier coefficients as values obtained from
inner products of f with the basis of complex exponentials. In a more general
abstract form the problem is as follows.

Problem 1.1. An element f ∈ H, where H is a separable Hilbert space, is to be
reconstructed from measurements with linear functionals (li)i∈N ∶ H → C that can
be represented by elements ζi ∈ H as li(f) = ⟨f, ζi⟩. The key issue is that the li
cannot be chosen freely, but are dictated by the modality of the sampling device.

Classical Fourier sampling problems in applications include Magnetic Reso-
nance Imaging (MRI), radio interferometry etc., which is a natural consequence
of the frequent appearance of the Fourier transform in the sciences. However,
there is another important form of measurements, namely sampling with binary
functions. By sampling with binary functions we mean sampling with inner prod-
ucts of functions {ζi}i∈N ⊂ L2([0,1]d) that only take the values 0 and 1. Just
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as Fourier sampling occurs naturally in many sampling devices, sampling with
binary functions is a phenomenon that occurs as a consequence of a sampling
apparatus being ”on” or ”off”, which occurs in digital signal processing, such as
Σ∆ quantization, or newer forms of compressed measurements in microscopy or
imaging.

There is a standard trick to convert sampling with binary functions to mea-
surements with functions that take the values {−1,1} rather than {0,1}, by multi-
plying every measurement by 2 and subtracting the sample done with the constant
function. Thus, one may assume, if one is willing to accept a potential change in
the statistical noise model, that the measurements are done with {−1,1} valued
functions. One motivation for converting from {0,1} valued sampling to {−1,1}
is that the latter allows for the use of Walsh functions. These functions have very
similar qualities to the complex exponentials in Fourier, and the Walsh transform
is a close cousin of the Fourier transform. Moreover, the classical discrete Fourier
transform obeys a fast implementation. This is also existent for the Walsh case
via the Hadamard transform.

Given the extensive theory of Walsh functions and the benefits listed above we
will from now on assume that the sampling functions {ζi}i∈N ⊂ L2([0,1]d) are the
Walsh functions. A bonus property of the Walsh functions is that when combined
with wavelets ϕj , j ∈ N, spanning L2([0,1]d), in a change of basis matrix

U = {⟨ϕj , ζi⟩}i,j∈N, (1)

one obtains a very structured infinite matrix. This infinite matrix shares many
structural similarities with the change of basis matrix obtained by combining
complex exponentials and wavelets. In particular, both types of infinite matrices
become almost block diagonal, a feature that will be highly useful as we will see
below.

In this paper we will address three methods for Problem 1.1, two linear and
one non-linear method. We choose the two linear ones because of their optimality
with respect to the reconstruction error. The first is optimal in the class of linear
methods that are consistent with the measurement and the second is optimal for
linear algorithms that map into the reconstruction space. The non-linear method
is the algorithm which takes the most structure into account and hence allows
very good reconstruction guarantees. In all cases we assume sampling with Walsh
functions. The methods are as follows.

(i) The parametrised-background data-weak (PBDW)- method (linear)

(ii) Generalised sampling (linear)

(iii) Infinite-dimensional compressed sensing (non-linear)

The PBDW-method originated with the work by Maday, Patera, Penn and
Yano in (51), and was further developed and analysed by by Binev, Cohen,
Dahmen, DeVore, Petrova, and Wojtaszczyk (10, 22, 13). Generalised sampling
has been studied by Adcock, Hansen, Hrycak, Gröchenig, Kutyniok, Ma, Poon,
Shadrin and others (1, 4, 2, 43, 41, 6, 50), and the predecessor; consistent sampling,
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has been analysed by Aldroubi, Eldar, Unser and others (8, 64, 29, 30, 31, 32).
Infinite-dimensional compressed sensing has been developed and studied by Ad-
cock, Hansen, Kutyniok, Lim, Poon and Roman (7, 47, 5, 55).

The successful use of the two first methods when reconstructing in a wavelet
basis is completely dependent on the stable sampling rate which is defined below in
terms of subspace angles between sampling and reconstruction spaces. It dictates
the size of the sampling space as a function of the dimension of the reconstruction
space in order to ensure accurate reconstructions. The main question we want to
answer is:

What is the stable sampling rate when given Walsh samples and a wavelet
reconstruction basis?

The key issue is that the error bounds for these methods depend (sharply) on
the subspace angle, and fortunately we can provide sharp results on the stable
sampling rate. In the case of infinite-dimensional compressed sensing one cannot
directly use the stable sampling rate, however, we provide estimates on the size
of the sampling space as well as recovery guarantees from sub-sampled data.

To define the stable sampling rate we need to introduce some notation. The
goal is to reconstruct f from the finite number of samples {li(f)}Mi=1 for some M ∈
N. The space of the functions ζi is called the sampling space and is denoted by S =
span{ζi ∶ i ∈ N}, meaning the closure of the span. In practice, one can only acquire
a finite number of samples. Therefore, we denote by SM = span{ζi ∶ i = 1, . . . ,M}
the sampling space of the first M elements. The reconstruction is typically done
via a reconstruction space denoted by R and spanned by reconstruction functions
(ϕi)i∈N, i.e. R = span{ϕi ∶ i ∈ N}. As in the case of the sampling space, it is
impossible to acquire and save an infinite number of reconstruction coefficients.
Hence, one has to restrict to a finite reconstruction space, which is denoted by
RN = span{ϕi ∶ i = 1, . . . ,N}.

One of the main questions in reconstruction theory is how many samples are
needed to guarantee a stable and accurate recovery? In the first part of this
paper we want to analyse this question for linear methods. The stable sampling
rate captures the number of samples necessary to obtain a stable and accurate
reconstruction of a certain number of coefficients in the reconstruction space. More
precisely, we are interested in the dimension of the sampling space SM in relation
to the reconstruction space RN . Section 4 talks about the linear reconstruction
method, and there we see that the accuracy and stability of the methods depend
on the subspace angle between RN and SM . In particular,

cos(ω(RN ,SM)) ∶= inf
r∈RN ,∥r∥=1

∥PSM
r∥, (2)

where PSM
is the orthogonal projection onto the sampling space. Mainly, one is

interested in the reciprocal value

σ(RN ,SM) = 1/ cos(ω(RN ,SM)) ∈ [1,∞], (3)

which, as we will see later, plays a key role in all the error estimates of the two
linear algorithms discussed here. Due to the definition of cosine, σ takes values in
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[1,∞]. The stable sampling rate is then given by

Θ(N,θ) = min{M ∈ N ∶ σ(RN ,SM) ≤ θ} . (4)

This function was analysed for different reconstruction methods in the Fourier
case. We know that the stable sampling rate is linear for Fourier-wavelet (6) and
Fourier-shearlet (50) reconstructions. This is the best one can wish for as it allows
to reconstruct nearly as well from Fourier samples as sampling directly in the
wavelet or shearlet system. However, this is not always the case. In the Fourier-
polynomial reconstruction we get that the stable sampling rate is polynomial
which leads to a large number of necessary samples and makes this only feasible
for very sparse signals. For the Walsh case it was shown in (40) that the stable
sampling rate is also linear in the Walsh-wavelet case and it is even possible to
determine the slope for Walsh-Haar wavelets (60).

The analysis for the non-linear reconstruction is a bit more involved and needs
a detailed analysis of the change of basis matrix as well as the reconstruction
space. It is common to use the sparsity of the coefficients in the wavelet space
of natural images. However, it is known that this can be described more detailed
with structured sparsity. This reduces the size of the class and hence allows better
reconstruction guarantees. Similarly we have that the change of basis matrix is
not incoherent but asymptotically incoherent. This leads to a new version of CS
with highly improved reconstruction quality from fewer samples. We will see that
the impact of elements outside the diagonal boxes decays exponentially. This
allows us to use more sub-sampling than previously described by the classical CS
literature. We are here as well mainly interested in the reconstruction from Walsh
samples with wavelets.

