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ABSTRACT. This paper establishes the Solvability Complexity Index (SCI) hierarchy to resolve the long-standing
computational spectral problem. That is to determine the existence of algorithms that approximate spectra sp(A)

of classes of bounded operatorsA = {aij}i,j∈N ∈ B(l2(N)) given the matrix elements {aij}i,j∈N. Similarly,
for Schrödinger operators H = −∆ + V , we determine the existence of algorithms that can approximate the
spectrum sp(H) given point samples of the potential function V . Our results are sharp, in the sense that they
realise the boundaries of what algorithms can achieve. To show sharpness, we establish the full SCI hierarchy,
based on the SCI introduced by one of the authors in [71]. This is a classification hierarchy for all types of prob-
lems in computational mathematics that allows for classifications determining the boundaries of what algorithms
can achieve. As a consequence, the SCI hierarchy provides classifications of computational problems that can
be used in computer-assisted proofs. The SCI hierarchy captures many key computational issues in the history
of mathematics e.g. Smale’s problem on the existence of iterative generally convergent algorithms for polyno-
mial root finding, the computational spectral problem, inverse problems, optimisation, computational issues in
topology, etc.
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1. INTRODUCTION

The Solvability Complexity Index (SCI) hierarchy introduced in this article, including the mathematical
framework and the associated algorithms, is now used in a variety of areas due to circulations of earlier
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versions of this paper. This ranges from spectral computations in the sciences [37] to solving open resonance
[14, 15] and geometric spectral problems [13, 34, 36], via inverse problems [1, 35], Smale’s 9th problem and
optimisation [1, 11, 49], to finally limits of AI and Smale’s 18th problem [35], see also §2 and [8–10, 21, 22,
32, 33, 44, 45, 47, 58, 94, 120].

Given the many applications in fields such as mathematical physics, analysis, quantum chemistry, sta-
tistical mechanics, quantum mechanics, quasicrystals, and optics, the problem of finding algorithms for
approximating spectra of operators has both fascinated and frustrated mathematicians. This challenge has
persisted since the seminal work by H. Goldstine, F. Murray, and J. von Neumann in the 1950s [64], giving
rise to a vast body of literature (see §2.1). In the early 1990s, W. Arveson [10] pointed out that despite the
plethora of papers on the subject of computing spectra, the general computational spectral problem remained
unsolved:

“Unfortunately, there is a dearth of literature on this basic problem, and so far as we have
been able to tell, there are no proven techniques.”

— W. Arveson [10] (1994)

See also A. Böttcher’s Problem I in [22] on the problem of computing the spectrum. Arveson considered
approximating spectra given the matrix elements {aij}i,j∈N ∈ B(l2(N)) for general operators and discrete
Schrödinger operators. However, the situation does not improve significantly in the general Schrödinger case.
Notably, despite over 90 years of advancements in quantum mechanics, there is still no known algorithm for
computing approximations to the spectrum sp(∆ + V ) of −∆ + V on L2(Rd) given point samples from the
potential function V , and of −∆discrete + V on lattices.

To resolve these issues, we introduce algorithms that not only approximate spectra and eigenvectors,
but also establish upper and lower bounds on where the problems are situated in the SCI hierarchy. These
bounds yield sharp classification results, demonstrating the optimality of the proposed algorithms. Below
is a summary of the main results written as classification results in the SCI hierarchy that will be explained
informally in §3 and in detail in §7. Examples of the resulting hierarchies are shown in Figures 1 and 2.

Theorem 1.1 (Informal summary of Theorem 4.4, 5.3 & 5.5). Given infinite matrices of the form A =

{aij}i,j∈N ∈ B(l2(N)), Schrödinger operators−∆+V as well as discrete Schrödinger operators−∆discrete+

V , we have the following classifications:

computing sp(A), A is diagonal ∈ Σ1 \∆1,(1.1)

computing sp(−∆ + V ) & approx. eigenvectors, with bounded V ∈ Σ1 \∆1,(1.2)

computing sp(−∆discrete + V ) & approx. eigenvectors, with bounded V ∈ Σ1 \∆1,(1.3)

computing sp(A), A is compact ∈ ∆2 \ (Σ1 ∪Π1),(1.4)

computing sp(−∆ + V ) with V blowing up at∞ ∈ ∆2 \ (Σ1 ∪Π1).(1.5)

Moreover,

computing sp(A), A is self-adjoint or normal ∈ Π2 \∆2,(1.6)

computing sp(A), A is general ∈ Π3 \∆3,(1.7)

computing sp(A) & approx. eigenvectors, A is normal and banded ∈ Σ1 \∆1,(1.8)

computing spess(A), A is self-adjoint or normal ∈ Π2 \∆2,(1.9)

computing spess(A), A is general ∈ Π3 \∆3.(1.10)

1.1. Interpretation of the main results. The reader may consult §3 for an informal introduction to the SCI
hierarchy; however, below follows an explanation of the main results in view of the computational spectral
problem without technical language. The SCI is the smallest number of limits needed to compute the desired
property, e.g., the spectrum or essential spectrum.
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FIGURE 1. Theorem 4.4 (resolving the computational spectral problem): The SCI hierar-
chy for the computational problem of approximating spectra of bounded infinite matrices
acting on l2(N). Note that ΣA3 \∆A

2 = ∅.

(i) Error control and algorithms without mistakes – The lower end of the SCI hierarchy. Note that (1.2)
means that there exists an algorithm Γn, such that for bounded potentials V , Γn(V )→ sp(−∆+V )

as n → ∞. Moreover, Γn(V ) ⊂ N2−n(sp(−∆ + V )), where Nε(·) denotes the ε-neighbourhood.
In particular, there is an error control, and Γn will never make a mistake. In addition, the algorithm
can compute the approximating eigenvectors (see §7.2.1 for precise definitions). Furthermore, it is
impossible to find an algorithm that will, on input ε > 0, compute an ε-approximation to sp(−∆+V )

even locally (i.e., in the Attouch-Wetts metric, which generalizes the Hausdorff metric to unbounded
sets). Due to (1.3) and (1.8), the same positive and negative results hold for discrete Schrödinger
operators and banded normal or self-adjoint infinite matrices.

It may seem potentially surprising – given (1.2) and (1.4) – that the problem of computing spectra
of compact operators, for which the method has been known for decades, is strictly harder (see (ii)
below) than the problem of computing spectra of Schrödinger operators with bounded potentials,
which has been open for more than half a century. Given (1.1), algorithms can obtain (by sampling
the potential pointwise) as much spectral information from Schrödinger operators with a bounded
potential V , as algorithms can obtain from a diagonal infinite matrix – the simplest of the non-trivial
infinite-dimensional spectral problems.

(ii) Computing with one limit, but no error control – The-mid part of the SCI hierarchy. The problem
of computing spectra of sp(−∆ + V ) with V blowing up at ∞ is as hard as computing spectra
of compact operators, and it is strictly harder than computing spectra of diagonal matrices and
normal Schrödinger operators with bounded potential. Moreover, despite the existence of having
an algorithm Γn such that Γn(V ) → sp(−∆ + V ), error control is impossible as the problem of
computing the spectrum /∈ Σ1 ∪Π1.

(iii) Computing with several limits – The higher end of the SCI hierarchy. Note that (1.7) means that
there does exist an algorithm Γn3,n2,n1

depending on integers n3, n2, n1 such that for all A =
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FIGURE 2. Main results (Theorem 5.3 and Theorem 5.5): The SCI hierarchy for the prob-
lem of approximating spectra of Schrödinger operators. The ΣA1 result may be a surprise:
One can algorithmically obtain just as much spectral information of such Schrödinger op-
erators (by point sampling the potential) as that of diagonal infinite-matrices (the simplest
problem).

{aij}i,j∈N ∈ B(l2(N),

lim
n3→∞

lim
n2→∞

lim
n1→∞

Γn3,n2,n1
(A) = sp(A), (the SCI ≤ 3),

where the last limit is ‘from above’. Yet, for any family of algorithms {Γn2,n1} based on two limits,
there is an A such that

lim
n2→∞

lim
n1→∞

Γn2,n1
(A) 6= sp(A), (the SCI > 2, hence SCI = 3).

In the self-adjoint case, however, one needs two limits, and no algorithm can compute the spectrum
in one limit. According to (1.9) and (1.10), similar results hold for the essential spectrum.

(iv) Arveson’s comment and the SCI hierarchy. The phenomenon that the SCI > 1 for many spectral
problems is similar to the solution to Smale’s problem (see §2.5). Moreover, it explains Arveson’s
comment – why there have been no known techniques for the general cases – and why it has taken
substantial time to resolve the computational spectral problem. Indeed, classical approaches (see
§2.1), including the C∗-algebra techniques (see W. Arveson [6–10] and N. Brown [27–30]) also
used for the Schrödinger case, yield algorithms based on one limit. By the results above, algorithms
based on one limit can never capture the general problem, even in the self-adjoint case. However,
classical approaches yield invaluable classification results in the lower part of the SCI hierarchy.

(v) New algorithms. The proofs of the upper bounds in the above theorems yield new algorithms allow-
ing for previously untouched problems in the sciences and potentially in computer-assisted proofs.
Several examples can be found in §11.

2. THE SCI HIERARCHY IN MATHEMATICS

Our results and the SCI hierarchy have implications and connections to various areas in mathematics. §6
specifically highlights the role of the SCI hierarchy in computer-assisted proofs.

2.1. Arveson, Böttcher and Schwinger’s computational spectral problems. The literature on computing
spectra is extensive; therefore, we can only highlight a small subset of particularly relevant results here. The
idea of using computational approaches to obtain spectral information dates back to leading physicists and
mathematicians such as E. Schrödinger [102], T. Kato [82], and J. Schwinger [103]. Schwinger introduced
finite-dimensional approximations to quantum systems in infinite-dimensional spaces, allowing for spectral
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computations. These ideas were already present in the work of H. Weyl [121]. The work by H. Goldstine,
F. Murray, and J. von Neumann [64] was among the first to establish rigorous convergence results. Their
work yields a ∆1 classification for specific self-adjoint finite-dimensional problems. In [44], T. Digernes, V.
S. Varadarajan, and S. R. S. Varadhan proved the convergence of spectra of Schwinger’s finite-dimensional
discretization matrices for a specific class of Schrödinger operators with certain types of potential. This
yields a ∆2 classification in the SCI hierarchy. Theorems 1.1 and 5.5 imply that their result is sharp, even
for a much larger class of problems.

W. Arveson [6–10] and A. Böttcher [21–23] pioneered spectral computations further, both for the general
spectral computation problem and for discrete Schrödinger operators (see Arveson [8,9]). Moreover, they es-
tablished new connections to the C∗-algebra literature (see also the work by N. Brown [27–29]) and Toeplitz
theory (see A. Böttcher & B. Silberman [24–26]). Most of these results yield ∆2 classifications in the SCI
hierarchy for special types of self-adjoint spectral problems. For additional information, see the work by
N. Brown, K. Dykema, and D. Shlyakhtenko [30]. Arveson [8–10] and Böttcher & Silberman [25, 26] also
explored spectral computation in terms of densities, which relates to Szegö’s work [113] on finite section
approximations. A. Laptev and Y. Safarov have also obtained similar results [87] yielding ∆2 classifications.

Finally, the work initiated by D. Jerison [79] and continued by D. Grieser & D. Jerison [65, 66] on es-
timating eigenvalues of differential operators become results in the SCI framework on the breakdown ep-
silon ε0 ≥ 0 [11, 35], which determines the best possible accuracy of the computed approximation to a
problem. See also §2.4 regarding the role of breakdown epsilon in the proof of blow-up of the 3D Eu-
ler equations. In particular, Theorem 1 in [66] shows an upper bound on the breakdown epsilon ε0 for
computing the m-th eigenvalue of the Dirichlet Laplacian on certain bounded domains. See D. Grieser
& D. Jerison’s discussion in [65] on the connection to the computational spectral problem. We end with
a list of additional relevant papers that offer just a small glimpse into the vast literature on this topic
[4, 5, 38, 39, 47, 50, 69, 70, 72, 89–91, 105, 119].

2.2. The Dirac-Schwinger conjecture. The Dirac–Schwinger conjecture was proven through a series of
seminal papers by C. Fefferman and L. Seco [51–59]. In these works, numerical computations are utilized
to obtain asymptotic results on the ground state of an atom. Consider the following Schrödinger operator

HNZ =

N∑
k=1

(−∆xk − Z|xk|−1) +
∑

1≤j<k≤N

|xj − xk|−1

acting on antisymmetric functions in L2(R3N ). The ground state energy E(N,Z) for N electrons and a
nucleus of charge Z is then defined by E(N,Z) := inf{λ ∈ sp(HNZ)}. The ground state energy of an atom
is then defined as E(Z) = minN≥1E(N,Z). The key result of C. Fefferman and L. Seco was to show the
asymptotic behavior of E(Z) for large Z. In particular, they show the following:

Theorem 2.1 (Fefferman, Seco [58]).

E(Z) = −c0Z7/3 +
1

8
Z2 − c1Z5/3 +O(Z5/3−1/2835),

for some explicitly defined constants c0 and c1.

Their intricate computer-assisted proof hinges on several problems that are /∈ ∆1 – meaning they are
not computable – but are in Σ1 (see, for example, Algorithm 3.7 and Algorithm 3.8 in [58]). A crucial
part of the proof implicitly establishes the Σ1 classification in the SCI hierarchy. Moreover, the paper [47]
by C. Fefferman is based on similar approaches using numerical calculation of eigenvalues. See also the
work by R. de la Llave [41, 48] on using computer-assisted proofs for estimating the ground state energy.
Computational approaches to spectral theory are, of course, significant outside of computer-assisted proofs.
The paper [50] by C. Fefferman and D. H. Phong, which focuses on numerically computing the lowest
eigenvalue of pseudo-differential operators, is a great example.
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The phenomenon of facing problems /∈ ∆1 in computer-assisted proofs is shared by the program on
proving Kepler’s conjecture, where implicitly, one shows Σ1 classification in the SCI hierarchy as part of
the proof. See §6 for details. Our main results in Theorem 4.4 and Theorem 5.3 provide the necessary Σ1

classifications showing that computational spectral problems with any Jacobi operators with known growth
of the resolvent can be used in computer-assisted proofs. This is also the case of Schrödinger operators
−∆ + V where V is bounded and of bounded variation. However, by Theorem 5.5, if we only know that V
blows up at infinity, the spectral problem /∈ (Σ1 ∪ Π1) so such a Schrödinger operator cannot be used in a
computer-assisted proof unless further assumptions are available.

2.3. Weinberger’s program on computations in topology and geometry. The book “Computers, Rigidity,
and Moduli” [120] by S. Weinberger provides a comprehensive illustration of his program (see also [96]).
As is pointed out in [120]: “The main theme of this work is the application of the theory of computation to
problems in geometry. My interest is not simply in showing the algorithmic unsolvability of natural questions,
but rather in solving geometric existence problems.” This theme aligns very closely with what is captured
by the SCI hierarchy. Indeed, many results in Weinberger’s program can be interpreted as classification
problems within the SCI hierarchy, with numerous theorems demonstrating either /∈ ∆1 or ∈ ∆1 results. As
an illustration, Weinberger’s theorem (p. 83 in [120]) can be expressed in the SCI language:

Theorem 2.2 (Weinberger [120]). LetMn be a nonsimply connected compact manifold whose first homology
is trivial and which embeds in Sn+1. Then, the computational problem of determining whether any other
embedding is isotopic to the given one is /∈ ∆1.

However, the computational problems in Weinberger’s program that are /∈ ∆1 are often situated much
higher than ∆1 in the SCI hierarchy, highlighting the true difficulty in solving geometric existence problems.
Notably, the exact location within the SCI hierarchy reveals the true complexity of the problem. Analogously,
in computational spectral theory, the general spectral problem resides in Π3 \ ∆3, demonstrating that no
spectral problem is more challenging than this. However, the task of computing spectra of Schrödinger
operators with bounded potentials falls within Σ1 \∆1, low enough in the hierarchy to allow for algorithms
that will never make a mistake and provide error control, making them useful in computer-assisted proofs.
A key question arises: Which computational problems in Weinberger’s program are low enough in the SCI
hierarchy to allow for use in computer-assisted proofs, and how high can the computational problems become
in the SCI hierarchy?

2.4. Blow-up of the 3D Euler equation with smooth initial data – Verification of computations. The
problem of proving blow-up of the 3D Euler equation with smooth initial data is considered one of the major
open problems in nonlinear PDEs. In connection with this problem, T. Hou poses, in Problem 2 in [49],
the question: “In problems where mathematical analysis precedes a computer-assisted step: How can we
ensure that the formulation of the problem is correctly posed so that computability and non-computability of
a problem can be determined?” This question is motivated by the challenge of proving finite-time blow-up
of the 3D Euler equation with smooth initial data through a computer-assisted proof – which was recently
announced by J. Chen and T. Hou [32, 33] (see also [31]), thereby solving a century-long open problem.
Consider the 3D Euler equations

(2.1) ut + (u · ∇)u = −∇p, ∇ · u = 0.

The delicate issue is that a blow-up of the solution to (2.1) would imply instability in terms of unbounded-
ness [117] of the forward operator taking the initial data to the solution at a given time. One might initially
think, as suggested in [117], that this means that 3D Euler blow-up is not computable (depending on the
problem’s formulation). Indeed, the solution operator’s unboundedness typically yields the PDE solution’s
non-computability [99]. This complication could hinder the prospects of a computer-assisted proof, where
the validity of the computational step needs to be verifiable. However, the situation is far more nuanced.
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Hou further notes: “It could be misleading to conclude that the 3D Euler blow-up is not computable based
on one formulation and one metric that are not suitable to study the potential stable blow-up of the 3D Euler
equation.” The SCI hierarchy is designed to respond to Hou’s question, as it can accommodate any com-
putational problem in any metric space, addressing the many subtleties of non-computability in computer-
assisted proofs. Hou’s point is subtle, in particular as the SCI framework identifies phase transitions [11,35]
in non-computable problems (that means /∈ ∆1 in the SCI language) with a so-called breakdown epsilon
ε0 > 0 [11, 35]. More precisely, for a computational problem with breakdown epsilon ε0 > 0, one cannot
compute an approximation to ε-accuracy if ε < ε0. However, it is possible to compute an ε-accurate ap-
proximation if ε0 < ε (see [11, 35] as well as Problem 5 (J. Lagarias) in [49] related to Smale’s 9th problem
and its extensions). In particular, every computer-assisted proof relying on a computational approximation
computes this approximation to some accuracy ε ≥ 0. If this ε satisfies ε > ε0, the non-computability of the
problem becomes completely irrelevant.

Consider the following main theorem in [32], which yields the finite time blow-up of the 3D Euler equa-
tions with smooth initial data. The appropriate definitions needed for Theorem 2.3 can be found in §6.1
in [32].

Theorem 2.3 (Chen, Hou – Theorem 4 in [32]). Let (θ̄0, ω̄0, ū, c̄l, c̄ω) be the approximate self-similar profile
constructed in Section 6.4.2 of [32] andE∗ = 5 ·10−6. Assume that even initial data θ0 and odd ω0 of (6.13)
in [32] are compactly supported with size S(0) defined in Definition 6.2 in [32] and satisfy

E(ω0 − ω̄, θ0,x − θ̄0,x, θ0,y − θ̄0,y) < E∗,

where E is defined in (2.13) in [32]. For E∗ = 5 · 10−6, there exists a constant C(S(0)) depending on S(0)

such that if the initial rescaling factor Cl(0) (6.11) satisfies Cl(0) < C(S(0)), we have

(2.2) ‖ω − ω̄‖L∞ , ‖θx − θ̄0,x‖L∞ , ‖θy − θ̄0,y‖L∞ < 200E∗, |ux(t, 0)− ūx(0)|, |c̄ω − cω| < 100E∗

for all time. In particular, we can choose smooth initial data ω0, θ0 ∈ C∞c in this class with finite energy
‖u0‖L2 <∞ such that the solution to the physical equations (2.3)-(2.5) in [32] with these initial data blows
up in finite time T .

Equation (2.2) establishes that the breakdown epsilon, ε0, for the task of computing the solution to a
rescaled 3D Euler equation (as given in (6.13) of [32]) for all time and for a specific set of initial values, is
bounded by 200E∗. Hence, the first part of Theorem 2.3 becomes a statement in the SCI framework. Specif-
ically, ε0 ≤ 10−3. The key here is that the bound ε0 ≤ 10−3 on the breakdown epsilon is enough to imply
the asserted blow-up. In particular, the unboundedness of the forward operator, potentially implying non-
computability of the 3D Euler equation, is irrelevant for the computer-assisted proof. The SCI framework
elucidates why the apprehensions presented in [117] (regarding the unboundedness of the forward operator
for 3D Euler) are not relevant to the work of Chen and Hou. The only thing that matters is that the breakdown
epsilon is sufficiently small to imply the asserted blow-up, which Chen and Hou prove.

2.5. Smale’s problem on the existence of iterative generally convergent algorithms. An example of how
the SCI hierarchy encompasses important foundational results is illustrated by the question of computing
zeros of polynomials through the iterative application of a rational map, such as Newton’s method [108].
The issue with Newton’s method is that it may not always converge. This challenge prompted S. Smale to
ask whether an alternative algorithm to Newton’s method exists [109]: “Is there any purely iterative generally
convergent algorithm for polynomial zero finding?” He conjectured that the answer is ‘no’. C. McMullen
addressed this problem in [94] and found that the answer is ‘yes’ for polynomials of degree three but ‘no’
for those of higher degrees (see also [95, 110]). However, in [45], P. Doyle and C. McMullen demonstrated
a striking phenomenon: the problem can be solved using several limits for quartic and quintic polynomials.
Indeed, Smale’s question and the results provided by Doyle and McMullen are classification problems within
the SCI hierarchy (see the detailed discussion in §10).
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3. THE SCI HIERARCHY - AN INFORMAL INTRODUCTION

We give an informal description of the SCI hierarchy to present the main results, and provide detailed
definitions in §7. The SCI hierarchy is based on the concept of a computational problem. This is described
by a function

Ξ : Ω→M

that we want to compute, where Ω is some domain, and (M, d) is a metric space. For example, Ξ(T ) =

sp(T ) (the spectrum) for some bounded operator T ∈ Ω andM is the collection of non-empty compact sub-
sets of C equipped with the Hausdorff metric. The SCI was first introduced in the paper “On the Solvability
Complexity Index, the n-pseudospectrum and approximations of spectra of operators” [71] to introduce the
concept of several limits for spectral computations. The SCI of a spectral problem is the smallest number of
successive limits needed to compute the solution. However, the main issue was left open in the paper above:
is it necessary to use several limits? In other words, could the SCI collapse to one for all spectral problems
or, in fact, for all problems in scientific computing? Moreover, as is easily seen, a hierarchy based on only
the number of limits needed is not refined enough to capture the boundaries of what is possible in spectral
computation.

In this paper, we introduce the general SCI hierarchy (see §7 for the formal definition) for all types of
computational problems, and the mainstay of the hierarchy is the ∆α

k classes. The α is related to the model
of computation as explained below. Informally, we have the following description. Given a collection C of
computational problems,

(i) ∆α
0 is the set of problems that can be computed in finite time, the SCI = 0.

(ii) ∆α
1 is the set of problems that can be computed using one limit (the SCI = 1) with control of the

error, i.e., ∃ a sequence of algorithms {Γn} such that d(Γn(A),Ξ(A)) ≤ 2−n, ∀A ∈ Ω.
(iii) ∆α

2 is the set of problems that can be computed using one limit (the SCI = 1) without error control,
i.e., ∃ a sequence of algorithms {Γn} such that limn→∞ Γn(A) = Ξ(A), ∀A ∈ Ω.

(iv) ∆α
m+1, for m ∈ N, is the set of problems that can be computed by using m limits, (the SCI ≤ m),

i.e., ∃ a family of algorithms {Γnm,...,n1
} such that

lim
nm→∞

. . . lim
n1→∞

Γnm,...,n1
(A) = Ξ(A), ∀A ∈ Ω.

In general, this hierarchy can only be refined if there is some extra structure on the metric space M. The
hierarchy typically does not collapse, and we have:

(3.1) ∆α
0 ( ∆α

1 ( ∆α
2 ( . . . ( ∆α

m ( . . . .

However, depending on the collection C of computational problems, the hierarchy (3.1) may terminate for
a finite m or continue for arbitrary large m. For computational spectral problems, the hierarchy terminates;
see Figure 1 and Figure 2.

The SCI hierarchy can be refined if the metric spaceM allows for convergence from “above” and “be-
low”, for example, when considering the Hausdorff metric, which is natural for spectral problems. The
motivation behind the refinement is to characterize the intricate classifications of different problems. For
example, consider Ω to be the class of all diagonal operators T ∈ B(l2(N)) of the form

(3.2) T =


a1

a2

a3

. . .

 , aj ∈ C.

The problem of computing the spectrum sp(T ) of such T s is trivially not in ∆α
1 . However, one can simply

choose an algorithm Γn to collect {aj}nj=1 and then one has that Γn(T ) → sp(T ) as n → ∞. Thus, the
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problem of computing spectra of operators in Ω is in ∆α
2 . However, we have an extra feature not captured

by the hierarchy (3.1). Indeed, we have that

Γn(T ) ⊂ sp(T ), ∀n ∈ N.

In particular, we have convergence from below, which is much stronger than just convergence since Γn(T )

always produces a correct output. Such convergence becomes incredibly important as it provides an error
control from below. Moreover, the hierarchy (3.1) does not capture this important feature. This motivates
the Σα1 class, which captures the concept of convergence from below. Similarly, the Πα

1 class captures a
convergence from above. Informally, for spectral problems, we have the following additions to (3.1):

(1) ∆α
0 = Πα

0 = Σα0 is the set of problems that can be solved in finite time, the SCI = 0.
(2) Σα1 : We have ∆α

1 ⊂ Σα1 ⊂ ∆α
2 and Σα1 is the set of problems for which there exists a sequence of

algorithms {Γn} such that for every A ∈ Ω we have Γn(A) → Ξ(A) as n → ∞. However, Γn(A)

is always contained in the 2−n neighbourhood of Ξ(A).
(3) Πα

1 : We have ∆α
1 ⊂ Πα

1 ⊂ ∆α
2 and Πα

1 is the set of problems for which there exists a sequence of
algorithms {Γn} such that for every A ∈ Ω we have Γn(A)→ Ξ(A) as n→∞. However, the 2−n

neighbourhood of Γn(A) always contains Ξ(A).
(4) Σαm is the set of problems that can be computed by passing tom limits and computing them-th limit

is a Σα1 problem.
(5) Πα

m is the set of problems that can be computed by passing to m limits, and computing the m-th
limit is a Πα

1 problem.

Schematically, the general SCI hierarchy can be viewed in the following way:

(3.3)

Πα
0 Πα

1 Πα
2

∆α
0 ∆α

1 Σα1 ∪Πα
1 ∆α

2 Σα2 ∪Πα
2 ∆α

3 · · ·

Σα0 Σα1 Σα2

=

=

( ( ( ( ((
(

(

(

(

(

(

(

(

(

(

Note that the highlighted Σα1 and Πα
1 classes are crucial as they guarantee the existence of algorithms that

will never make mistakes. Thus, they become crucial in computer-assisted proofs, see §6.

Remark 3.1 (The general SCI hierarchy). The above sketch of the SCI hierarchy with convergence from
below and above is well suited when considering the Hausdorff metric. However, the SCI hierarchy extends
immediately to any metric space where there is a total ordering, for example, forM = R and for decision
problems where M = {0, 1} = {No,Yes}. For example, for decision problems, a Σα1 classification of
a computational problem with domain Ω means that there is a sequence of algorithms {Γn} such that for
A ∈ Ω, Γn(A) will provide the correct output for large n (however, we do not know how big n must be), but
if Γn(A) = Yes, then the answer to the decision problem is Yes. A similar reversed statement holds for Πα

1

classifications of decision problems.

Remark 3.2 (The meaning of the α, the model of computation). The α in the superscript indicates the
model of computation, which is described in §7. For α = G, the underlying algorithm is general and can
use any tools at its disposal. The purpose is to ensure that lower bounds become universal regardless of
the model of computation. The reader may think of a Blum–Shub–Smale (BSS) [19] machine or a Turing
machine [116] with access to any oracle, although a general algorithm is even more powerful. However,
for α = A, only arithmetic operations and comparisons are allowed. In particular, if rational inputs are
considered, the algorithm is a Turing machine, and in the case of real inputs, a BSS machine. Hence, a result
of the form /∈ ∆G

k is stronger than /∈ ∆A
k . Indeed, a /∈ ∆G

k result is universal and holds for any model of
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computation. Moreover, ∈ ∆A
k is stronger than ∈ ∆G

k , and similarly for the Πα
k and Σαk classes. Note that

classical hierarchies, such as the arithmetical hierarchy [98], become special cases of the SCI hierarchy (see
Proposition A.5 discussed in the appendix for completeness), and hence we keep the similar notation.