This paper is structured as follows. First we discuss in chapter 2 the Walsh
functions which are the building block of the sampling space. Then we revise the
basics about boundary corrected wavelets in chapter 3. With this information at
hand we are able to present the linear reconstruction methods and their analysis in
chapter 4. We then continue with the non-linear method. We analyse the change
of basis matrix and discuss the classical theory, different problem types and sum
up with a detailed comparison between the new theory and the older versions.
This is underlined by some numerical examples.

2 Walsh functions

In this section we introduce Walsh functions, which span the sampling space SM .
First, we want to discuss the use of multi-indices. This is important because we
want to deal with one- and d-dimensional functions. A multi-index j is commonly
defined by j = (j1, . . . , jd) ∈ Nd, d ∈ N. The basic operations such as addition and
multiplication are understood point-wise, i.e. j⋆r = (j1 ⋆ r1, . . . , jd ⋆ rd). This can
also be done with a natural number n which is then interpreted as a multi-index
with the same entry n = (n, . . . , n). Finally, the sum over a vector indexed by a
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multi-index is given by

r

∑
j=k

xj ∶=
r1

∑
j1=k1

. . .
rd

∑
jd=kd

xj1,...,jd , (5)

where k, r ∈ Nd.
The multi-indices can be used to define functions in higher dimensions by the

tensor product of the one-dimensional functions. The tensor product of f ∶ R→ R
is given by

f(x) = f(x1) ⋅ . . . ⋅ f(xd), (6)

where {xi}i=1,...,d = x ∈ Rd with xi ∈ R. Hence, the input parameter defines the
dimensions. This simplifies the transition between the one- and d-dimensional
case.

2.1 Definition

It is important to notice that Walsh functions behave very similarly to the complex
exponential functions when the setting is changed from the decimal to the dyadic
analysis. Dyadic analysis is a framework where functions are analysed for the
situation where decimal addition is replaced by dyadic addition. Therefore, we
start with a short review of the dyadic representation and addition. Let x ∈ R+,
the dyadic representation is given by

x = ∑
i∈Z
xi2

i, (7)

where xi ∈ {0,1} for all i ∈ Z. To make this representation unique we use the one
that ends in 0 instead of 1 if there is a choice. The dyadic addition of two numbers
x, y ∈ R+ is given by

x⊕ y = ∑
i∈Z

(xi ⊕2 yi)2i, (8)

where xi⊕2yi is addition modulo two, i.e. 0⊕2 0 = 0,0⊕2 1 = 1,1⊕2 0 = 1,1⊕2 1 = 0.
This definition can also be extended to all R and works as in the decimal case.
We use the convention to denote negative numbers with a minus sign in front of
the dyadic representation of the absolute value.

With this information at hand, we can now define the Walsh functions, which
span the sampling space SM .

Definition 2.1 ((36)). Let t ∈ N and x ∈ [0,1) with the dyadic representation
(t0, . . .) and (. . . , x−1). Then there exists a unique n = n(t) ∈ N such that t =
∑n−1
i=0 ti2

i, in particular tn ≠ 0 and tk = 0 for all k > n. Let tn = (t0, . . . , tn) and for
x = ∑−1

i=−∞ xi2
i define xn = (x−n, . . . , x−1), and CW : Rn ↦ Rn by

CW =

⎛
⎜⎜⎜⎜⎜
⎝

0 ⋯ 0 1 1
⋮ ⋰ ⋰ 1 0
0 ⋰ ⋰ ⋰ ⋮
1 1 ⋰ ⋮
1 0 ⋯ ⋯ 0

⎞
⎟⎟⎟⎟⎟
⎠

. (9)
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The Walsh functions are then given by

wal(t;x) = (−1)t
n
⋅CW xn

. (10)

This definition is a bit longer to write, however, it gives an interesting insight
of the ordering of the Walsh functions. There are a lot of different orderings of
the Walsh functions available. The first choice for the matrix CW might be the
identity. The functions are then called Walsh-Kronecker functions. The problem
with this ordering is that the functions change completely if the maximal element
n(t) is changed. Therefore, they are seldom used in practice. One attempt to
overcome this problem is the Walsh-Paley ordering which is given by the reversal
matrix:

CWP =

⎛
⎜⎜⎜⎜⎜
⎝

0 ⋯ 0 0 1
⋮ ⋰ ⋰ 1 0
0 ⋰ ⋰ ⋰ 0
0 1 ⋰ ⋰ ⋮
1 0 0 ⋯ 0

⎞
⎟⎟⎟⎟⎟
⎠

. (11)

In this scenario the functions stay the same with changing n(t). Hence they
overcome one drawback of the Walsh-Kronecker ordering. However, they are not
ordered with increasing number of zero crossing. This would be a desirable prop-
erty because, first it makes them similar to exponential functions and second it
relates well to the level ordering of the wavelets. Therefore, we use the presented
definition as it obeys none of the discussed drawbacks.

It is also possible to extend the classical Walsh functions to inputs in R+ ×R+,
i.e.

Wal(t, x) = (−1)t0x0 wal([t] ;x)wal([x] ; t), (12)

where t and x have the dyadic representation (ti)i∈Z and (xi)i∈Z, t0, x0 are the
corresponding elements of the sequence and [⋅] denotes the rounding down oper-
ation. We get the same functions if CW is defined over N instead of {1, . . . , n(t)}.
For negative inputs we take the same definition as in (36)

Wal(−t, x) ∶= −Wal(t, x) (13)

Wal(t,−x) ∶= −Wal(t, x). (14)

With the presentation of the multi-indices and the generalised Walsh functions
it is now easy to define them in higher dimensions with the tensor product by

Wal(t, x) =
d

⊗
k=1

Wal(tk, xk), (15)

where t = (tk)k=1,...,d, x = (xk)k=1,...,d ∈ Rd. These function then span the sampling
space, i.e.

S = span{Wal(t, ⋅), t ∈ Nd} ⊂ L2([0,1]d) (16)

and for M =md for some m ∈ N we have

SM = span{Wal(t, ⋅), ti ≤m, i = 1, . . . , d} ⊂ L2([0,1]d) (17)
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For discrete signals in CN the orthogonal projection onto the sampling space is
often denoted by Ψ, which we shall discuss later on.

Finally, we define a continuous and a discrete transform. For the definition of
the continuous transform we have to ensure that the integral exists. Therefore, let
f ∈ L2([0,1]d) then the generalised Walsh transform is given almost everywhere
by

f
⋀W

(t) = W {f(⋅)} (t) = ⟨f(⋅),Wal(t, ⋅)⟩ = ∫
[0,1]d

f(x)Wal(t, x)dx, t ∈ Rd. (18)

The restrictions to functions which are supported in [0,1]d leads to the use of
boundary corrected wavelets which are presented in §3. For the discrete transform
let N = 2n, n ∈ N and x = (x0, . . . , xN−1) ∈ RN then the one dimensional discrete
Walsh transform of x is given by X = (X0, . . . ,XN−1) with

Xj =
1

N

N−1

∑
k=0

xk Wal (j, k
N

). (19)

As discussed before, the Walsh functions are desirable because of the fast trans-
form. It can be seen here, that this indeed corresponds to the Hadamard transform
and therefore the Walsh functions are its kernel.

In higher dimensions we get for x ∈ RN1×...×Nd where xki ∈ R, k = (ki)i=1,...,d, ki =
0, . . . ,Ni−1 the discrete Walsh transformed X = (Xj) ∈ RN1×...×Nd , where Xji ∈ R,
j = (ji)i=1,...,d, ji = 0, . . . ,Ni − 1, with

Xj =
1

∏d
i=1Ni

N−1

∑
k=0

xk Wal(j, k
N

). (20)

2.2 Properties

In this section we recall the most important and useful properties of the Walsh
functions and transfer them to the continuous transform. The Walsh functions
are symmetric,

Wal(t, x) = Wal(x, t)∀t, x ∈ R, (21)

and they obey the scaling property as well as the multiplicative identity, i.e

Wal(2kt, x) = Wal(t,2kx)∀t, x ∈ R, k ∈ N (22)

and
Wal(t, x)Wal(t, y) = Wal(t, x⊕ y)∀t, x, y ∈ R. (23)

Due to the tensor product definition these properties also hold in the d-dimensional
case. Moreover, we have for the transform, that it is linear:

W {af(x) + bg(x)} = aW {f(x)} + bW {g(x)} ∀a, b ∈ R, f, g ∈ L2([0,1]d), (24)

obeys the following shift and scaling property, i.e.