4. MAIN THEOREM ON THE GENERAL COMPUTATIONAL SPECTRAL PROBLEM

All formal definitions needed can be found in §7, and in particular the definition of a computational
problem {Ξ,Ω,M,Λ} in (7.1). For A ∈ Ω, where Ω is an appropriate domain of operators, we define the
problem functions

Ξsp(A) := sp(A) (spectrum), Ξe-sp(A) := spess(A) (essential spectrum)(4.1)

ΞNsp,ε(A) := spN,ε(A) (N -pseudospectrum) Ξzsp(A) := Yes if z ∈ sp(A), No otherwise.(4.2)

Here sp(A) denotes the spectrum, spess(A) the essential spectrum (invariant under compact perturbations)
and spN,ε(A) denotes the (N, ε)-pseudospectrum [25, 69]

(4.3) spN,ε(A) := cl
({
z ∈ C : ‖(A− zI)−2N ‖2

−N
> 1/ε

})
, N ∈ Z≥0, ε > 0,

where we use the convention that ‖(A − zI)−2N ‖ = ∞ when z ∈ sp(A). This set has been popular
in spectral theory, analysis of pseudo differential operators and non-Hermitian quantum mechanics. For
computing the spectrum/essential spectrum/(N, ε)-pseudospectrum, we consider computational problems
{Ξ,Ω,M,Λ} a la the ones in Example 7.1 in §7 (i.e., with respect to the Hausdorff metric). For the final
problem of determining if z ∈ sp(A), the metric space becomes the discrete metric on {No,Yes}. To avoid
trivialities for this final problem, when considering self-adjoint classes of operators, we will restrict to z ∈ R,
and when considering compact operators, we will restrict to z 6= 0. The key question then becomes:

Given a problem function Ξ of the form (4.1) or (4.2) with a domain Ω and evaluation set
Λ, where in the SCI hierarchy is the computational problem {Ξ,Ω,M,Λ}?

Definition 4.1 (Dispersion). We say that the dispersion of an operator A ∈ B(l2(N)) is bounded by the
function f : N→ N if

Df,m(A) := max{‖(I − Pf(m))APm‖, ‖PmA(I − Pf(m))‖} → 0 as m→∞.

Note that for every operator A there is always a function f that bounds its dispersion since APm, PmA
are compact and {Pn} converges strongly to the identity. However, no function f acts as a uniform bound
for all operators. Nevertheless, there are important (sub)classes of operators having well-known uniform
bounds, which should be mentioned:

(i) Banded operators with bandwidth less than d: f(k) = k + d. More generally, we can consider
operators with sparse matrices (only finitely many non-zero entries in each row and column) where
f captures the sparsity pattern. For example, for discrete Schrödinger operators on l2(Z2), we can
choose an ordering of the lattice sites so that f(k)− k = O(

√
k).

(ii) Band-dominated and weakly band-dominated operators: f(k) = 2k. For definitions and properties
of band and band-dominated operators see [88, 100, 104]. Weakly band-dominated operators can be
found in [92].

(iii) Laurent/Toeplitz operators with piecewise continuous generating function: f(k) = k2 (cf. [26]
and [80, Proposition 5.4]).

(iv) LetF be a family of bounded operators with a common bound f . Then f̃ , given by f̃(k) = f(k)+k,
is a common bound for all operators in the Banach algebra which is generated by F .

Without loss of generality, we assume that f is strictly increasing and f(n) > n. We are also interested in
operators where the control of the growth of the resolvent is bounded.
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Definition 4.2 (Controlled growth of the resolvent). Let g : [0,∞) → [0,∞) be a continuous function,
vanishing only at x = 0 and tending to infinity as x → ∞ with g(x) ≤ x. We say that a closed operator A
with a non-empty spectrum on the Hilbert spaceH has controlled growth of the resolvent by g if

(4.4) ‖(A− zI)−1‖−1 ≥ g(dist(z, sp(A))) ∀z ∈ C,

where we use the convention ‖B−1‖−1 := 0 if B has no bounded inverse.

Notice that for every bounded operator A there always exists such a g (define g(α) := min{‖(A −
zI)−1‖−1 : z ∈ C with dist(z, sp(A)) = α}, taking continuity and compactness into account) although
there is no g that works for all A.

Remark 4.3 (Assumptions on Λ). To make the “additional knowledge” g available for the algorithms, we
assume that Λ also contains the constant functions gi,j : A 7→ g(i/j) (i, j ∈ N), which provide the values of
g in all positive rational numbers. When considering the case of ∆1-information and arithmetic algorithms
over Q, we assume that g maps Q≥0 to Q≥0 without loss of generality (e.g. by replacing g with a suitable
piecewise linear function). In the case when the dispersion of the operator is known, the values f(m)

(m ∈ N) shall be available to the algorithms as constant evaluation functions. When computing problems
with SCI = 1 for Ωf (and Ωfg), our algorithms also require the knowledge of a null sequence {cm}m∈N ⊂ Q
such that Df,m(A) ≤ cm.

We consider the following domains defined below. In the cases of bounded dispersion or controlled
growth of the resolvent, we assume that we are given either f or g as above.

ΩB := bounded operators ΩN := bounded normal operators,

ΩSA := bounded self-adjoint operators ΩC := compact operators,

Ωf := bounded oper. w/ dispersion bounded by f Ωg := bounded oper. w/ contr. res. growth by g.

Ωfg := Ωf ∩ Ωg ΩD := bounded, diagonal, self-adjoint operators.

Recall that in the case of {Ξzsp,ΩD} or {Ξzsp,ΩSA} we take z to be real, and in the case of {Ξzsp,ΩC} we
take z 6= 0. Given the different domains, we can now state the main theorem for bounded operators.

Theorem 4.4 (The bounded computational spectral problem). Given the setup above, we have the following
classification results in the SCI hierarchy.

(i) Spectrum:

∆G
3 63 {Ξsp,ΩB} ∈ ΠA

3 (all oper.), ∆G
2 63 {Ξsp,ΩN} ∈ ΣA2 (normal),

∆G
2 63 {Ξsp,ΩSA} ∈ ΣA2 (self-adj.), ΣG1 ∪ΠG

1 63 {Ξsp,ΩC} ∈ ∆A
2 (compact),

∆G
2 63 {Ξsp,Ωf} ∈ ΠA

2 (disp. bound. by f), ∆G
2 63 {Ξsp,Ωg} ∈ ΣA2 (resolvent growth bound. by g),

∆G
1 63 {Ξsp,Ωfg} ∈ ΣA1 ∆G

1 63 {Ξsp,Ωf ∩ ΩN} ∈ ΣA,eigv
1 .

(ii) Essential spectrum:

∆G
3 63 {Ξe-sp,ΩB} ∈ ΠA

3 (all oper.), ∆G
3 63 {Ξe-sp,ΩN} ∈ ΠA

3 (normal),

∆G
3 63 {Ξe-sp,ΩSA} ∈ ΠA

3 (self-adj.), ∆G
2 63 {Ξe-sp,ΩD} ∈ ΠA

2 (self-adj. diag.),

∆G
2 63 {Ξe-sp,Ωf} ∈ ΠA

2 (disp. bound. by f), ∆G
3 63 {Ξe-sp,Ωg} ∈ ΠA

3 (resolvent growth bound. by g),

∆G
2 63 {Ξsp,Ωfg} ∈ ΠA

2 (res. growth bound. by g and disp. bound. by f).
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(iii) N -Pseudospectrum:

∆G
2 63 {ΞNsp,ε,ΩB} ∈ ΣA2 (all oper.), ∆G

2 63 {ΞNsp,ε,ΩN} ∈ ΣA2 (normal),

∆G
2 63 {ΞNsp,ε,ΩSA} ∈ ΣA2 (self-adj.), ΣG1 ∪ΠG

1 63 {ΞNsp,ε,ΩC} ∈ ∆A
2 (compact),

∆G
1 63 {ΞNsp,ε,Ωf} ∈ ΣA1 (disp. bound. by f), ∆G

2 63 {ΞNsp,ε,Ωg} ∈ ΣA2 (resolvent growth bound. by g),

∆G
1 63 {Ξsp,Ωfg} ∈ ΣA1 (res. growth bound. by g and disp. bound. by f).

(iv) Is z in the spectrum?:

∆G
3 63 {Ξzsp,ΩB} ∈ ΠA

3 (all oper.), ∆G
3 63 {Ξzsp,ΩN} ∈ ΠA

3 (normal),

∆G
3 63 {Ξzsp,ΩSA} ∈ ΠA

3 (self-adj.), ∆G
2 63 {Ξzsp,ΩC} ∈ ΠA

2 (compact),

∆G
2 63 {Ξzsp,Ωf} ∈ ΠA

2 (disp. bound. by f), ∆G
3 63 {Ξzsp,Ωg} ∈ ΠA

3 (resolvent growth bound. by g),

∆G
2 63 {Ξzsp,ΩD} ∈ ΠA

2 (self-adj. diag.), ∆G
2 63 {Ξsp,Ωfg} ∈ ΠA

2 (res. growth bound. by g and disp. bound. by f).

Remark 4.5. To gain the ΣA1 algorithms for ΞNsp,ε we need an upper bound for ‖A‖ when N > 0 (without
this we gain a ∆A

2 classification). No such knowledge is needed for the other towers of algorithms.

Remark 4.6. The proofs also show that the above lower bounds for compact operators hold when consider-
ing self-adjoint compact operators.

5. MAIN THEOREMS ON COMPUTATIONAL QUANTUM MECHANICS

Here, we formally state the results summarised in §1. All formal definitions needed can be found in §7,
and in particular the definition of a computational problem {Ξ,Ω,M,Λ} in (7.1). We consider the spectral
mappings Ξsp, Ξsp,ε from (4.1) for Schrödinger operators:

(5.1) H = −∆ + V, V : Rd → C.

We assume that the information the algorithm can read is point samples V (x) for x ∈ Qd. In particular,
Λ is as in 7.1 in §7. Moreover, M is the collection of non-empty closed subsets of C with the standard
Attouch–Wets metric (7.4). If we fix the domain of H such that it is appropriate for a class of potentials V ,
the spectrum of H is uniquely determined by V . The basic question is therefore:

Given a class of Schrödinger operators −∆ + V ∈ Ω, let Ξ be either Ξsp or Ξsp,ε, Λ and
M as above, where in the SCI hierarchy is the computational problem {Ξ,Ω,M,Λ}?

Though we have stuck to the Hilbert space L2(Rd) for simplicity, the algorithms we construct can also be
adapted for other spaces commonly found in applications such as L2(R>0).

Bounded Potentials. We first consider cases with bounded potential. In particular, let φ : [0,∞) → [0,∞)

be some increasing function and M > 0, define

Ωφ := {H : D(H) = W2,2(Rd), V ∈ BVφ(Rd), ‖V ‖∞ ≤M},

Ωφ,g := {H ∈ Ωφ : ‖(−∆ + V − zI)−1‖−1 ≥ g(dist(z, sp(H)))},

where

(5.2) BVφ(Rd) = {f : TV(f[−a,a]d) ≤ φ(a)},

(f[−a,a]d means f restricted to the box [−a, a]d) with TV being the total variation of a function in the sense
of Hardy and Krause (see [97]). Here as in §4, g : [0,∞) → [0,∞) is a continuous strictly increasing
function with g(x) ≤ x, vanishing only at x = 0 and tending to infinity as x→∞.

Note that the set Ωφ requires more than V just being locally of bounded variation. There is a universal
upper bound across the class on the growth of the total variation of the potential function as we restrict the
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function to a larger set. The class Ωφ,g includes self-adjoint Schödinger operators in Ωφ; however, it is much
larger. We denote the class of self-adjoint Schödinger operators in Ωφ by Ωφ,SA.

Remark 5.1 (Assumptions on Λ). In addition to containing the point sampling functions fx such that
fx(V ) = V (x) for x ∈ Qd, we have the following. As done in the case of bounded Hilbert space op-
erators discussed in Remark 4.3, the additional knowledge of g, describing the growth of the resolvent,
is available for the algorithms by assuming that Λ also contains the constant functions gi,j : V 7→ g(i/j)

(i, j ∈ N), which provide the values of g in all positive rational numbers (again in the case of ∆1-information
and arithmetic algorithms over Q, we assume that g(Q≥0) ⊂ Q≥0 without loss of generality). Moreover, Λ

contains the constant functions φn : V 7→ φ(n) for n ∈ N and we assume without loss of generality that
φ(n) ∈ Q.

Remark 5.2 (The upper bounds hold both in the Turing and BSS model). Note that the results in Theorem
5.3 and Theorem 5.5 hold with inexact input (∆1 information) as well as with exact input. Hence, our results
are valid in both the Turing and the BSS models. To avoid extra notation, we will write {Ξ,Ω} ∈ ∆/Π/Σ

rather than the correct notation {Ξ,Ω}∆1 ∈ ∆/Π/Σ.

Theorem 5.3 (Bounded potential). Given the above setup, we have the following classification results.

∆G
1 63 {Ξsp,Ωφ} ∈ ΠA

2 , ∆G
1 63 {Ξsp,ε,Ωφ} ∈ ΣA1 ,

∆G
1 63 {Ξsp,Ωφ,g} ∈ ΣA1 , ∆G

1 63 {Ξsp,ε,Ωφ,g} ∈ ΣA1 ,

∆G
1 63 {Ξsp,Ωφ,SA} ∈ ΣA,eigv

1 .

Remark 5.4. When considering the problem of computing approximate eigenvectors by arithmetic algo-
rithms, we need a suitable way of encoding the space. We choose do to so via computing coefficients of a
function with respect to an orthonormal basis in L(Rd), where each of these is a simple function consisting
of trigonometric and rational functions.

As will be evident from the proof techniques, one can build towers of algorithms for operators with more
general classes of potentials (for example, L1(Rd) ∩ BVloc(Rd) or L2(Rd) ∩ BVloc(Rd)), however, the
height of these towers will be higher than the ones considered in this paper. The main future task is to obtain
exact values of the SCI of the spectrum, given the different potential classes.

Unbounded Potentials. We obtain a rather intriguing phenomenon for sectorial operators. Namely, the SCI
of both the spectrum and the pseudospectrum is one, but no type of error control is possible. In particular,
suppose we have non-negative θ1, θ2 such that θ1 + θ2 < π. Define

(5.3) Ω∞ = {V ∈ C(Rd) : ∀x arg(V (x)) ∈ [−θ2, θ1], |V (x)| → ∞ as x→∞}.

We define the operator H via the minimal operator h as: H = h∗∗, h = −∆ + V, D(h) = C∞c (Rd). When
V ∈ Ω∞, it follows that H has compact resolvent, a result that we also establish as a part of the proof of the
following theorem.

Theorem 5.5 (Unbounded potential). Given the above setup, we have the following classification results

ΣG1 ∪ΠG
1 63 {Ξsp,Ω∞} ∈ ∆A

2 , ΣG1 ∪ΠG
1 63 {Ξsp,ε,Ω∞} ∈ ∆A

2 .

Given the compact resolvent of H , it is natural that these problems have the same SCI classification as
for compact operators ΩC (see Theorem 4.4 in §4). The continuity assumption on V in Theorem 5.5 ensures
that the discretization used converges. However, tweaking the approximation can weaken this assumption to
include potentials with certain discontinuities.
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6. COMPUTING THE NON-COMPUTABLE - THE ROLE OF THE SCI HIERARCHY IN

COMPUTER-ASSISTED PROOFS

Computer-assisted proofs using numerical approximations have become essential in mathematics. An
increasing number of famous conjectures and theorems have been proven using computer-assisted proofs.
A highly incomplete list in arbitrary order includes the Dirac–Schwinger conjecture [51–59], the Double-
Bubble conjecture [73], Kepler’s conjecture (Hilbert’s 18th problem) [67, 68], Smale’s 14th problem [115],
the 290-theorem [18], the weak Goldbach conjecture [76], blow-up of the 3D Euler equation with smooth
initial data [32, 33], low dimensional topology [60, 61] etc. In all of these cases, the proofs are based on
numerical computations with approximations. Hence, a key question will always be: Given a problem that
needs to be computed to secure a computer-assisted proof, can the computation be done with verification
that is 100% reliable? Alternatively, asked more broadly:

Question I: Which computational problems are suitable for computer-assisted proofs?

The instinct would normally be that the computational problem must be in ∆A
1 , or computable in the words

of Turing. This is not the case. The computer-assisted proof of Dirac–Schwinger conjecture and Kepler’s
conjecture were done by computing non-computable problems, i.e., /∈ ∆G

1 , as explained below. Several cases
of important conjectures have been solved by computer-assisted proof, where the computational problem is
higher up in the SCI hierarchy than ∆G

1 . Hence, the SCI hierarchy is instrumental in answering Question I
above as follows.

(i) Classifications in the SCI hierarchy - Which problems are safe in computer-assisted proof? In addition
to problems in the class ∆A

1 , problems in the classes ΣA1 and ΠA
1 can be used in computer-assisted proofs

regardless of the metric spaceM (see Remark 3.1) that induces the different classifications. However, the
use of problems in ΣA1 or ΠA

1 depends on the phrasing of the conjecture. For example, suppose the conjec-
tured statement is that spectra of operators in a certain class of self-adjoint discrete Schrödinger operators
never intersect a certain open interval I . Such a statement can be falsified given the new ΣA1 classifica-
tion of computing spectra of discrete Schrödinger operators. Indeed, suppose one has located a candidate
Schrödinger operator H for a counterexample; however, one does not know the spectrum of H . One can
use one of the new algorithms realizing the ΣA1 classification, and if sp(H) ∩ I 6= ∅, the algorithm will
eventually demonstrate this intersection with a 100% guarantee, thus falsifying the conjecture. Similarly,
decision problems in ΣA1 and ΠA

1 can be used in computer-assisted proof.

(ii) A computer-assisted proof typically requires an SCI hierarchy classification. A computer-assisted proof
that relies on numerical computations typically requires proof of a ∆A

1 , ΣA1 or ΠA
1 classification in the SCI

hierarchy. Indeed, a mathematician facing a computational problem to complete a computer-assisted proof
will likely have to ask: where in the SCI hierarchy is the problem? If this is not already known, then
one must prove it, and, as the examples below suggest, this classification is typically done implicitly in
the proofs. Sometimes, this is trivial; however, sometimes, this may be very delicate, as in the proof of
Kepler’s conjecture, and intricate and technical, as in the proof of the Dirac–Schwinger conjecture.

(iii) Understanding the higher end of the SCI hierarchy helps to answer Question I. Answering Question I
above becomes an infinite classification theory. Hence, given a particular computational problem that is
desirable to use in a computer-assisted proof, one may not know the answer to the question whether this
problem is in an appropriate class of the SCI hierarchy. However, one may know an upper bound, say ΠA

3 .
The question is whether extra features of the computational problem would allow for a classification lower
in the SCI hierarchy. Existing classification in the SCI hierarchy will, therefore, be invaluable. In fact, the
solution to the problem of computing spectra of Schrödinger operators evolved in this way, where initially,
there was a crude classification of ΠA

3 . By gradually learning which extra assumptions were needed to
achieve classifications further down in the hierarchy, we eventually reached the sharp ΣA1 classification,
yielding a classification suitable for computer-assisted proofs.
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Below are examples of successful computer-assisted proofs with the corresponding SCI hierarchy classi-
fication of the main computational problem.

Dirac–Schwinger conjecture - SCI classification: ∈ ΣA1 , /∈ ∆G
1 : We discussed the details in §2.2.

Boolean Pythagorean triples problem - SCI classification: ∈ ΠA
1 , 6∈ ∆G

1 : The Boolean Pythagorean triples
problem asks if it is possible to color each of the positive integers either red or blue, so that no Pythagorean
triple of integers a, b, c, satisfying a2 + b2 = c2 are all the same color. For example, in the Pythagorean
triple 3, 4 and 5 ( 32 + 42 = 52), if 3 and 4 are coloured red, then 5 must be coloured blue. This is true
for integers up to n = 7824. The computer-assisted proof, performed by M. Heule, O. Kullmann, and V.
Marek (2016) [77], is based on showing that this is not true for n = 7825. While it is a combinatorial task
checking the problem for any finite set of integers (and hence ∈ ∆A

0 ), it is clearly not ∈ ∆G
0 for infinite

sets of integers. Nevertheless, the problem is clearly ∈ ΠA
1 , which is why it was possible to verify the

counterexample.

Group theory: Aut(F5) has property (T ) - SCI classification : ∈ ΣA1 , /∈ ∆G
1 : The fact that the automor-

phism group of the free group on five generators has Kazhdan’s property (T ), was shown by M. Kaluba, P.
Nowak and N. Ozawa [81]. The proof relies on a decision problem involving a minimizer of a semi-definite
program (actually a root of a positive definite matrix that is a minimizer). The minimizer is computed us-
ing floating-point arithmetic. Hence, it is, at best (if one could do a backward error analysis), equivalent
to solving the semi-definite program with inexact input. Computing minimizers to semi-definite programs
with inexact yet arbitrary small precision is /∈ ∆G

1 [11]. Showing that the final decision problem used
on [81] is ∈ ΣA1 requires an argument, which we do not repeat here. However, it is similar to the argument
above, arguing why Kepler’s conjecture could be verified.

Kepler’s Conjecture (Hilbert’s 18th problem) - SCI classification: ∈ ΣA1 , /∈ ∆G
1 : Kepler conjectured that

no packing of congruent balls in Euclidean three-space has density greater than that of cubic close packing
and hexagonal close packing arrangements. The Flyspeck program, led by T. Hales [67, 68], provides a
fully computer-assisted verification, where parts of the numerical computations in the computer-assisted
proof are based on deciding the feasibility of about 50000 linear programs with irrational inputs. Such de-
cision problems are /∈ ∆G

1 , and in fact generally higher than ΣG1 , as established using the SCI framework
in [11]. However, in the special cases of the linear programs used in the proof of Kepler’s conjecture, one
establishes the needed ΣA1 .
Blow-up of the 3D Euler equation – Upper bounds on breakdown-epsilons: An essential part of the proof
establishes that the breakdown epsilon, ε0, for computing the solution to a rescaled 3D Euler equation is
bounded by 10−3. The details are discussed in 2.4.

7. THE SOLVABILITY COMPLEXITY INDEX HIERARCHY AND TOWERS OF ALGORITHMS

Throughout this paper, we assume the following:

(7.1a) Ω is some set, called the domain,

(7.1b) Λ is a set of complex-valued functions on Ω, called the evaluation set,

(7.1c) M is a metric space,

(7.1d) The mapping Ξ : Ω→M, called the problem function.

The set Ω is the collection of objects that give rise to our computational problems {Ξ,Ω,M,Λ}. It can
be a family of matrices (infinite or finite), a collection of polynomials, a family of Schrödinger (or Dirac)
operators with a certain potential, etc. The problem function Ξ : Ω → M is what we are interested in
computing. It could be the set of eigenvalues of an n×n matrix, the spectrum of a Hilbert (or Banach) space
operator, a polynomial’s root(s), etc. Finally, the set Λ is the collection of functions that provide us with the
information we can read, such as matrix elements, polynomial coefficients, or pointwise values of a potential
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function of a Schrödinger operator. In most cases, it is convenient to consider a metric spaceM; however,
in the case of polynomials, it may be more useful to use a pseudo metric space (see Example 7.1 (III) ). To
explain this rather abstract setup in (7.1) we commence with the following examples:

Example 7.1.
(I) (Spectral problems) Let Ω = B(H), the set of all bounded linear operators on a separable Hilbert

space H, and the problem function Ξ be the mapping A 7→ sp(A) (the spectrum of A). Here
(M, d) is the set of all non-empty compact subsets of C provided with the Hausdorff metric d = dH

(defined precisely in (7.3)). The evaluation functions in Λ could, for example, consist of the family
of all functions fi,j : A 7→ 〈Aej , ei〉, i, j ∈ N, which provide the entries of the matrix representation
ofAw.r.t. an orthonormal basis {ei}i∈N. Of course, Ω could be a strict subset of B(H), for example,
the set of self-adjoint or normal operators, and Ξ could have represented the pseudospectrum, the
essential spectrum or any other interesting information about the operator.

(II) (Inverse problems) Let Ω = Binv(H)×H, where Binv(H) denotes the set of all bounded invertible
operators on H, and let the problem function Ξ be the mapping (A, b) 7→ A−1b, which assigns to a
linear problem Ax = b its solution x. The metric spaceM would simply beH and Λ the collection
of mappings {fi,j}i∈N,j∈Z+

where fi,j : (A, b) 7→ 〈Aej , ei〉 for j ∈ N and fi,0 : (A, b) 7→ 〈b, ei〉.
Also, here Ω could consist of operators with specific properties (off-diagonal decay, self-adjointness,
isometric properties).

(III) (Polynomial root finding) Let Ω = Ps, the set of polynomials of degree ≤ s over C and let the
problem function Ξ be the mapping p 7→ {α ∈ C | p(α) = 0} (the roots of p). Let (M, d) denote
the collection of finite sets of points in C equipped with the pseudo metric d : M×M → [0,∞],
defined by d(x, y) = min1≤i≤n,1≤j≤m |xj−yi|,where x = {x1, . . . , xn}, y = {y1, . . . , ym} ∈ M.
The pseudo metric is because the techniques of Doyle and McMullen that we will consider are based
on computing a single root of a polynomial (as Newton’s method does). In this case Λ is the finite
set of functions {fj}sj=1 where fj : p 7→ αj for p(t) =

∑s
k=1 αkt

k.
(IV) (Computational quantum mechanics) Let Ω = L∞(Rd) ∩ C(Rd) and let Ξ : V 7→ sp(−∆ + V ),

where the domain D(−∆ +V ) = W2,2(Rd) (the standard Sobolev space) and −∆ +V is the usual
Schrödinger operator. Given that the spectra are unbounded, we cannot use the Hausdorff metric
anymore but will let (M, dAW) denote the set of non-empty closed subsets of C equipped with the
Attouch–Wets metric (see (7.4)). In this case, a natural choice of Λ would be the set of all evaluations
fx : V 7→ V (x), x ∈ Qd.

(V) (Decision making) Let Ω denote the set of infinite matrices with values in {0, 1} and Ξ : Ω →
M = {Yes,No} where M is equipped with the discrete metric ddisc. The evaluation functions
would naturally be fi,j : A 7→ Ai,j , i, j ∈ N, the (i, j)th matrix coordinate of A. A typical example
of Ξ could be: Ξ({Ai,j}): Does {Ai,j} have a column containing infinitely many non-zero entries?
Naturally, Ω can be replaced with the natural numbers including zero Z+, and Ξ could be a question
about membership in a certain set, as in classical recursion theory. In this case the evaluation set
would be Λ = {λ} consisting of the function λ : Z+ → C, x 7→ x.

Given this setup and motivation, we can now define what we mean by a computational problem.

Definition 7.2 (Computational problem). Given a domain Ω; an evaluation set Λ, such that for A1, A2 ∈ Ω

then A1 = A2 if and only if f(A1) = f(A2) for all f ∈ Λ; a metric space M; and a problem function
Ξ : Ω→M, we call the collection {Ξ,Ω,M,Λ} a computational problem.

We aim to find and study families of functions (that we will sometimes refer to as algorithms) that permit
us to approximate the function Ξ. The central pillar of our framework is the concept of a tower of algorithms.
However, before that, we will define a general algorithm.
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Definition 7.3 (General Algorithm). Given a computational problem {Ξ,Ω,M,Λ}, a general algorithm is
a mapping Γ : Ω→M such that for each A ∈ Ω:

(i) there exists a finite subset of evaluations ΛΓ(A) ⊂ Λ,
(ii) the action of Γ on A is uniquely determined by {Af}f∈ΛΓ(A) where Af := f(A),

(iii) for every B ∈ Ω such that Bf = Af for every f ∈ ΛΓ(A), it holds that ΛΓ(B) = ΛΓ(A).

We will sometimes write Γ({Af}f∈ΛΓ(A)), in order to emphasise that Γ(A) only depends on the results
{Af}f∈ΛΓ(A) of finitely many evaluations.