W {f(x⊕ y)} (t) = W {f(y)} (t)Wal(x, t)∀x ∈ Rd, f ∈ L2([0,1]d) (25)

and

W {f(2mx)} (t) = 1

2m
W {f(x)} ( t

2m
)∀m ∈ Nd, f ∈ L2([0,1]d). (26)
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3 Reconstruction space

The reconstruction space should be chosen appropriately to the given data. For
image and audio signals wavelets have proven to be very useful as they are able to
present the data sparsely. In the following we will deal with Daubechies wavelets.
Normally, they are defined on the whole Rd. However, we need to have that
S⊥M ∩RN = {0} because otherwise there are elements in the reconstruction space
which cannot be captured with the sampling space and makes it impossible to
have a unique solution to the reconstruction problem. Hence, we have to restrict
ourselves to wavelets that are only defined on the cube [0,1]d. For this sake
we use boundary corrected wavelets and in higher dimensions separable bound-
ary corrected wavelets which are constructed by tensor products. We follow the
construction as in (20).

For a smoother outline of boundary wavelets we start with the one-dimensional
case. We denote the mother wavelet with ψ and the corresponding scaling function
with φ, which is equal to the common literature in this area. The corresponding
wavelet and scaling spaces are spanned by the scaled and translated versions

ψr,j(x) ∶= 2r/2ψ(2rx − j) and φr,j(x) ∶= 2r/2φ(2rx − j), (27)

where r, j ∈ Z. With this we obtain the wavelet space Wr ∶= span{ψr,j ∶ j ∈ Z}
at level r and accordingly the scaling space Vr ∶= span{φr,j ∶ j ∈ Z}. As discussed
in the beginning of the chapter and in the previous chapter we have to restrict
ourselves to functions defined on [0,1]d. Therefore, we take boundary corrected
Daubechies wavelets which are introduced in chapter 4 in (20). They have two
major advantages. The first is the maintained smoothness and compactness prop-
erties of the original wavelet. Second, they also keep the multi-resolution analysis.
This is important for the definition of the higher dimensional wavelets. It allows
us to keep the structure also in higher dimensions. We can still represent the
reconstruction space with the scaling space in only one level.

We start with the scaling function at the level J0 such that the functions can
only intersect with one boundary at a time. The scaling space is then given by

V bJ0 = span{φJ0,j ∶ j = 0, . . . ,2J0 − p − 1, φ#
J0,j

∶ j = 2J0 − p, . . . ,2J0 − 1} , (28)

where φ# is the scaling function reflected at 1. The definition for higher levels
r > J0 works accordingly. We denote the boundary wavelets by ψb and ψbj,m(x) =
2j/2ψ(2jx −m) for j ≥ J0. We are only interested in the smoothness properties
of the wavelet, which stay the same to the generating wavelet ψ. Therefore, we
do not get into the details about the construction of the ψb. Interested readers
should seek out for (20) for a detailed explanation. The wavelet space is then
given by

W b
r = span{ψbr,j ∶ j = 0, . . . ,2r} . (29)

For the linear reconstruction methods it suffices to only consider the reconstruction
space as a whole. Therefore, we exploit the multi-resolution analysis and we can
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represent the wavelet spaces up to level R − 1 by the scaling space at level R, i.e.

⋃
r<R

W b
r = V bR. (30)

This allows us for a number of coefficients related to the levels, i.e. N = 2R to
represent the reconstruction space as

RN ∶= V bR. (31)

This has the positive byproduct that we do not have to deal with the internal
ordering.

For the non-linear methods this internal ordering becomes more important.
We then let

RN ∶= V bJ0 ⊕W
b
J0 . . .⊕W

b
R−1. (32)

We now get to the definition in higher dimensions. The scaling space is defined
by the tensor product, i.e.

RN = V b,dR ∶= V bR ⊗ . . .⊗ V bR (d-times) (33)

for N = 2dR. It is important to note that the wavelet space in higher dimen-
sions is not simply the tensor product of the one-dimensional wavelets, but the
combination of wavelets and scaling functions, i.e.

V b,dj = V bj ⊗ . . .⊗ V bj = (V bj−1 ⊕W b
j−1) ⊗ . . .⊗ (V bj−1 ⊕W b

j−1) = V b,dj−1 ⊕W
b,d
j−1. (34)

And hence,

W b,d
j−1 ∶= (V bj−1 ⊕W b

j−1) ⊗ . . .⊗ (V bj−1 ⊕W b
j−1) ⊖ V b,dj−1. (35)

Let φb,dJ0,m = ⊗d
i=1 φ

b
J0,mi

and ψb,dj,m = ⊗d
i=1 ψ

b
j,mi

, where φb can stand for φ or φ#

depending on m. For the reconstruction space this results in

R = {φb,dJ0,m,m = (m1, . . . ,md),mi = 0, . . . ,2J0 − 1 (36)

φb,d−1
j,m ⊗ ψj,m, . . . , φbj,m ⊗ ψb,d−1

j,m , ψb,dj,m, (37)

j ≥ J0,m = (m1, . . . ,md),mi = 0, . . . ,2j − 1} . (38)

Note the abuse of notation in φb,d−rj,m ⊕ ψb,rj,m. Only the parts of the multi-index
m = (m1, . . . ,md) related to the position of the function in the tensor product are
used for the shift of the function. Moreover, we have 2d different possibilities to
combine the scaling function and the wavelets by the tensor product. Hence, there
are 2dj(2d −1) elements at every level j. In case of doubt of the dimension we will
use an upper index d to make the distinction clear, i.e. for udi,j . For the discrete
setting the orthogonal projection onto the reconstruction space is often denoted
by Φ, which will be discussed in more details with the numerical experiments.
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4 Linear Reconstruction Methods

In this section we are concerned with two different linear reconstruction methods
the PBDW-method and generalised sampling. They both have in common that
they are linear and share the same condition number and that the accuracy is
highly dependent on the stable sampling rate which is analysed in the last sub-
section.

4.1 PBDW-method

The PBDW-method as introduced in (51) and analysed in (10, 13, 22) is based
on the following idea. Given the measurements l ∶= PSM

f , where PSM
denotes the

orthogonal projection onto the subspace SM , one tries to find an approximation
that is consistent with the measurements and close to the reconstruction space
RN which is measured with the distance dist(f,RN) = min{∣∣f − ϕ∣∣2 ∶ ϕ ∈ RN}
and bounded by a sequence {εN}N∈N. Mathematically, one tries to approximate
f by f∗ ∈ Kl where we define

K = {f ∈ H ∶ dist(f,RN) ≤ εN} and Hl = {f ∈ H ∶ PSM
f = l} , (39)

and the space of possible approximation is then the intersection Kl ∶= K ∩ Hl.
Obviously, we try to find the closest element f∗ ∈ Kl to the true solution f , hence
we solve the minimization problem

g∗ = argming∈RN
∣∣l − PSM

g∣∣2. (40)

The outcome g∗ is then adjusted to be consistent with the measurements by

f∗ = l + PS⊥
M
g∗. (41)

Then f∗ is the solution to the PBDW-method and was analysed in (13) and shown
to be optimal with respect to the distance to the true function for all functions
that are consistent with the measurements. We have the error estimate

∣∣f − f∗∣∣ ≤ σ(RN ,SM)dist(f,RN). (42)

This error estimate was then improved in (51) to

∣∣f − f∗∣∣ ≤ σ(RN ,SM)dist(f,RN ⊕ (SM ∩R⊥N)). (43)

However, it was shown in (13) that the factor of the subspace angle σ(RN ,SM)
cannot be removed or improved.