Note that there are no restrictions on the operations allowed for a general algorithm. The only restriction
is that it can only take a finite amount of information, though it is allowed to adaptively choose the finite
amount of information it reads depending on the input (which may very well be infinite, say an infinite
matrix, or a function). Condition (iii) ensures that the algorithm is well-defined and consistent since, put in
simple words, changing the input A shall not affect the algorithm’s action as long as the change does not
affect the output of the relevant evaluations in ΛΓ(A).

Remark 7.4 (The purpose of a general algorithm). The purpose of a general algorithm is to have a definition
that will encompass any model of computation and allow lower bounds and impossibility results to become
universal. Given that there are several non-equivalent models of computation, lower bounds will be shown
with a general definition of an algorithm. Upper bounds will always be done with more structure on the
algorithms, for example, using a Turing machine or a Blum–Shub–Smale (BSS) machine.

However, more than a general algorithm is needed to describe the universe of computational problems.
We need the concept of towers of algorithms for that.

Definition 7.5 (Tower of algorithms). Given a computational problem {Ξ,Ω,M,Λ}, a tower of algorithms
of height k for {Ξ,Ω,M,Λ} is a collection of sequences of functions

Γnk : Ω→M, Γnk,nk−1
: Ω→M, . . . ,Γnk,...,n1 : Ω→M,

where nk, . . . , n1 ∈ N and the functions Γnk,...,n1
at the lowest level in the tower are general algorithms in

the sense of Definition 7.3. Moreover, for every A ∈ Ω,

Ξ(A) = lim
nk→∞

Γnk(A),

Γnk(A) = lim
nk−1→∞

Γnk,nk−1
(A),

...

Γnk,...,n2
(A) = lim

n1→∞
Γnk,...,n1

(A),

(7.2)

where S = limn→∞ Sn means convergence Sn → S in the (pseudo) metric spaceM. For simplicity, and
with a slight abuse of notation, we will often refer to {Γnk,...,n1} as a tower of algorithms, implicitly meaning
the whole collection as described above.

In this paper, we will discuss several types of towers: General towers, when there is no extra structure on
the functions at the lowest level in the tower; Doyle–McMullen towers, that are used for Smale’s problem on
polynomial root finding (see §10); Arithmetic towers, that restricts the algorithm to arithmetic operations and
comparisons; Radical towers, that also allows the operation of

√
· of a real number. A General tower will

refer to the very general definition in Definition 7.5 specifying that there are no further restrictions as will
be the case for the other towers. When we specify the tower type, we specify requirements on the functions
Γnk,...,n1

, in particular, what kind of operations may be allowed. We can now define an arithmetic tower of
algorithms and a radical tower of algorithms.
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Definition 7.6 (Arithmetic towers). Given a computational problem {Ξ,Ω,M,Λ}, where Λ is countable,
we define the following: An Arithmetic tower of algorithms of height k for {Ξ,Ω,M,Λ} is a tower of
algorithms where the lowest functions Γ = Γnk,...,n1 : Ω →M satisfy the following: For each A ∈ Ω the
mapping (nk, . . . , n1, {Af}f∈Λ)) 7→ Γnk,...,n1

(A) = Γnk,...,n1
({Af}f∈Λ) is recursive, and Γnk,...,n1

(A) is
a finite string of complex numbers that can be identified with an element inM. For arithmetic towers, we
let α = A

Remark 7.7 (Recursiveness). By recursive we mean the following. If f(A) ∈ Q for all f ∈ Λ, A ∈
Ω, and Λ is countable, then Γnk,...,n1

({Af}f∈Λ) can be executed by a Turing machine [116], that takes
(nk, . . . , n1, {Af}f∈Λ)) as input, and that has an oracle tape consisting of {Af}f∈Λ. If f(A) ∈ R (or C)
for all f ∈ Λ, then Γnk,...,n1

({Af}f∈Λ) can be executed by a Blum-Shub-Smale (BSS) machine [19] that
takes (nk, . . . , n1, {Af}f∈Λ)), as input, and that has an oracle that can access any Af for f ∈ Λ.

Remark 7.8 (Radical towers and beyond - the SCI and the insolvability of the quintic). Similarly to the
definition of an arithmetic tower, one could define a radical tower, α = R, by allowing, in addition to
arithmetic operations and comparisons, the operation

√
· on real numbers. In that case, the recursiveness

requirement above would mean recursive in the sense of a BSS machine with an oracle for computing
√
·.

In this case, the insolvability of the quintic becomes a question of the SCI with respect to a radical tower of
algorithms. Similarly, one could define other towers by allowing other operations.

Given the definition of a tower of algorithms, we can now define the main concept of this paper: the
Solvability Complexity Index (SCI). The SCI was first discussed in [71] for a specific spectral problem.
However, this definition extends to include general problems in computations.

Definition 7.9 (Solvability Complexity Index). Given a computational problem {Ξ,Ω,M,Λ}, it is said to
have Solvability Complexity Index SCI(Ξ,Ω,M,Λ)α = k with respect to a tower of algorithms of type α if
k is the smallest integer for which there exists a tower of algorithms of type α of height k. If no such tower
exists then SCI(Ξ,Ω,M,Λ)α = ∞. If there exists a tower {Γn}n∈N of type α and height one such that
Ξ = Γn1 for some n1 <∞, then we define SCI(Ξ,Ω,M,Λ)α = 0.

With the definition of the SCI, we can define the SCI hierarchy, for which any computational problem can
be classified. Without any extra structure on the metric spaceM, the ∆α

k classes are the finest refinement we
can obtain regarding the SCI. However, as described below, the hierarchy becomes much richer when more
structure is present.

Definition 7.10 (The Solvability Complexity Index hierarchy). Consider a collection C of computational
problems and let T be the collection of all towers of algorithms of type α for the computational problems in
C. Define

∆α
0 := {{Ξ,Ω} ∈ C | SCI(Ξ,Ω)α = 0}

∆α
m+1 := {{Ξ,Ω} ∈ C | SCI(Ξ,Ω)α ≤ m}, m ∈ N,

as well as

∆α
1 := {{Ξ,Ω} ∈ C | ∃ {Γn} ∈ T s.t. ∀A ∈ Ω d(Γn(A),Ξ(A)) ≤ 2−n}.

7.1. Extending the hierarchy for totally ordered M. When there is extra structure on the metric space
M, sayM = R orM = {0, 1}with the standard metric, one may be able to define convergence of functions
from above or below. This is an extra form of structure that allows for a type of error control. As we argue
below, this is important, for example, in computer-assisted proofs and crucial in scientific computing.
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Definition 7.11 (The SCI Hierarchy (totally ordered set)). Given the setup in Definition 7.10, suppose in
addition thatM is a totally ordered set. Define

Σα0 = Πα
0 = ∆α

0 ,

Σα1 = {{Ξ,Ω} ∈ ∆α
2 | ∃ {Γn} ∈ T s.t. Γn(A)↗ Ξ(A) ∀A ∈ Ω},

Πα
1 = {{Ξ,Ω} ∈ ∆α

2 | ∃ {Γn} ∈ T s.t. Γn(A)↘ Ξ(A) ∀A ∈ Ω},

where↗ and↘ denotes convergence from below and above respectively, as well as, for m ∈ N,

Σαm+1 = {{Ξ,Ω} ∈ ∆α
m+2 | ∃ {Γnm+1,...,n1

} ∈ T s.t. Γnm+1
(A)↗ Ξ(A) ∀A ∈ Ω},

Πα
m+1 = {{Ξ,Ω} ∈ ∆α

m+2 | ∃ {Γnm+1,...,n1
} ∈ T s.t. Γnm+1

(A)↘ Ξ(A) ∀A ∈ Ω}.

If the metric spaceM = {0, 1}, it is a totally ordered set, and hence, from Definition 7.11, we get the
SCI hierarchy for arbitrary decision problems.

7.2. Extending the hierarchy for spectral problems. In the case whereM is the collection of non-empty
closed subsets of another metric space (M′, d′) it is custom to equipM with the Hausdorff metric (bounded
case)

(7.3) dH(X,Y ) = max

{
sup
x∈X

inf
y∈Y

d′(x, y), sup
y∈Y

inf
x∈X

d′(x, y)

}
,

or the Attouch–Wets metric (unbounded case)

(7.4) dAW(A,B) =

∞∑
m=1

2−m min

{
1, sup
d′(x,x0)<m

|dist(x,A)− dist(x,B)|

}
,

where A and B are non-empty closed subsets ofM′, and where dist(x,A) denotes the distance between the
point x ∈M′ and A ⊂M′, and where x0 ∈M′ can be chosen arbitrarily.

Definition 7.12 (The SCI Hierarchy (Attouch–Wets/Hausdorff metric)). Given the set-up in Definition 7.10,
and suppose in addition that (M, d) has the Attouch–Wets or the Hausdorff metric induced by another metric
space (M′, d′), define, for m ∈ N,

Σα0 = Πα
0 = ∆α

0 ,

Σα1 = {{Ξ,Ω} ∈ ∆α
2 | ∃ {Γn} ∈ T , {Xn(A)} ⊂ M s.t. Γn(A) ⊂

M′
Xn(A),

lim
n→∞

Γn(A) = Ξ(A), d(Xn(A),Ξ(A)) ≤ 2−n ∀A ∈ Ω},

Πα
1 = {{Ξ,Ω} ∈ ∆α

2 | ∃ {Γn} ∈ T , {Xn(A)} ⊂ M s.t. Ξ(A) ⊂
M′

Xn(A),

lim
n→∞

Γn(A) = Ξ(A), d(Xn(A),Γn(A)) ≤ 2−n ∀A ∈ Ω},

where ⊂M′ means inclusion in the metric space M′, and {Xn(A)} is a sequence where Xn(A) ∈ M
depends on A. Moreover,

Σαm+1 = {{Ξ,Ω} ∈ ∆α
m+2 | ∃ {Γnm+1,...,n1

} ∈ T , {Xnm+1
(A)} ⊂ M s.t. Γnm+1

(A) ⊂
M′

Xnm+1
(A),

lim
nm+1→∞

Γnm+1
(A) = Ξ(A), d(Xnm+1

(A),Ξ(A)) ≤ 2−nm+1 ∀A ∈ Ω},

Πα
m+1 = {{Ξ,Ω} ∈ ∆α

m+2 | ∃ {Γnm+1,...,n1
} ∈ T , {Xnm+1

(A)} ⊂ M s.t. Ξ(A) ⊂
M′

Xnm+1
(A),

lim
nm+1→∞

Γnm+1(A) = Ξ(A), d(Xnm+1(A),Γnm+1(A)) ≤ 2−nm+1 ∀A ∈ Ω},

where d can be either dH or dAW.
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Remark 7.13 (Convergence from below and above). Intuitively, Definition 7.12 captures convergence from
below or above, respectively, up to a small error parameter 2−n. Indeed, in the case of the Hausdorff metric
case, it is easy to see that the above Definition 7.12 yields

Σα1 = {{Ξ,Ω} ∈ ∆α
2 | ∃ {Γn} ∈ T s.t. Γn(A) ⊂ N̄2−n(Ξ(A)) ∀A ∈ Ω},

Πα
1 = {{Ξ,Ω} ∈ ∆α

2 | ∃ {Γn} ∈ T s.t. N̄2−n(Γn(A)) ⊃ Ξ(A) ∀A ∈ Ω},

where N̄δ(ω) denotes the closed δ-neighbourhood of ω ⊂M′, and similar definitions for Σαm+1 and Πα
m+1.

Note that to build a Σ1 algorithm, it is enough, by taking subsequences, to construct Γn(A) such that
Γn(A) ⊂ N̄En(A)(Ξ(A)) with some computable En(A) that converges to zero.

Definition 7.14. Given a totally ordered metric space (M, d), we say that the metric is order respecting if
for any a, b, c ∈M with a ≤ b ≤ c we have d(a, b) ≤ d(a, c).

Proposition 7.15 (Properties of the SCI hierarchy). Given the setup, let (M, d) be either the Hausdorff or
Attouch–Wets metric or a totally ordered metric space with order respecting metric. Let k = 1, 2 or 3, then
we have the following.

(i) ∆G
k = ΣGk ∩ ΠG

k . In particular, if for a problem Ξ : Ω →M we have ∆G
k 63 {Ξ,Ω} ∈ Xα

k , where
X = Σ or Π and α denotes any type of tower, then {Ξ,Ω} 6∈ Y αk , where Y = Π or Σ respectively.

(ii) Suppose for a computational problem Ξ : Ω →M we have a corresponding convergent ΣAk tower
Γ1
nk,...,n1

and a corresponding convergent ΠA
k tower Γ2

nk,...,n1
. Suppose also that we can compute

for every A ∈ Ω the distance d(Γ1
nk,...,n1

(A),Γ2
nk,...,n1

(A)) to arbitrary precision using finitely
many arithmetic operations and comparisons. Then {Ξ,Ω} ∈ ∆A

k .

Finally, we also have the following property:

(iii) WhenM = {0, 1}, ∆α
k = Σαk ∩Πα

k for all k ∈ N and α = G,A.

The proof of Proposition 7.15 can be found in §A.

Remark 7.16. Part (i) of Proposition 7.15 shows that the classifications obtained in this paper are sharp in
the SCI hierarchy.

7.2.1. Computing approximate eigenvectors. Let C denote the collection of computation spectral problems
{Ξ,Ω,M,Λ} where Ω is a collection of normal operators on some Hilbert space H and Ξ(A) = sp(A) . If
we consider bounded operators,M is the collection of compact subsets of C equipped with the Hausdorff,
and in the unbounded caseM is the collection of closed subsets of C with the Attouch–Wets metric.

Σα,eigv
1 = {{Ξ,Ω} ∈ Σα1 | ∃ {Γn} ∈ T s.t. Γn(A) = {(λ1,n, ξ1,n), . . . , (λK,n, ξK,n)},

K = K(n) ∈ N, λj,n ∈ N̄2−n(sp(A)), ‖Aξj,n − λj,nξj,n‖ ≤ 2−n,

‖ξj,n‖ = 1 + an, |an| ≤ 2−n ∀j, ∪Kj=1λj,n → sp(A), n→∞, ∀A ∈ Ω}.

In words Σα,eigv
1 can be described as follows.

Σα,eigv
1 is the collection of computational spectral problems concerning normal operators

that are in Σα1 , where there exists an algorithm that can also compute approximate eigen-
vectors.