This underlines again that it is important to make sure that RN ∩ S⊥M =
{0}. Moreover, it underlines the importance of the stable sampling rate and
estimates of the relation between the number of samples M and the number
of reconstructed coefficients N to get a stable and accurate reconstruction. In
the next section we discuss the concept of generalised sampling and see that the
condition number of the PBDW-method also equals the subspace angle, which
underlines its importance.
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4.2 Generalised Sampling

We now study a different linear reconstruction technique: generalised sampling.
Unlike PBDW, it forces the solution to stay in the reconstruction space. In particu-
lar, for very sparse data in the reconstruction space, it improves the reconstruction
quality.

The method is an extension of the finite section methods (14, 38, 39, 48). In
important cases like Fourier-wavelet or Walsh-wavelet the finite section method is
very unstable. The advantage of generalised sampling is that it allows a different
number of samples than reconstructed coefficients, which makes the method stable
and accurate. The question of how to choose the number of measurements with
respect to the number of coefficients is answered by the stable sampling rate. We
give this method now, and then explain how it can be cast into a least squares
problem.

Definition 4.1 ((1)). For f ∈ H and N,M ∈ N with M ≥ N we define the
reconstruction method of generalised sampling GN,M ∶ H → RN by

⟨PSM
GN,M(f), ϕi⟩ = ⟨PSM

f,ϕi⟩, i = 1, . . . ,N, (44)

where ϕi, i = 1, . . . ,N span RN . We refer to GN,M(f) as the generalised sampling
reconstruction of f .

Equation [Eq. 44] can be rewritten as the following least squares problem: We
search for a solution α[N] ∈ RN of

U [N,M]α[N] = l(f)[M], (45)

where

U [N,M] =
⎛
⎜
⎝

u11 . . . u1N

⋮ ⋱ ⋮
uM1 . . . uMN

⎞
⎟
⎠

(46)

and uij = ⟨ϕj , ζi⟩, l(f)[M] = (l1(f), . . . , lM(f)) ∈ RM . The solution of the method

is then given by GN,M(f) = ∑Ni=1 αiϕi. The change of basis matrix U can be seen
in Figure 1 for Walsh measurements and different wavelets.

Generalised sampling was widely studied and it was shown that [Eq. 44] yields
a solution if the number of samples is large enough.

Theorem 4.2 ((2)). Let N ∈ N. Then, there exists M0 ∈ N such that for every
f ∈ H Equation [Eq. 44] has a unique solution GN,M(f) for all M ≥M0. Moreover,
the smallest M0 is the least number such that cos(ω(RN ,SM0)) > 0.

Additionally, the condition number and optimality was analysed. Here it is
interesting to notice, that the generalised sampling as well as the PBDW-method
are optimal in their setting and that in both cases the performance depends on
the subspace angle between the sampling and reconstruction space σ(RN ,SM).
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(a) Θ(N ; 5) for DB2 with Nmax
Mmax

= 1.249 (b) Reconstruction matrix U for DB2 - Walsh

(c) Θ(N ; 2) for Haar with Nmax
Mmax

= 1 (d) Reconstruction matrix U for Haar-Walsh

Figure 1: Stable sampling rate and change of basis matrix for different wavelets
with Walsh functions.

Theorem 4.3 ((2)). Retaining the definitions and notations from this section,
for all f ∈ H we have

∣∣GN,M(f)∣∣ ≤ σ(RN ,SM)∣∣f ∣∣, (47)

and
∣∣f − PRN

f ∣∣ ≤ ∣∣f −GN,M(f)∣∣ ≤ σ(RN ,SM)∣∣f − PRN
f ∣∣. (48)

In particular, these bounds are sharp.

Remark that the same least square problem is solved for the PBDW-method
and generalised sampling. Therefore, the analysis of the condition number κ(RN ,SM)
of the generalised sampling approach in (4) translates directly to the PBDW-
method. We get

κ(RN ,SM) = σ(RN ,SM). (49)

Hence, the stable sampling rate is important to analyse the accuracy and also the
stability.
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4.3 The stable sampling rate for the Walsh-wavelet case

In this section we recall the results from (40) about the stable sampling rate for
the Walsh-wavelet case.

Theorem 4.4 ((40)). Let S and R be the sampling and reconstruction space
spanned by the d-dimensional Walsh functions and separable boundary wavelets
respectively. Moreover, let N = 2dR with R ∈ N. Then for all θ ∈ (1,∞) there
exists Sθ such that for all M ≥ 2dRSθ we have σ(RN ,SM) ≤ θ. In particular one
gets Θ ≤ SθN . Hence, the relation Θ(N ; θ) = O(N) holds for all θ ∈ (1,∞).

In Figure 1 the stable sampling rate is displayed for different Daubechies
wavelets. One can see that the slope Sθ is smaller for wavelets with a more
block diagonal change of basis matrix. A direct relation between the number of
vanishing moments and the value of Sθ is not known due to the very different
behaviour of Walsh functions and wavelets.

One should note that for the case of Haar wavelets the slope Sθ = 1 for all
θ ∈ (1,∞). This relation was analysed in more detail in (60).

Theorem 4.5 ((60)). Let the sampling space S be spanned by the Walsh functions
and the reconstruction space R by the Haar wavelets in L2([0,1]d). If N = 2dR

for some R ∈ N, then for every θ ∈ (1,∞) we have that the stable sampling rate is
the identity, i.e. Θ(N,θ) = N .

These results show that sampling with Walsh functions is nearly as good as
sampling directly with wavelets. Hence, the presented algorithms allow to improve
the recovery quality. This can be seen in the comparison with direct inversion
where one gets a lot of block artefacts from Walsh functions or the Gibbs phe-
nomena with Fourier samples. These are mostly removed after the reconstruction
method. We can analyse mathematically the approximation rate in the different
bases.

4.3.1 Approximation qualities

Approximation theory provides a useful tool for comparing the representation
qualities of different bases. Let {ϕi}i∈N be an orthonormal basis for L2([0,1]),
hence every f ∈ L2([0,1]) can be represented by

f = ∑
i∈N

⟨f,ϕi⟩ϕi. (50)

In practice this is not a feasible representation approach. This is due to the fact
that we can only access and store a finite number of coefficients. Hence, instead of
the true f we can only have an approximation fN = ∑Ni=1⟨f,ϕi⟩ϕi. The resulting
approximation error is given by

ε(N,f) = ∣∣f − fN ∣∣22 = ∫ ∣f − fN ∣2dx = ∑
i>N

∣⟨f,ϕi⟩∣2. (51)
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In approximation theory one compares bases and representation systems in terms
of the decay of ε(N,f) with respect to N for functions f in some specified function
class. A very fast decay with N is desirable, because this allows a good represen-
tation from only a few coefficients, which then results in less measurements.

The decay rate of the Walsh transform of Lipschitz continuous functions is
analysed in (9). It was shown that

⟨f,Wal(n, ⋅)⟩ =W
⋀

f(n) ≤ 2−p, (52)

where 2p ≤ n < 2p+1. With this we get for the approximation error

ε(N,f) ≤ ∑
i>N

1

2i2
≤ 1

2N

which then lies in O(N−1). In contrast to the Fourier transform this does not
improve if the function gets smoother or periodic. The resulting artefacts can be
seen in Figure 2. Therefore, the reconstruction techniques as the PBDW-method
or generalised sampling are very useful because they allow to change the basis in
which we represent our data. We then use a basis such as wavelets with a much
faster decay rate. The decay rate is analysed in (52). Daubechies wavelets of
order p represent functions f in the Sobolev space W γ([0,1]) for some γ < p with
an approximation rate of

ε(N,f) = O(N−2γ). (53)

This underlines the advantage of representing smooth functions with Daubechies
wavelets instead of Walsh functions. Due to the findings in Theorem 4.4 it is
possible to highly improve the reconstruction quality from measurements with
binary functions. In particular, because of the linearity of the stable sampling
rate and a reasonable slow slope, for example S2 = 2 for Daubechies wavelets of
order 8, we get an improved representation from O(N−1) to O(N−2γ).