7.3. Inexact input. Suppose we are given a computational problem {Ξ,Ω,M,Λ}, and that Λ = {fj}j∈β ,
where β is some index set that can be finite or infinite. However, obtaining fj may be a computational task
on its own, which is exactly the problem in most areas of computational mathematics. In particular, for
A ∈ Ω, fj(A) could be the number e

π
j i for example. Hence, we cannot access fj(A), but rather fj,n(A)

where fj,n(A) → fj(A) as n → ∞. Or, just as for problems that are high up in the SCI hierarchy, it could
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be that we need several limits, in particular, one may need mappings fj,nm,...,n1
: Ω → D + iD, where D

denotes the dyadic rational numbers, such that

(7.5) lim
nm→∞

. . . lim
n1→∞

‖{fj,nm,...,n1
(A)}j∈β − {fj(A)}j∈β‖∞ = 0 ∀A ∈ Ω.

In particular, we may view the problem of obtaining fj(A) as a problem in the SCI hierarchy, where ∆1

classification would correspond to the existence of mappings fj,n : Ω→ D + iD such that

(7.6) ‖{fj,n(A)}j∈β − {fj(A)}j∈β‖∞ ≤ 2−n ∀A ∈ Ω.

This idea is formalized in the following definition.

Definition 7.17 (∆m-information). Let {Ξ,Ω,M,Λ} be a computational problem. Form ∈ N we say that Λ

has ∆m+1-information if each fj ∈ Λ is not available, however, there are mappings fj,nm,...,n1
: Ω→ D+iD

such that (7.5) holds. Similarly, for m = 0 there are mappings fj,n : Ω → D + iD such that (7.6) holds.
Finally, if k ∈ N and Λ̂ is a collection of such functions described above such that Λ has ∆k-information,
we say that Λ̂ provides ∆k information for Λ. Moreover, we denote the family of all such Λ̂ by Lk(Λ).

Note that we want to have algorithms that can handle all computational problems {Ξ,Ω,M, Λ̂} when
Λ̂ ∈ Lm(Λ). In order to formalize this, we define what we mean by a computational problem with ∆m

information.

Definition 7.18 (Computational problem with ∆m information). Given m ∈ N, a computational problem
where Λ has ∆m-information is denoted by {Ξ,Ω,M,Λ}∆m := {Ξ̃, Ω̃,M, Λ̃}, where

Ω̃ =
{
Ã = {fj,nm,...,n1

(A)}j,nm,...,n1∈β×Nm |A ∈ Ω, {fj}j∈β = Λ, fj,nm,...,n1
satisfy (*)

}
,

and (*) denotes (7.5) if m > 1 and (*) denotes (7.6) if m = 1. Moreover, Ξ̃(Ã) = Ξ(A), and we have
Λ̃ = {f̃j,nm,...,n1

}j,nm,...,n1∈β×Nm where f̃j,nm,...,n1
(Ã) = fj,nm,...,n1

(A). Note that Ξ̃ is well defined by
Definition 7.2 of a computational problem.

The SCI and the SCI hierarchy, given ∆m-information, are then defined in the standard obvious way. We
will use the notation

{Ξ,Ω,M,Λ}∆m ∈ ∆α
k

to denote that the computational problem is in ∆α
k given ∆m-information. WhenM and Λ are obvious then

we will write {Ξ,Ω}∆m ∈ ∆α
k for short.

8. PROOF OF THEOREM 4.4

We start the sections on the proofs of our main results with a simple but fundamental observation on the
smallest singular values σinf(B) of finite matrices B ∈ Cm×n, which constitutes one of the cornerstones
for most of the general algorithms we will construct in the subsequent proofs. Note that when dealing with
infinite-dimensional operators, we will also use the notation σinf to denote the injection modulus defined for
A ∈ B(H) on some Hilbert spaceH, as

σinf(A) := inf
‖x‖=1

‖Ax‖.

Proposition 8.1. Given a matrix B ∈ Cm×n and a number ε > 0, one can test with finitely many arithmetic
operations of the entries of B whether the smallest singular value σinf(B) of B is greater than ε.

Proof. The matrix B∗B is self-adjoint and positive semi-definite; hence, it has its eigenvalues in [0,∞).
The singular values of B are the square roots of these eigenvalues of B∗B. The smallest singular value is
greater than ε if and only if the smallest eigenvalue of B∗B is greater than ε2, which is the case if and only if
C := B∗B − ε2I is positive definite. It is well known that C is positive definite if and only if the pivots left
after Gaussian elimination (without row exchange) are all positive. Thus, if C is positive definite, Gaussian
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elimination leads to pivots that are all positive, and this requires finitely many arithmetic operations. If C is
not positive definite, then at some point, a pivot is zero or negative; at this point the algorithm aborts. An
alternative is the Cholesky decomposition. Although forming the lower triangular L ∈ Cn×n (if it exists)
such that C = LL∗ requires the use of radicals, the existence of L can be determined using finitely many
arithmetic operations. This follows from the standard Cholesky algorithm, and we omit the details. �

Proposition 8.2. Given a matrix B ∈ Cm×n with ∆1-information for the matrix entries of B, and η > 0,
we can compute σinf(B) to accuracy η using finitely many arithmetic operations and comparisons over Q.

Proof. Without loss of generality, we can assume that η ∈ Q. Let B̂ be a rational approximation of B,
obtained using ∆1-information, such that ‖B − B̂‖ ≤ η/2. Note that we can bound the operator norm
by the Frobenius norm and hence can guarantee ‖B − B̂‖ ≤ η/2 if each matrix entry of B̂ is accurate
to η(2

√
mn)−1 (we can choose a smaller rational accuracy parameter). It then follows that |σinf(B) −

σinf(B̂)| ≤ ‖B − B̂‖ ≤ η
2 . The proposition follows if we can compute σinf(B̂) to accuracy η/2. To do

this, let M ∈ N be such that M−1 < η/2. Using Proposition 8.1 (note that this only requires arithmetic
operations and comparisons over Q) and applying successive tests to ε = 1/M, 2/M, ..., we can compute
the smallest k ∈ N such that σinf(B̂) ≤ k/M . Our approximation is then given by k/M . �

Remark 8.3 (Proofs of {Ξ,Ω}∆1 ∈ ∆/Π/Σ). All our theorems are valid regardless of inexact input (∆1

information), and the main reason is Proposition 8.2. Only minor alterations need to be done in the proofs
to deal with inexact input, and there will be guidelines specifying where the changes are needed. Note that
there are much more numerically efficient procedures than in the proof of Proposition 8.2. However, the
purpose of Proposition 8.2 is to show that the algorithms we construct in this paper can be made to work in
a 100% rigorous manner on a Turing machine with inexact ∆1-information.

We will split the proof of Theorem 4.4 into several parts, and a brief roadmap for the proof is as follows.
We first deal with computing the spectra and pseudospectra of compact operators since the constructive
parts of the proof use a different (most likely more familiar) method, the finite section method, than the
proof for the other classes of operators. Step I of this part also contains one of the arguments used to prove
lower bounds throughout this paper and is written out in detail for the reader’s convenience. We then move
onto pseudospectra, where variants on the method of uneven sections are used to approximate the relevant
resolvent norms. In some cases, these towers are used directly to provide (with an additional limit) towers
of algorithms for the spectra. The proof that {Ξsp,Ωg} ∈ ΣA2 uses a very different method to those usually
found in the literature, a local estimation of the resolvent norm (using similar ideas to §8.2) together with
the function g gives rise to upper bounds on the distance of a point to the spectrum. This is then used in a
local search routine to compute the spectrum. The proof that {Ξsp,ΩB} /∈ ∆G

3 relies on reducing a decision
problem, known to require three limits, to {Ξsp,ΩB}. Proof that the decision problem requires three limits
is provided in §8.6 via a Baire category argument. The constructive proofs for essential spectra build on the
towers of algorithms for computing spectra but are more involved. We end with the problem Ξzsp where the
proof of lower bounds uses similar arguments for the other problem functions, and the construction of towers
of algorithms uses the towers constructed in §8.3 for the spectrum.

8.1. Spectra of compact operators.

Proof of Theorem 4.4 for compact operators. Step I: {Ξsp,ΩC} /∈ ΣG1 . We argue by contradiction and sup-
pose that there is a sequence {Γn} of general algorithms such that, for every A ∈ ΩC, Γn(A) → sp(A)

with Γn(A) ⊂ sp(A) + B2−n(0), and in particular each ΛΓn(A) is finite. Thus, we define N(A,n) :=
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max{i, j | fi,j ∈ ΛΓn(A)}. We consider an operator of the type

A := Ak ⊕ diag{0, 0, ...} with Ak :=



1 1

0
. . .

0

1 1

 ∈ Ck×k,

where we will choose the specific value of k later. Let C = diag{1, 0, 0, ...} then sp(C) = {0, 1} and
clearly A is compact with sp(A) = {0, 2}. We choose k to gain a contradiction as follows. There exists n
such that Γn(C) ∩ B1/4(1) 6= ∅. Let k > N(C, n). By this construction, it follows that Γn(C) = Γn(A).

Indeed, since any evaluation function fi,j ∈ Λ just provides the (i, j)-th matrix element, it follows by the
choice of k that for any evaluation functions fi,j ∈ ΛΓn(A) we have that that fi,j(A) = fi,j(C). Thus,
by assumption (iii) in the definition of a general algorithm (Definition 7.3), we get that ΛΓn(A) = ΛΓn(C)

which, by assumption (ii) in Definition 7.3, yields Γn(C) = Γn(A). But then Γn(A) ∩B1/4(1) 6= ∅, which
is impossible since Γn(A) ⊂ {0, 2}+B2−n(0), a contradiction.

Step II: {Ξsp,ΩC} /∈ ΠG
1 . This is essentially the same argument. Assume that there exists Γn such that

sp(A) ⊂ Γn(A) + B2−n(0). Let A and C be as before. But now we know that there exists n such that
Γn(C) ∩ B3/4(2) = ∅. We argue as before, choosing k > N(C, n), to get Γn(C) = Γn(A). But we must
have 2 ∈ Γn(A) +B2−n(0), a contradiction.

Step III: {ΞNsp,ε,ΩC} /∈ ΠG
1 ∪ΣG1 . For sufficiently small ε, we have the required separation such that the

above argument works for ΞNsp,ε. For larger ε, we appropriately rescale the operators in the argument.
Step IV: {Ξsp,ΩC} ∈ ∆A

2 . For n ∈ N, let Gn = 1
n (Z + iZ) ∩ Bn(0). For A ∈ ΩC let Γn(A) = {z ∈

Gn : σinf(Pn(A− zI)Pn) ≤ 1/n}, where Pn denotes the orthogonal projection onto the linear span of the
first n basis vectors. By Proposition 8.1, it is clear that this can be computed in finitely many arithmetical
operations and comparisons. Hence we are done if we can prove convergence, the proof of which will
make clear that we can make Γn(A) non-empty by replacing Γn(A) with Γm(n)(A) such that m(n) ≥ n is
minimal with Γm(n)(A) 6= ∅. Let ε > 0, then choose N > 2/ε. If n ≥ N and z ∈ Γn(A) then we must
have σinf(Pn(A − zI)Pn) ≤ ε/2. Hence there exists xn ∈ l2(N) of norm 1 and with xn = Pnxn such
that ‖(PnA− zI)xn‖ ≤ ε/2. A is compact and hence we can choose N large if necessary to ensure that
‖(I − Pn)A‖ ≤ ε/2. It follows that ‖(A− zI)xn‖ ≤ ε and hence z is in spε(A). Note that N does not
depend on the point z so for large n we have Γn(A) ⊂ spε(A).

Conversely, let z ∈ sp(A). The method of finite section converges for compact operators, and hence
there exists zn ∈ sp(PnAPn) with zn → z. Let wn ∈ Gn be of minimal distance to zn then for large n
we must have |wn − zn| ≤ 1/(

√
2n) and hence σinf(Pn(A − wnI)Pn) ≤ 1/(

√
2n) < 1/n. It follows that

wn ∈ Γn(A). Let ε > 0, then we can choose a finite set Sε ⊂ sp(A) with dH(Sε, sp(A)) < ε/2. Applying
the above argument to all points in Sε implies that for large n we must have that sp(A) ⊂ Γn(A) + Bε(0).

Hence, since ε > 0 was arbitrary, the fact that Γn(A) ⊂ spε(A) implies the required convergence.
Step V: {ΞNsp,ε,ΩC} ∈ ∆A

2 . This will follow from the classification of {ΞNsp,ε,Ωf} since we can use a
dispersion bounding function f(n) = n+ 1. Note that we do not necessarily know the dispersion bound (in
the form of the null sequence {cn}) and hence (see Remark 4.5) this provides a ∆A

2 tower (however not the
ΣA1 classification). �

Remark 8.4. To deal with ∆1-information in the above construction (Step IV), we can replace σinf(Pn(A−
zI)Pn) by a rational approximation accurate to 1/n2 (see Proposition 8.2) and the proof follows through
with minor changes.
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8.2. N -pseudospectrum. Since ΩSA ⊂ ΩN ⊂ Ωg ⊂ ΩB, Ωfg ⊂ Ωf and we have already dealt with
compact operators, we only need to show that {ΞNsp,ε,ΩB} ∈ ΣA2 , {ΞNsp,ε,Ωf} ∈ ΣA1 , {ΞNsp,ε,ΩSA} /∈ ∆G

2

and {ΞNsp,ε,Ωfg} /∈ ∆G
1 .