5 Non-linear reconstruction methods

In the previous section we have seen linear reconstruction methods and discussed
their convergence properties in view of subspace angles and the stable sampling
rate. Even though they offer good results and fast computations, they are rather
restrictive in terms of adaptivity to the problem at hand, in particular, they do not
allow for sub-sampling. Hence, we want to extend our analysis to the non-linear
methods where we focus on compressed sensing and the structure, provided by
measurements with binary functions, that allows for substantial under sampling.
The main issue with this extension is that classical compressed sensing consid-
ers finite-dimensional signals. However, we are dealing with infinite-dimensional
ones. Hence, the classic compressed needs to be extended to infinite-dimensional
compressed sensing introduced in (5, 7). Nevertheless, we start this chapter with
a quick review of the standard finite-dimensional compressed sensing.
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(a) Truncated Walsh series (b) Generalised sampling with 64 recon-
structed wavelet coefficients

Figure 2: Reconstruction from 77 measurements with binary functions, where
both examples use exactly the same samples. The figure illustrates the change in
approximation rate when converting the Walsh samples to wavelet coefficients via
generalised sampling.

5.1 Classical compressed sensing

Compressed sensing was introduced by Candès, Romberg & Tao (19) and Donoho (24)
and is formulated in the finite-dimensional setting, stating that under appropri-
ate conditions one can overcome the Nyquist sampling barrier and recover signals
using far fewer samples than dictated by the classical Shannon theory.

A traditional CS set-up is as follows. The aim is to recover a signal f from
an incomplete (sub-sampled) set of measurements y. Here, f is represented as a
vector in CN and is assumed to be s-sparse in some orthonormal basis Φ ∈ CN×N

(e.g. wavelets) called the reconstruction or sparsity basis. This means that its
vector of coefficients x = Φf has at most s nonzero entries. Let Ψ ∈ CN×N be an
orthonormal basis, called sensing or sampling basis, and write U = ΨΦ∗ = (uij),
which is an isometry and the discrete version of U in [Eq. 46]. The coherence of
U is

µ(U) = max
i,j

∣uij ∣2 ∈ [1/N,1]. (54)

and U is said to be perfectly incoherent if µ(U) = 1/N .
Let the sub-sampling pattern be the set Ω ⊆ {1, . . . ,N} of cardinality m with

its elements chosen uniformly at random. This is one of the main differences to
the previous discussed linear reconstruction methods. For the linear methods we
restrict ourselves to the first N measurements instead of choosing the most bene-
ficial ones. Owing to a result by Candès & Plan (16) and Adcock & Hansen (5),
if we have access to the subset of noisy measurements y = PΩΨf + e then f can be
recovered from y exactly (up to the noise level) with probability at least 1 − ε if

m ≳ µ(U) ⋅N ⋅ s ⋅ (1 + log(1/ε)) ⋅ log(N), (55)

where PΩ ∈ {0,1}N×N
is the diagonal projection matrix with the jth entry 1 if
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j ∈ Ω and 0 otherwise, and the notation a ≳ b means that a ≥ C b where C > 0 is
some constant independent of a and b. Then, f is recovered by solving

min
z∈CN

∥z∥1 subject to ∥y − PΩUz∥ ≤ η. (56)

where η is chosen according to the noise level, i.e. ∥e∥ ≤ η. The key estimate
[Eq. 55] shows that the number of measurements m required is, up to a log factor,
on the order of the sparsity s, provided the coherence µ(U) = O (1/N). This is
the case, for example, when U is the DFT, which was studied in some of the first
CS papers (19).

The main reason why we want to consider infinite dimensional CS is threefold.
First, our signal is defined in a continuous setting in L2([0,1]d) instead of Rn,
hence it is sensible to adapt the reconstruction problem accordingly. Second,
the discrete setting leads to the measurement mismatch and wavelet crime. The
measurement mismatch comes from the fact that the discrete Hadamard transform
leads to an approximation of the signal by step function, which always results in
an additional approximation error for our method. The wavelet crime describes
the error which results from assuming that the discrete inverse of the wavelet
coefficients leads to the point evaluations of the signal. This is an approximation
which uses the fact that for high order scaling function the support is nearly
point-wise. However, as this is only an approximation we also add up this error.
Finally, we want to analyse the change of basis matrix. For the analysis it is
easier to consider the inner products of the wavelets and the Walsh function than
to work with the discrete matrices. This allows us to develop a rich analysis.

5.2 Types of compressed sensing problems

CS problems can be roughly divided into two types. Type I are problems where
the physical device imposes the sampling operator, but allows some limited free-
dom to design the sampling strategy. This category is vast, with examples includ-
ing Magnetic Resonance Imaging (MRI), Electron Microscopy (EM), Computer-
ized Tomography, Seismic Tomography and Radio Interferometry. Type II are
problems where the sensing mechanism offers freedom to design both the sam-
pling operator and the strategy. Examples include Fluorescence Microscopy (FM)
and Compressive Imaging (CI) (e.g. single pixel and lensless cameras). In these
two examples, many practical set-ups still impose some restrictions regarding the
sampling operator, e.g. measurements must typically be binary.

In a simplified view, traditional CS assumes three main principles: sparsity
(there are s important coefficients in the vector to be recovered, however, the lo-
cation is arbitrary), incoherence (the values in the measurements matrix should be
uniformly spread out) and sampling is performed with some degree of randomness.

In many Type I practical problems, some of the above principles as introduced
in the traditional CS model are lacking. For example, many Type I problems
are coherent due to the physics of the underlying sensing mechanism. However,
CS was used successfully in such problems, though with very different sampling
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techniques than uniform random sub-sampling. For Type II problems the tra-
ditional CS framework is applicable, e.g. in compressive imaging or fluorescence
microscopy one can use random Bernoulli matrices. However, as we shall see,
the use of complete randomness does not allow one to exploit the structure of
the signal during the sampling procedure; it can still be taken into account after
sampling (during recovery) but not as efficiently.

5.3 Taking structure and infinite dimensionality into ac-
count

The problem considered in this paper is a Type II problem, and there are several
ways one can choose the sampling. However, the finite-dimensional set-up in §5.1
must be extended in order to address Problem 1.1. The first question one may ask
oneself is: how should one carry out the sub-sampling? Indeed, would choosing
some M ∈ N and then, as suggested in §5.1, choosing uniformly at random m
indices from {1, . . . ,M} be a reasonable idea?

In order to answer this question it may be of interest to investigate the rela-
tionship between the sampling space of Walsh functions and the reconstruction
space of, for example, wavelets. Consider the infinite change of basis matrix

U =
⎛
⎜
⎝

⟨ϕ1, ζ1⟩ ⟨ϕ2, ζ1⟩ ⋯
⟨ϕ1, ζ2⟩ ⟨ϕ2, ζ2⟩ ⋯

⋮ ⋮ ⋱

⎞
⎟
⎠
, (57)

where the ϕjs are the Haar wavelets and the ζjs are the Walsh functions. In Figure
3 the absolute values of the matrix elements (the 1024 × 1024 finite section of U)
are displayed in a grey scale for the two dimensional Walsh and Haar functions.
It is evident from the figure that there is a very clear block-diagonal structure.
Moreover, in Figure 1 we can see the stable sampling rate and the absolute values
of U for Daubechies 2 and Haar wavelets given sampling with Walsh functions in
the one dimensional case. It is clear that the matrix U obeys a lot of structure.
Indeed, for the Walsh-Haar case we observe perfect block diagonality, which leads
to a slope of the stable sampling rate of 1. These observations can be made
rigorous in the following results.

Proposition 5.1. Let ψ = χ[0,1/2] −χ(1/2,1] be the Haar wavelet, where χ denotes
the characteristic function. Then, we have that

∣⟨ψR,j ,Wal(n, ⋅)⟩∣ =
⎧⎪⎪⎨⎪⎪⎩

2−R/2 2R ≤ n < 2R+1,0 ≤ j ≤ 2R − 1

0 otherwise,
(58)

where we recall the wavelet notation with subscripts from [Eq. 27].

Note that the Haar wavelet is only defined on [0,1] and hence does not need
to be boundary corrected in contrast to higher order Daubechies wavelets.
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Figure 3: Colour plot of the absolute values of the first 1024×1024 matrix elements
of the infinite matrix U in [Eq. 57] for two dimensional Haar wavelets and Walsh
functions. White colour denotes 1 whereas black illustrates 0.

Proposition 5.2 ((60)). Let φ = χ[0,1] be the Haar scaling function. Then, we
have that the Walsh transform obeys the following block and decay structure

∣⟨φR,j ,Wal(n, ⋅)⟩∣ =
⎧⎪⎪⎨⎪⎪⎩

2−R/2 n < 2R,0 ≤ j ≤ 2R − 1

0 otherwise,
(59)

where we recall the wavelet notation with subscripts from [Eq. 27].

These results can be combined into a theorem describing the situation in two di-
mensions. Indeed, recall the standard two-dimensional set-up for the Haar wavelet:

ψR,j1,j2,l(x1, x2) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

φR,j1(x1)ψR,j2(x2) l = 1

ψR,j1(x1)φR,j2(x2) l = 2

ψR,j1(x1)ψR,j2(x2) l = 3.

(60)

We then get the theoretical justification for the observed structure in the change
of basis matrix in Figure 3.

Theorem 5.3 ((60)). Let ψR,j1,j2,l be the Haar wavelet defined as in [Eq. 60].
Then, the Walsh transform has the following property. For 0 ≤ j1, j2 ≤ 2R − 1,

∣⟨ψR,j1,j2,1,Wal(n1, n2, ⋅, ⋅)⟩∣ =
⎧⎪⎪⎨⎪⎪⎩

2−R n1 ≤ 2R,2R ≤ n2 < 2R+1

0 otherwise,
(61)

∣⟨ψR,j1,j2,2,Wal(n1, n2, ⋅, ⋅)⟩∣ =
⎧⎪⎪⎨⎪⎪⎩

2−R 2R ≤ n1 < 2R+1, n2 ≤ 2R

0 otherwise
(62)
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and for the third version

∣⟨ψR,j1,j2,3,Wal(n1, n2, ⋅, ⋅)⟩∣ =
⎧⎪⎪⎨⎪⎪⎩

2−R 2R ≤ n1 < 2R+1,2R ≤ n < 2R+1

0 otherwise.
(63)

Theorem 5.3 describes the block-diagonal structure visualised in Figure 3.
These findings suggest that also for the compressed sensing approach it is sensible
to take additional structure that can be observed for wavelets and Walsh functions
into account. This motivated the introduction of an extended framework for CS
(3) by generalising the traditional CS principles of incoherence and sparsity into
asymptotic incoherence and asymptotic sparsity, proposing a matched sampling
procedure called multilevel sampling. In Section 5.4 we shall also discuss struc-
tured sampling in contrast with structured recovery, and implications regarding
sampling operators in the context of measurements with binary functions.

5.3.1 Multilevel sampling

High coherence in the first few rows of U means that important information about
the signal to be recovered is likely to be contained in the corresponding measure-
ments, and thus we should fully sample these rows. Once outside this region,
as coherence starts decreasing, we can sub-sample gradually. This is also the
wisdom behind the various variable density sampling strategies, which were first
introduced in (49).

Definition 5.4 (Multilevel sampling). Let r ∈ N, M = (M0, . . . ,Mr) ∈ Nr+1 with
1 ≤M1 < . . . <Mr, m = (m1, . . . ,mr) ∈Nr, with mk ≤Mk −Mk−1, k = 1, . . . , r, and
that Ωk ⊆ {Mk−1+1, . . . ,Mk}, ∣Ωk ∣ =mk, are chosen uniformly at random, where
M0=0. We refer to the set Ω=ΩM,m=⋃rk=1 Ωk as an (M,m)-multilevel sampling
scheme (using r levels).

Briefly, for a vector x, the sampling amount mk needed in each sampling band
Ωk is determined by the sparsity of x in the corresponding sparsity band ∆k and
the asymptotic coherence µ(P ⊥Mk

U).

5.3.2 Asymptotic sparsity

Let us consider a wavelet basis indexed by one variable in the canonical way
according to the different scales {ϕn}n∈N. There is a natural decomposition of
N into finite subsets according to the wavelet scales, N =⋃k∈N{Nk−1+1, . . . ,Nk},
where 0=N0<N1<N2< . . . and {Nk−1+1, . . . ,Nk} is the set of indices corresponding
to the kth scale. For the boundary wavelets we have Ni = 2d(J0+i). Let x ∈ l2(N)
be the coefficients of a function f in this basis, ε ∈ (0,1] and define the global
sparsity, s, and the sparsity at the kth level, sk as follows:

s = s(ε) = min{n ∶ ∥ ∑
i∈Nn

xiϕi∥ ≥ ε ∥
∞

∑
j=1

xjϕj∥},

sk = sk(ε) = ∣Ns(ε) ∩ {Nk−1 + 1, . . . ,Nk}∣ ,
(64)
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where Nn is the set of indices of the largest n coefficients in absolute value and ∣⋅∣
is the set cardinality. Figure 4 shows that besides being sparse, images have more
structure, namely asymptotic sparsity, i.e. the relative per-level sparsity

sk/(Nk −Nk−1) Ð→ 0 (65)

rapidly as k → ∞ for any fixed ε ∈ (0,1]. In particular, images are far sparser
at fine scales (large k) than at coarse scales (small k). This also holds for other
function systems, e.g. curvelets (15), contourlets (23) or shearlets (21). Note that
asymptotic sparsity is a rather different, and much more general structure than
the connected tree structure of wavelet coefficients (53). [Eq. 64] and [Eq. 65] do
not assume such a tree structure, but only different local sparsities sk at different
levels.

Given the structure of function systems such as wavelets and their generalisa-
tions, we instead consider the notion of sparsity in levels:

Definition 5.5 (Sparsity in levels). Let x be an element of either CN or l2(N).
For r ∈ N let N = (N0, . . . ,Nr) ∈ Nr and s = (s1, . . . , sr) ∈ Nr, with sk ≤ Nk −Nk−1,
k = 1, . . . , r, where N0 = 0. We say that x is (s,N)-sparse if, for each k = 1, . . . , r
we have ∣∆k ∣ ≤ sk, where

∆k ∶= supp(x) ∩ {Nk−1 + 1, . . . ,Nk}.

We write Σs,N for the set of (s,N)-sparse vectors.

5.3.3 Asymptotic incoherence.

In contrast with random matrices, such as Gaussian or Bernoulli, many sampling
and sparsifying operators typically found in practice yield fully coherent problems,
such as the Hadamard with wavelets case discussed earlier. Indeed, Figure 1 shows
the absolute values of the entries of the matrix U with Haar and Daubechies 2
wavelets. Although there are large values of U in both cases (since U is coherent
as per [Eq. 54]), these are isolated to a leading submatrix. Values get asymptot-
ically smaller once we move away from this region. This motivates the following
definition.

Definition 5.6 (Asymptotic incoherence). Let {UN} be a sequence of isometries
with UN ∈ CN×N . Then {UN} is asymptotically incoherent if both µ(P ⊥KUN),
µ(UNP ⊥K) → 0 when K → ∞ with N/K = c, for all c ≥ 1. Conversely, if U ∈
B(l2(N)), (i.e. U belongs to the space of bounded operators on l2(N)) then we say
that U is asymptotically incoherent if µ(P ⊥KU), µ(UP ⊥K) → 0 when K →∞.