Proof of Theorem 4.4 for the pseudospectrum. Step I: {ΞNsp,ε,ΩB} ∈ ΣA2 . Let A ∈ ΩB, and ε > 0. We
introduce the following continuous functions γN : C→ R+, γNm : C→ R+ and γNm,n : C→ R+,

γN (z) :=
(

min
{
σinf

(
(A− zI)2N

)
, σinf

(
(A∗ − z̄I)2N

)})2−N

=
∥∥∥(A− zI)−2N

∥∥∥−2−N

γNm(z) :=
(

min
{
σinf

(
(A− zI)2NPm

)
, σinf

(
(A∗ − z̄I)2NPm

)})2−N

γNm,n(z) :=
(

min
{
σinf

(
(Pn(A− zI)Pn)2NPm

)
, σinf

(
(Pn(A∗ − z̄I)Pn)2NPm

)})2−N

,

where σinf(B) denotes the injection modulus of B, and in the terms such as σinf(PnBPm) the operator
PnBPm is regarded as element of B(Ran(Pm),Ran(Pn)). For the proof that γN (z) = ‖(A−zI)−2N ‖−2−N

see [71]. We define initial approximations Γ̂m,n(A) for spN,ε(A) by Γ̂m,n(A) := {z ∈ Gn : γNm,n(z) ≤ ε},
where Gj := (j−1(Z + iZ)) ∩ Bj(0). Writing γNm,n(z) ≤ ε as (γNm,n(z))2N ≤ ε2

N

and due to Proposition
8.1 it is clear that the computation of Γ̂m,n(A) requires only finitely many arithmetic operations on finitely
many evaluations {〈Aej , ei〉 : i, j = 1, . . . , n} of A. The problem with this tower is that it might produce
the empty set. To get round this and construct our ΣA2 arithmetical tower, there are several facts we will
state that can be found in [71]. First, γNm,n converges uniformly to γNm on compact subsets of C as n → ∞.
Second, γNm is non-increasing in m and converges uniformly to γN on compact subsets of C as m → ∞.
Finally, we have

(8.1) cl{z ∈ C : γNm(z) < ε} = {z ∈ C : γNm(A) ≤ ε}

for all ε > 0. Now it is straightforward to show via a Neumann series argument (see the proof that
{Ξsp,Ωg} ∈ ΣA2 below) that there exists a compact ball K such that if z /∈ K then γNm,n(z) > 2ε for
all m,n. In particular, by considering the minimum of γNm(·), this, together with the above closure property,
shows that the minimum is zero and {z ∈ C : γNm(A) ≤ ε} 6= ∅.

Now let z0 ∈ {z ∈ C : γNm(z) < ε}. On the compact setK, and for anym, the functions γNm,n and γNm are
Lipschitz continuous with a uniform Lipschitz constant. Using this and (8.1), it follows that for large enough
n, there exists zn ∈ Γ̂m,n(A) with zn → z0. Furthermore, if zn ∈ Γ̂m,n(A) and we select a subsequence
such that znj → z as nj →∞, we see that γNm(z) ≤ ε. These observations together imply that

lim
n→∞

Γ̂m,n(A) = {z ∈ C : γNm(A) ≤ ε} ⊂ spN,ε(A).

Since γNm converges to γN uniformly on compact sets and are uniformly Lipschitz, it is easy to show that
limm→∞{z ∈ C : γNm(A) ≤ ε} = spN,ε(A). Hence in order to construct our ΣA2 arithmetical tower we
define Γm,n(A) = Γ̂m,j(m,n)(A), where j(m,n) ≥ n is minimal such that Γ̂m,j(m,n)(A) 6= ∅. Such a
j(m,n) is guaranteed to exist and can be found by successively computing finitely many of the Γ̂m,k(A)’s.

Step II: {ΞNsp,ε,Ωf} ∈ ΣA1 . Let A be such that f is a bound for its dispersion, and ε > 0. Recall that
f(n) ≥ n+ 1 for every n. Define the composition FN := f ◦ · · · ◦ f of 2N copies of f . Besides the already
defined functions γN , γNm and γNm,n we additionally introduce ψNm := γNm,FN (m), i.e.

ψNm(z) :=
(

min
{
σinf

(
(PFN (m)(A− zI)PFN (m))

2NPm

)
, σinf

(
(PFN (m)(A

∗ − z̄I)PFN (m))
2NPm

)})2−N

,

and we define the desired approximations Γ̂m(A) for spN,ε(A) by Γ̂m(A) := {z ∈ Gm : ψNm(z) ≤ ε}.
Writing ψNm(z) ≤ ε as (ψNm(z))2N ≤ ε2

N

and using Proposition 8.1, we see that again the computation of
Γ̂m(A) requires only finitely many arithmetic operations on finitely many evaluations {〈Aej , ei〉 : i, j =

1, . . . , FN (m)} of A.
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Again, there exists a compact ball K ⊂ C such that γNm(z) > 2ε and ψNm(z) > 2ε for all z ∈ C \ K
and all m. Further note that ψNm converges to γNm uniformly on K. Indeed, since all z 7→ (PFN (m)(A −
zI)PFN (m))

2NPm and z 7→ (A − zI)2NPm are operator-valued polynomials of the same degree whose
coefficients converge in the norm due to the choice of the function FN , we can take into account that
|σinf(B+C)−σinf(B)| ≤ ‖C‖ holds for arbitrary bounded operators B,C, and we arrive at the conclusion
that |γNm(z)−ψNm(z)| → 0 as m→∞ uniformly with respect to z ∈ K. To construct a ΣA1 tower we bound
this difference using the sequence {cn} and the constant ‖A‖ (for the case N > 0 as follows).

If N = 0, then clearly we have ‖Pf(m)(A − zI)Pm − (A − zI)Pm‖ ≤ cm by definition of the {cn}.
Suppose that we have a bound

(8.2) ‖(PFN (m)(A− zI)PFN (m))
2NPm − (A− zI)2NPm‖ ≤ α(N,m, z),

for some function α(N,m, z). We can write

(PFN+1(m)(A− zI)PFN+1(m))
2N+1

Pm − (A− zI)2N+1

Pm

=
(
(PFN+1(m)(A− zI)PFN+1(m))

2N − (A− zI)2N
)
(PFN+1(m)(A− zI)PFN+1(m))

2NPm

− (A− zI)2N
(
(A− zI)2N − (PFN+1(m)(A− zI)PFN+1(m))

2N
)
Pm.

Using the fact that FN+1(m) = FN (FN (m)) and PFN (m)PFN+1(m) = PFN+1(m), we can bound the first
of the above terms in norm by α(N,FN (m), z)(‖A‖+ |z|)2N . Similarly, we can bound the second term in
norm by the same quantity. It follows that we can choose

α(N,m, z) = 2α(N − 1, FN−1(m), z)(‖A‖+ |z|)2N−1

and iterating this N times we can take

α(N,m, z) = 2Ncn (‖A‖+ |z|)2N−1, n = F
N(N−1)

2 (m),

such that (8.2) holds. Note that this estimate can be computed with finitely many arithmetic operations and
comparisons from the given data.

In order to simplify the notation, we choose a sequence (δm) which converges monotonically to zero such
that

γNm(z) + δm ≥ ψNm(z) ≥ γNm(z)− δm for every m and every z ∈ K.

Moreover, we point out that each of the functions z 7→ ψNm(z) is continuous on the compact set K, hence
even uniformly continuous, and we can assume without loss of generality that, for every m,

(8.3) |ψNm(z)− ψNm(y)| < δm for arbitrary z, y ∈ K, |z − y| < 1/m.

Now let ζε(A) := {z ∈ C : γN (z) ≤ ε}, ζε,m(A) := {z ∈ C : γNm(z) ≤ ε}, and Ψε,m(A) := {z ∈ C :

ψNm(z) ≤ ε}. By the discussion above, we conclude for all m ≥ k that

(8.4) ζε+δk,m(A) ⊃ ζε+δm,m(A) ⊃ Ψε,m(A) ⊃ ζε−δm,m(A) ⊃ ζε−δk,m(A).

Since, Pm ≤ Pm+1 and Pm → I strongly, γNm → γN monotonically from above pointwise (and hence
locally uniformly by Dini’s Theorem). Thus, by [71], ζε+δk,m(A) → ζε+δk(A) = spN,ε+δk(A) and
ζε−δk,m(A) → ζε−δk(A) = spN,ε−δk(A) as m → ∞. Hence, since spN,ε±δk(A) → spN,ε(A) as k → ∞,
(8.4) yields limm→∞Ψε,m(A) = spN,ε(A). To finish the convergence proof, we observe that it is clear
that on the one hand, Ψε,m(A) ⊃ Γ̂m(A). On the other hand, for sufficiently large m, it holds that for
every point x ∈ Ψε−δm,m(A) there is a point yx ∈ Gm with |x− yx| < 1/m and, by (8.3) we get
|ψNm(yx) − ψNm(x)| < δm that is yx even belongs to Γ̂m(A). Thus, Γ̂m(A) + B1/m(0) ⊃ Ψε−δm,m(A)

for sufficiently large m. Combining this, we arrive at

Ψε,m(A) +B1/k(0) ⊃ Γ̂m(A) +B1/m(0) ⊃ Ψε−δm,m(A) ⊃ Ψε−δk,m(A),
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for m ≥ k large. By the above, the sets on the left converge to spN,ε(A) +B1/k(0) as m→∞, and the sets
on the right converge to spN,ε−δk(A) for every k. Since both of these sets converge to spN,ε(A) as k →∞
this provides limm→∞ Γ̂m(A) = spN,ε(A). This shows that (upon altering as in Step I to avoid the empty
set), we can gain convergence in one limit without knowing {cn} and ‖A‖.

Now we have that |(ψNm(z))2N − (γNm(z))2N | ≤ α(N,m, z). Hence we define

Γ̃m(A) := {z ∈ Gm : (ψNm(z))2N ≤ ε2
N

− α(N,m, z), ε2
N

− α(N,m, z) > 0},

which can be computed in finitely many arithmetic operations and comparisons. Of course, this may be
empty, but it has the property that Γ̃m(A) ⊂ spN,ε(A). Suppose for a contradiction that we do not have
convergence to spN,ε(A). Without loss of generality, by taking a subsequence if necessary, there exists
zm ∈ spN,ε(A), z ∈ spN,ε(A) and δ > 0 such that γN (z) < ε, zm → z but dist(zm, Γ̃m(A)) ≥ δ. Let
ẑm ∈ Gm with ẑm → z. Then for large m we must have γN (ẑm) < ε. But α(N,m, ẑm) → 0 and hence
ẑm ∈ Γ̃m(A) for large m, the required contradiction. To finish, we define Γm(A) = Γ̂j(m)(A), where
j(m) ≥ m is minimal such that Γ̂j(m)(A) 6= ∅. Such a j(m) must exist, and hence, we avoid the empty set.
Finally, the fact that Γ̃m(A) ⊂ spN,ε(A) ensures we have ΣA1 convergence.

Step III: {ΞNsp,ε,ΩSA} /∈ ∆G
2 . Assume for a contradiction that there is a sequence {Γk} of general

algorithms such that Γk(A)→ spN,ε(A) for all A ∈ ΩSA, and consider operators of the type

(8.5) A :=

∞⊕
r=1

Alr with {lr} ⊂ N and An :=



1 1

0
. . .

0

1 1

 ∈ Cn×n.

Then sp(An) = {0, 2}, hence A is bounded, self-adjoint, and sp(A) = {0, 2} as well. For sufficiently
small ε the (N, ε)-pseudospectrum is a certain neighbourhood of {0, 2} disjoint from B 1

2
(1), indepen-

dently of the choice of {lr}. In order to find a counterexample, we construct an appropriate sequence
{lr} ⊂ N by induction: For C := diag{1, 0, 0, 0, . . .} one has sp(C) = {0, 1}. Choose k0 := 1 and
l1 > N(C, k0), where N(C, n) = max{i, j | fi,j ∈ ΛΓn(C)} for n ∈ N. Suppose that l1, . . . , ln are al-
ready chosen. Then we have that sp (Al1 ⊕ · · · ⊕Aln ⊕ C) = {0, 1, 2}, hence, there exists a kn such that
Γk (Al1 ⊕ · · · ⊕Aln ⊕ C) ∩ B 1

n
(1) 6= ∅ for every k ≥ kn, where B 1

n
(1) denotes the closed ball of radius

1/n and centre 1. Now, choose

(8.6) ln+1 > N(Al1 ⊕ · · · ⊕Aln ⊕ C, kn)− l1 − l2 − . . .− ln.

By construction, it follows that

(8.7) Γkn(⊕∞r=1Alr ) ∩B 1
n

(1) = Γkn(Al1 ⊕ . . .⊕Aln ⊕ C) ∩B 1
n

(1) 6= ∅ ∀ n ∈ N.

Indeed, since any evaluation function fi,j ∈ Λ just provides the (i, j)-th matrix element, it follows by (8.6)
that for any evaluation functions fi,j ∈ ΛΓkn

(Al1⊕· · ·⊕Aln⊕C) we have that fi,j(Al1⊕· · ·⊕Aln⊕C) =

fi,j(⊕∞r=1Alr ). Thus, by assumption (iii) in the definition of a General algorithm (Definition 7.3), we get that
ΛΓkn

(Al1 ⊕· · ·⊕Aln ⊕C) = ΛΓkn
(⊕∞r=1Alr ) which, by assumption (ii) in Definition 7.3, yields (8.7). So,

from (8.7), we see that the point 1 is contained in the partial limiting set of the sequence {Γk(⊕∞r=1Alr )}∞k=1

which approximates spN,ε(A), a contradiction. For general N and ε, we apply the above argument after
appropriate re-scaling.

Step IV: {ΞNsp,ε,Ωfg} /∈ ∆G
1 . This is clear by considering diagonal operators. The point is that given

any general ∆G
1 tower, Γn, and any n, Γn(A) uses only finitely many matrix evaluations {fi,j(A) : i, j ≤

N0(n,A)}. We can choose m large such that m > N0(1, 0) and set fm,m(A) = 2ε + 2. Then Γ1(A) =

Γ1(0) ⊂ B1/2+ε(0), a contradiction since 2ε+ 2 ∈ spN,ε(A). �
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Remark 8.5. To deal with ∆1-information in Step I of the above proof, we can replace (γNm,n(z))2N by a
suitable rational approximation accurate to 1/n (see Proposition 8.2). For Step II, we can replace (ψNm(z))2N

and α(N,m, z) by rational approximations from above accurate to 1/m. If ε is not rational, we approximate
with a rational from below accurate to 1/n2 in Step I and 1/m2 in Step II.

8.3. Spectrum. Again, using the inclusions ΩSA ⊂ ΩN ⊂ Ωg ,when considering the spectrum we only need
to show that {Ξsp,Ωfg} ∈ ΣA1 , {Ξsp,Ωf} ∈ ΠA

2 , {Ξsp,Ωg} ∈ ΣA2 , {Ξsp,ΩB} ∈ ΠA
3 , {Ξsp,ΩSA} /∈ ∆G

2 ,
{Ξsp,Ωf} /∈ ∆G

2 and {Ξsp,ΩB} /∈ ∆G
3 (the fact that {Ξsp,Ωfg} /∈ ∆G

1 is clear by considering diagonal
operators). We then prove that {Ξsp,Ωf ∩ ΩN} ∈ ΣA,eigv

1 separately since the argument easily extends to
the Schrödinger case in §9.1. The proof that {Ξsp,ΩB} /∈ ∆G

3 relies on some results from decision-making
problems which we shall prove in Section 8.6.