In brief, U is asymptotically incoherent if the coherences of the matrices formed
by removing either the first K rows or columns of U are small. As Figure 1 shows,
the change of basis matrix U in [Eq. 57] when considering Walsh functions and
Haar wavelets is clearly asymptotically incoherent. However, asymptotic incoher-
ence may not be refined enough to capture the finesses of the fine structures in the
change of basis matrix U . In particular, we need the concept of local coherence,
which is much more of a scalpel that allows for precise recovery guarantees.
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Figure 4: Sparsity of Daubechies-4 coefficients of an MRI image, courtesy of
Siemens AG. Levels correspond to wavelet scales and sk(ε) is given by [Eq. 64].
Each curve shows the relative sparsity at level k as a function of ε. Their decreasing
nature for increasing k confirms asymptotic sparsity [Eq. 65].

Definition 5.7 (Local coherence). Let U be an isometry of either CN or l2(N).
If M = (M0, . . . ,Mr) ∈ Nr+1 and N = (N0, . . . ,Nr) ∈ Nr+1 with 1 ≤ M1 < . . .Mr

and 1 ≤ N1 < . . . < Nr the (k, l)th local coherence of U with respect to M and N is
given by

µM,N(k, l) =
√
µ(PMk−1

Mk
UPNl−1

Nl
) ⋅ µ(PMk−1

Mk
U), k, l = 1, . . . , r,

where N0 =M0 = 0 and P ab denotes the projection matrix corresponding to indices
{a + 1,⋯, b}. In the case where U ∈ B(l2(N)), we also define

µM,N(k,∞) =
√
µ(PMk−1

Mk
UP ⊥Nr−1

) ⋅ µ(PMk−1

Mk
U), k = 1, . . . , r.

By estimating the local coherence of U in [Eq. 57] for arbitrary wavelets we can
obtain recovery guarantees for infinite-dimensional compressed sensing. These are
presented in the next section.

5.3.4 Recovery Guarantees

We are stating the recovery guarantees for Walsh functions and wavelets. For
this we consider the ordering of the levels of the sampling and the reconstruction
space. We get

N = (Nd
0 ,N

d
1 , . . . ,N

d
r ) = (0,2d(J0+1),2d(J0+2), . . . ,2d(J0+r)) (66)

and

M = (Md
0 ,M

d
1 , . . . ,M

d
r−1,M

d
r ) = (0,2d(J0+1),2d(J0+2), . . . ,2d(J0+r−1),2d(J0+r+q)).

(67)
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Theorem 5.8 ((59)). Let the notation be as before, i.e. let the sampling space
be given by Walsh functions and the reconstruction space spanned by boundary
corrected Daubechies wavelets. Additionally, let ε > 0 and Ω = ΩM,m be a multilevel
sampling scheme such that the following holds:

1. Let M =Mr, K = maxk=1,...,r {Mk−Mk−1

mk
}, N = Nr, s = s1 + . . . + sr such that

M ≥ CN2 ⋅ log2(4NK
√
s). (68)

2. For each k = 1, . . . , r,

mk ≥ C log(ε−1) log (K2sM) ⋅ Mk −Mk−1

Mk−1
⋅ (

r

∑
l=1

2−d∣k−l∣sl) . (69)

Then with probability exceeding 1−sε, any minimizer ξ ∈ `1(N) of [Eq. 56] satisfies

∣∣ξ − x∣∣ ≤ C ⋅ (δ
√
K(1 +L

√
s) + σs,N(f)) , (70)

for some constant C, where L = C ⋅ (1 +
√

log2(6ε
−1)

log2(4KN
√
s)
). If mk = Mk −Mk−1 for

1 ≤ k ≤ r then this holds with probability 1.

We see that the impact of the off block parts is exponentially decreasing. This
allows us to exploit the asymptotic sparsity and reduce heavily the number of
samples.

Remark. In equation [Eq. 68] we see that the relation between the number of
samples and coefficients is squared with an additional log factor. This quadratic
term is likely to be an artefact of the proof and not sharp. In (7) it was shown that
for the Fourier wavelet case this can be reduced to a linear relation, if the wavelet
decays fast under the Fourier transform, i.e. if it is smooth. Unfortunately, there
is no direct relation between the smoothness of the wavelet and the decay under the
Walsh transform. Therefore, this results are not directly transferable and hence
still open research.

5.3.5 Relation to previous work

It has long been known that wavelet coefficients possess additional structure be-
yond sparsity. In the CS context, this is the basis for structured recovery al-
gorithms, such as model-based CS (11), Bayesian CS (42) and TurboAMP (57).
We discuss these later on. These algorithms exploit the connected tree structure
of wavelet coefficients based on the “persistence across scales” phenomenon (53).
Asymptotic sparsity assumes only asymptotic decrease of the local sparsities in the
individual levels to zero. Asymptotic sparsity is more general, as the levels chosen
need not correspond to the *-let levels, where *-lets denote the representation sys-
tems that are inspired by wavelets, like shearlets and curvelets. Additionally, it
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makes no assumption about dependencies between coefficients such as a connected
tree.

A number of different characterizations of non-flat coherence patterns have
been introduced in CS previously (25, 33, 61, 62). What differentiates asymptotic
incoherence is that it allows one to capture (near) block diagonal structure inherent
to *-let bases, by defining a vector of local coherence values for blocks of the
coherence matrix, and specifically incorporates the asymptotic decrease of these
values and the boundaries of each block. As we shall show, this is key to the
practical recovery performance.

The idea of sampling the low-order coefficients of an image differently goes back
to the early days of CS. In particular, Donoho considers a two-level approach for
recovering wavelet coefficients in his seminal paper (24), based on acquiring the
coarse scale coefficients directly. This was later extended by Tsaig & Donoho to
so-called ’multi-scale CS’ in (63), where distinct sub-bands were sensed separately.
See also the works by Candès & Romberg (18) and Romberg (56). We note that
the sampling schemes of (24, 56), and more recently, the “half-half” scheme of
(58) proposed for the application of CS to fluorescence microscopy are examples
of two-level sampling strategies within our general framework and were analysed
in detail in (3). Our multilevel sampling extends these ideas as part of a formal
framework for CS.

5.4 Points of discussion regarding structure

Structured sampling and Structured Recovery. In this work we exploit the sparsity
structure at the sampling stage, by sampling asymptotically incoherent matri-
ces, and use standard `1 minimization algorithms. Alternatively, sparsity struc-
ture can be exploited by using universal sampling matrices (e.g. random Gaus-
sian/Bernoulli) and modified recovery algorithms which exploit the structure at
the recovery stage.

Structure or Universality. The universality property of random sensing matri-
ces (e.g. Gaussian, Bernoulli), explained later on, is a reason for their popularity in
traditional CS. But is universality desirable when the signal sparsity is structured?
Should one use universal matrices when there is freedom to choose the sampling
operator, i.e. in Type II problems? Random matrices are largely inapplicable in
Type I problems where the sampling operator yields coherent operators.

Storage and speed. Random matrices, while popular, require either large stor-
age or are otherwise slow to generate (from a pseudo-random generator point of
view), which yields slow recovery and limits the maximum signal size, which ad-
versely affects computations. However, there exist ways to perform CS using fast
transforms that emulate the usage of random matrices. Nevertheless, is addressing
the speed/speed problems via fast transforms or non-random matrices sufficient?

5.4.1 Structured sampling and structured recovery

The asymptotic CS framework takes into account the sparsity structure during the
sampling stage via multilevel sampling of non-universal sensing matrices. Sparsity
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Err 16.0%Err 16.0%
Original Random Bernoulli to db4 — `1

Err 21.2%Err 21.2% Err 10.7%Err 10.7%
Rnd. Bernoulli to db4 — ModelCS Rnd. Bernoulli to db4 — TurboAMP

Err 10.6%Err 10.6% Err 10.4%Err 10.4%
Random Bernoulli to db4 — BCS Rnd. Bernoulli to db4 — Weighted `1

Err 7.1%Err 7.1% Err 6.3%Err 6.3%
Multilevel Hadamard to db4 — `1 Multilevel Had. to Curvelets — `1

Figure 5: Compressive Imaging example. 12.5% sub-sampling at 256×256.



structure can also be taken into account in the recovery algorithm. A well-known
example of such an approach is model-based CS (11), which assumes the signal
is piecewise smooth and exploits the connected tree structure (persistence across
scales) of wavelet coefficients (53) to reduce the search space of the matching
pursuit algorithm (54). The same tree structure is exploited by the class of mes-
sage passing and approximate message passing algorithms (12, 27). This can be
coupled with hidden Markov trees to model the wavelet structure, such as in the
Bayesian CS (42) and TurboAMP (57) algorithms. Another approach is to as-
sign non-uniform weights to the sparsity coefficients (45), to favour the important
coefficients during `1 recovery by assuming some typical decay rate of the coeffi-
cients. Another approach assumes the signal (not its representation in a sparsity
basis) is sparse and random, and shows promising theoretical results when using
spatially coupled matrices (65, 46, 26), yet it is unclear how a practical set-up can
be realised where signals are sparse in a transform domain.

The main difference is that the former approach, i.e. multilevel sampling of
asymptotically incoherent matrices, incorporates sparsity structure in the sam-
pling strategy and can use standard `1 minimization algorithms, whereas the latter
approaches exploit structure by modifying the recovery algorithm and use univer-
sal sampling operators which yield uniform incoherence, e.g. random Gaussian or
Bernoulli.

By using universal operators and assuming a sparsity basis, structured recov-
ery is typically restricted to Type II problems, where the sensing operator can be
designed (see also the remark below), and is limited by the choice of the represen-
tation system, whose structure is exploited by the modified algorithm.

Structured sampling is flexibility with regards to the representation system and
is applicable in both Type I and Type II problems.

To compare performance, we ran a set of simulations of Compressive Imaging
(34, 44), which is a Type II problem, and has utilized universal sensing matrices.
Binary measurements y are taken, typically using a {−1,1}N×N sensing matrix.
Any matrix with only two values fits this set-up, such as Hadamard, random
Bernoulli, Sum-To-One (37), hence we can directly compare the two approaches.
Figure 5 shows a representative example from our set of simulations. One can
notice that asymptotic incoherence combined with multilevel sampling of highly
non-universal sensing matrices (e.g. Hadamard, Fourier) allows structured sparsity
to be better exploited than universal sensing matrices, even when structure is
accounted for in the recovery algorithm. The figure also shows the added benefit
of being able to use a better sparsifying system, in this case curvelets.

Is it possible to combine the two approaches to leverage further gains? The
structured recovery algorithms we have encountered expect the sampling operator
to be incoherent with the recovery basis. Replacing those with asymptotically in-
coherent operators such as Hadamard or Fourier resulted in poorer performance,
sometimes failing to produce a result, which isn’t totally surprising given that the
aforementioned structured recovery algorithms make certain assumptions about
the sampling operator. Nevertheless, the successful combination of the two ap-
proaches is a promising line of investigation and is the subject of ongoing research.
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5.4.2 Structure and universality: Is universality desirable?

Universality is a reason for the popularity in traditional CS of random sensing
matrices, e.g. Gaussian or Bernoulli. A random matrix A ∈ Cm×N is universal
if for every isometry Ψ ∈ CN×N , the matrix AΨ satisfies the restricted isometry
property (19) with high probability. For images, a common choice is Ψ = Ψ∗

dwt,
the inverse wavelet transform. Universality is a key feature when the signal is
sparse but possesses no further structure.

But is universality desirable in a sensing matrix when the signal is structured?
First, random matrices are applicable mostly in Type II problems, where there
is freedom to design the sampling operator. Hence also universal matrices are
possible from a practical perspective. But should one use universal matrices there?
We argue that universal matrices offer little room to exploit extra structure the
signal may have, even in Type II problems.

Typical signals in practice exhibit far more structure than sparsity alone: their
sparsity is asymptotic in some basis. Thus, an alternative is to use a non-universal
sensing matrix, such as Hadamard, ΦHad. As previously discussed and shown in
Figure 1 and 3, U =ΦHadΨ∗

dwt is completely coherent with all wavelets yet asymp-
totically incoherent, and thus perfectly suitable for a multilevel sampling scheme
which can exploit the inherent asymptotic sparsity. This is precisely what we see
in Figure 5: a multilevel sampled Hadamard matrix can markedly outperform uni-
versal matrices in Type II problems. In Type I problems, many imposed sensing
operators are non-universal and asymptotically incoherent with popular sparsity
bases, and thus exploitable using multilevel sampling.

The reasons for the superior results are rooted in the incoherence structure.
Universal and close to universal sensing matrices typically provide a relatively
low and flat coherence pattern. This allows sparsity to be exploited by sampling
uniformly at random but, by definition, these matrices cannot exploit the dis-
tinct asymptotic sparsity structure when using a typical (`1 minimization) CS
reconstruction.

In contrast, when the sensing matrix provides a coherence pattern that aligns
with the signal sparsity pattern, one can fruitfully exploit such structure. A mul-
tilevel sampling scheme is likely to give superior results by sampling more in the
coherent regions, where the signal is also typically less sparse. The optimum
sampling strategy is signal dependent. However, real-world signals, particularly
images, share a fairly common structure in the wavelet domain and also in wavelet
inspired representation systems. This structure allows to design variable density
sampling strategies. An added benefit when this alignment exists, is that the sam-
pling procedure allows for tailoring of the sampling pattern to target application-
specific features rather than an all-round approach, e.g. recovering contours better,
trading overall quality.

5.4.3 Storage and speed

Random matrices require (large) storage and lack fast transforms. This limits the
maximum signal resolution and yields slow recovery. For example, a 1024×1024
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recovery with 25% sub-sampling of a random Gaussian matrix would require 2
Terabytes of free memory and O(1012) time complexity, making it impractical.
The storage issue could be addressed naively, by storing only the initial seed and
generating the matrix on the fly, but that makes the process orders of magnitude
slower.

Both the storage and speed issues were in fact addressed to various extents, e.g.
pseudo-random column permutations of the columns of orthogonal matrices such
as (block) Hadamard or Fourier (17, 35), Kronecker products of random matrix
stencils (28), or even fully orthogonal matrices such as the Sum-To-One (STOne)
matrix1 (37) which allows for a fast O(N logN) transform. All these solutions in
the CS context yield similar statistics to a random matrix: they become universal
sampling operators.

Another solution to the storage and speed problem is to instead use struc-
tured matrices like Hadamard, DCT or DFT. These have fast transforms but also
provide asymptotic incoherence with most sparsity bases, thus a multilevel sub-
sampling scheme can be used. This yields significantly better CS recovery when
compared to universal matrices, as witnessed previously, and it is also applicable
to Type I problems, which impose the sensing operator.

In conclusion, the sensing matrix should contain additional structure besides
simply being non-random and/or orthogonal in order to provide asymptotic in-
coherence. Typically, sensing and sparsifying matrices that are discrete versions
of integral transforms, e.g. Fourier, wavelets etc., will provide asymptotic inco-
herence, but other orthogonal and structured matrices like Hadamard will do so
too.

6 Conclusion

This work concerns the recovery of signals from measurements with binary func-
tions, that is the measurements are inner products with functions that map to
{0,1}, in the context of linear recovery using either PBDW or generalised sam-
pling, and non-linear recovery using infinite-dimensional compressed sensing. We
considered the use of Walsh functions in the sampling domain and wavelets in the
reconstruction domain. In the linear case, we showed that the methods rely on
knowing the stable sampling rate, and we established its linearity and that it is
sharp. Furthermore, we showed that generalised sampling keeps the solution in
the reconstruction space which allows for improvements over PBDW in the case
of highly sparse functions. In the non-linear case, we derived recovery guaran-
tees and discussed the advantages of using Walsh functions (via the Hadamard
transform) over incoherent sampling.

1The STOne matrix is an orthogonal matrix that provides universality, like random matrices
do. However, it was invented for many other purposes. It has a fast O(N logN) transform and
allows multi-scale image recovery from compressive measurements: low-resolution previews can
be quickly generated by applying the fast transform on the measurements directly, and high
resolution recovery is possible from the same measurements via CS solvers. In addition, it allows
efficient recovery of compressive videos when sampling in a semi-random manner.
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