Proof of Theorem 4.4 for the spectrum. Step I: We begin with the easy cases that {Ξsp,Ωf} ∈ ΠA
2 and

{Ξsp,ΩB} ∈ ΠA
3 . To prove that {Ξsp,Ωf} ∈ ΠA

2 , let ε > 0 and let Γεn denote the height one arithmetic tower
to compute the (classical) pseudospectrum of operators in Ωf . Using the fact that spN,ε(A) are continuous
with respect to the parameter ε > 0, and converge to sp(A) as ε→ 0 for every A, we simply set Γm,n(A) =

Γ
1/m
n (A). This is a ΠA

2 tower since sp0,1/m(A) contains sp(A). {Ξsp,ΩB} ∈ ΠA
3 is similar and just requires

the additional first limit.
Step II: {Ξsp,Ωg} ∈ ΣA2 . Let g : [0,∞) → [0,∞) be as in Definition 4.4, in particular, continuous,

vanishing only at x = 0 and diverging to ∞ as x → ∞. Note that g(x) ≤ x for all x, and without loss
of generality, we can also assume that g is strictly increasing. Then the inverse function h(y) := g−1(y) :

[0,∞)→ [0,∞) is well defined, continuous, strictly increasing, h(y) ≥ y for every y, and limy→0 h(y) = 0.
Let K ⊂ C be a compact set and δ > 0. We introduce a δ-grid for K by Gδ(K) := (K + Bδ(0)) ∩

(δ(Z + iZ)), where Bδ(0) denotes the closed ball of radius δ centred at 0. Without loss of generality, we
may assume that δ−1 is an integer, and obviously, Gδ(K) is finite. Moreover, introduce hδ(y) := min{kδ :

k ∈ N, g(kδ) > y} and observe that for each y, evaluating hδ(y) requires only finitely many evaluations of
g. Also, notice that h(y) ≤ hδ(y) ≤ h(y) + δ. For a given function ζ : C → [0,∞) we define sets Υδ

K(ζ)

as follows: For each z ∈ Gδ(K) let Iz := Bhδ(ζ(z))(z) ∩ (δ(Z + iZ)). Further

• If ζ(z) ≤ 1 then introduce the set Mz of all w ∈ Iz for which ζ(w) ≤ ζ(v) holds for all v ∈ Iz .
• Otherwise, if ζ(z) > 1, just set Mz := ∅.

Now define

(8.8) Υδ
K(ζ) :=

⋃
z∈Gδ(K)

Mz.

Notice that for the computation of Υδ
K(ζ), only finitely many evaluations of ζ and g are required.

Claim: Let K be a compact set containing the spectrum of A and 0 < δ < ε < 1/2. Further assume that
ζ is a function with ‖ζ − γ‖∞,K̂ := ‖(ζ − γ)χK̂‖∞ < ε on K̂ := (K + Bh(diam(K)+2ε)+ε(0)), where χK̂
denotes the characteristic function of K̂. Finally, let

(8.9) u(ξ) := max{h(3ξ + h(t+ ξ)− h(t)) + ξ : t ∈ [0, 1]}.

Then we have that dH(Υδ
K(ζ), sp(A)) ≤ u(ε) and limξ→0 u(ξ) = 0.

Proof of claim: To prove the claim, let z ∈ Gδ(K) and notice that Iz ⊂ K̂ since, for every v ∈ Iz ,

|z − v| ≤ hδ(ζ(z)) ≤ hδ(γ(z) + ε) ≤ h(dist(z, sp(A)) + ε) + δ

≤ h(diam(K) + δ + ε) + δ.
(8.10)

Suppose that Mz 6= ∅. Note that by (4.4), the monotonicity of h, and the compactness of sp(A) there is a
y ∈ sp(A) of minimal distance to z with |z − y| ≤ h(γ(z)). Since ‖ζ − γ‖∞,K̂ < ε we get |z − y| ≤
h(ζ(z) + ε). Hence, at least one of the v ∈ Iz , let’s say v0, satisfies |v0 − y| < h(ζ(z) + ε)− h(ζ(z)) + δ.
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Noting again that γ(v0) ≤ dist(v0, sp(A)), we get ζ(v0) < γ(v0) + ε < h(ζ(z) + ε) − h(ζ(z)) + 2ε. By
the definition of Mz this estimate now holds for all points w ∈Mz and we conclude that, for all w ∈Mz ,

dist(w, sp(A)) = h(g(dist(w, sp(A)))) ≤ h(γ(w))

≤ h(ζ(w) + ε) ≤ h(h(ζ(z) + ε)− h(ζ(z)) + 3ε).
(8.11)

This observation holds for every z ∈ Gδ(K) and all w ∈Mz , hence all points in Υδ
K(ζ) are closer to sp(A)

than u(ε).
Conversely, take any y ∈ sp(A) ⊂ K. Then there is a point z ∈ Gδ(K) with |z − y| < δ < ε, hence

ζ(z) < γ(z) + ε ≤ dist(z, sp(A)) + ε < 2ε < 1. Thus, Mz is not empty and contains a point that is closer
to y than h(ζ(z)) + ε ≤ h(2ε) + ε ≤ u(ε). Finally, notice that the mapping

(t, ξ) 7→ h(h(t+ ξ)− h(t) + 3ξ) + ξ

is continuous on the compact set [0, 1] × [0, 1], hence uniformly continuous. Moreover, for every fixed t it
tends to 0 as ξ → 0, thus we can conclude u(ξ)→ 0, and we have proved the claim. �

Define the function γm,n(z,A) := min{σinf(Pn(A − zI)Pm), σinf(Pn(A∗ − z̄I)Pm)}, and note that
we can compute an approximation to γm,n(z,A) from above to within an accuracy of 1/m in finitely many
arithmetic operations and comparisons using Proposition 8.2 (this also includes the case of ∆1-information).
Call this approximation function ζm,n(z,A) and we can assume that it takes values in 1

2mN. As n → ∞,
γm,n(·, A) converges to γm(z,A) := min{σinf((A− zI)Pm), σinf((A

∗− z̄I)Pm)}monotonically from be-
low. By taking successive maxima over n and then minima overm if necessary: min1≤j≤m max1≤k≤n ζj,k(z,A),

we can assume that ζm,n(·, A) is non-decreasing in n and non-increasing in m. Since γm,n obeys these
monotonicity relations, this preserves the error bound of 1/m. It follows that ζm,n(·, A) converges to
ζm(·, A) which takes values in the set 1

2mN (i.e. ζm,n(z,A) is eventually constant for a given z) and such
that γm(z,A) ≤ ζm(z,A) ≤ γm(z,A) + 1/m.

Now let

Γ̂m,n(A) = Υ
1/2m

Bm(0)(ζm,n).

To show that this provides an arithmetic tower of algorithms, note that the computation of Υ
1/2m

Bm(0)(ζm,n)

requires only finitely many evaluations of ζm,n, and the finite number of constants g(k/m) ≤ 1, k = 1, 2, . . ..
Since G1/2m(Bm(0)) is finite and we restricted values of ζm,n to 1

2mN, we must have that for large n,
Γ̂m,n(A) is constant and equal to Υ

1/2m

Bm(0)(ζm). Denote this eventually constant set by Γ̂m(A). We must now

adapt Γ̂m,n such that the output is non-empty and such that we gain the desired convergence in the Hausdorff
topology yielding the ΣA2 classification. For any Γ̂m,n(A) let S(m,n,A) := maxz∈Γ̂m,n(A) ζm,n(z,A),

where we take the maximum over the empty set to be +∞. Note that Γ̂m,n(A) is empty if and only if
ζm,n(z,A) > 1 for all z ∈ G1/2m(Bm(0)) and note also that S(m,n,A) can be computed using finitely
many arithmetic operations and comparisons from the given data.

For given m,n, if n < m then set Γm,n(A) = {0}. Otherwise, compute S(k, n,A) for m ≤ k ≤ n. If
there exists such a k with S(k, n,A) ≤ g(2−m), then choose a minimal such k and set Γm,n(A) = Γ̂k,n(A)

(which must be non-empty by the definition of S(m,n,A)), otherwise set Γm,n(A) = {0}. This defines an
arithmetic algorithm mapping into the appropriate metric space (in particular, it outputs a non-empty compact
set). Since ζm,n increases to ζm and g is continuous, if Γ̂l(A) 6= ∅ then S(l, n, A) is finite for all n ∈ N. For
such an l, we must have S(l, n, A) non-decreasing in n, convergent to Sl(A) := maxz∈Γ̂l(A) g(ζl(z,A)).

On the other hand if Γ̂l(A) = ∅ then ζl(z,A) > 1 for all z ∈ G1/2l(Bl(0)) and the fact that ζm,n increases
to ζm shows that S(l, n, A) = +∞ for large n.

Define the function γ(z) := min{σinf(A − zI), σinf(A
∗ − zI)} = ‖(A − zI)−1‖−1. To see why

min{σinf(A− zI), σinf(A
∗ − zI)} = ‖(A− zI)−1‖−1 see for example [71]. Now

σinf(Pn(A− zI)Pm) = inf{‖Pn(A− zI)Pmξ‖ : ξ ∈ Ran(Pm), ‖ξ‖ = 1}
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and σinf((A − zI)Pm) = inf{‖(A − zI)Pmξ‖ : ξ ∈ Ran(Pm), ‖ξ‖ = 1}. Thus, since Pm → I strongly
and Pm+1 ≥ Pm, then γm → γ pointwise and monotonically from above, and by Dini’s Theorem, the
convergence is uniform on every compact set, in particular on the ball K := Bm0(0), with a fixed m0 >

2‖A‖ + 4. Also, γm,n → γm pointwise monotonically from below as n → ∞, hence again by Dini’s
Theorem it follows that the convergence is uniform on the ball K = Bm0

(0). Outside this ball we have, for
n > m, by a Neumann argument

γm,n(z) = min{σinf(Pn(A− zI)PnPm), σinf(Pn(A∗ − zI)PnPm)}

≥ min{σinf(Pn(A− zI)Pn), σinf(Pn(A∗ − zI)Pn)}

= ‖(Pn(A− zI)Pn)−1‖−1 = |z|‖(Pn − z−1PnAPn)−1‖−1 ≥ 2.

For all n > m > m0, the points in the finite set G1/2m(Bm(0)) \ K lead to function values of ζm,n
being larger than 1 (since ζm,n approximates γm,n to within 1/m), hence Γ̂m,n(A) = Υ

1/2m

K (ζm,n).
Fix ε ∈ (0, 1/2). Then there is an m1 > m0 with m1 > 3/ε such that ‖γ − ζm‖∞,K̂ < ε/3 on
K̂ := Bh(diam(K)+2ε)+ε(0) for all m > m1. Moreover, for every m there is an n1(m) such that ‖γm −
γm,n‖∞,K̂ < ε/3 for all n > n1(m). This yields

‖γ − ζm,n‖∞,K̂ ≤ ‖γ − γm‖∞,K̂ + ‖γm − γm,n‖∞,K̂ + ‖γm,n − ζm,n‖∞,K̂
≤ ε/3 + ε/3 + 1/m < ε

(8.12)

whenever m > m1 and n > n1(m). Hence, by the above claim, we must have that dH(Γ̂m,n(A), sp(A)) ≤
u(ε) whenever m > m1 and n > n1(m). Since this bound tends to zero as ε→ 0, it is proved that

lim
m→∞

lim sup
n→∞

dH(Γ̂m,n(A), sp(A)) = 0.

It follows that there exists N0 ∈ N minimal such that SN0
(A) < +∞, equivalently such that Γ̂N0

(A) 6= ∅.
Monotonicity of ζm in m and the fact that the grid refines itself now ensures that if m ≥ N0 then Sm(A) <

+∞. Furthermore, the above claim (as well as continuity in g) shows that limm→∞ Sm(A) = 0. Let
N1(m) ≥ m be minimal such that SN1(m) ≤ g(2−m). It follows that we must have limn→∞ Γm,n(A) =

Γ̂N1(m)(A). We must also have limm→∞ Γm(A) = sp(A). Furthermore,

(8.13) max
z∈Γm(A)

g(dist(z, sp(A))) ≤ max
z∈Γm(A)

γ(z,A) ≤ SN1(m)(A) ≤ g(2−m).

But g is strictly increasing so that we must have Γm(A) ⊂ sp(A) +B2−m(0) and hence ΣA2 convergence.
Step III: {Ξsp,Ωfg} ∈ ΣA1 . This is very similar to Step II, but now we use the function f to collapse the

first limit. We can approximate

Fn(z,A) := min{σinf(Pf(n)(A− zI)Pn), σinf(Pf(n)(A
∗ − z̄I)Pn)}+ cn,

from above to within an accuracy 1/n in finitely many arithmetic operations and comparisons using Propo-
sition 8.2 (this also includes the case of ∆1-information). Call this approximation function F̃n(z,A) and
assume that F̃n(z,A) ∈ Q. Note that by definition of Df,n and the fact that Df,n(A) ≤ cn, we must have
F̃n(z,A) ≥ γn(z,A) and without loss of generality (take successive minima if necessary) we can assume
that F̃n converges locally uniformly to γ monotonically from above. Now let Γn(A) = Υ

1/2n

Bn(0)(F̃n). Argu-
ing as before, we see that this provides an arithmetic tower of algorithms, is non-empty for large n (so we
can assume this holds for all n without loss of generality), and has limn→∞ Γn(A) = sp(A). Hence, we
only need to argue for the ΣA1 error control. Define

(8.14) En(A) = sup
z∈Γn(A)

h2−n(F̃n(z,A)),

then since h2−n ≥ h, we must have En(A) ≥ supz∈Γn(A) dist(z, sp(A)). Moreover, supz∈Γn(A) F̃n(z,A)

converges to 0 as n → ∞. Since h2−n ≤ h + 2−n, it follows that En(A) → 0 and hence (by the usual
argument of taking subsequences if necessary) we have {Ξsp,Ωfg} ∈ ΣA1 .
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Step IV: {Ξsp,ΩSA} /∈ ∆G
2 . This is almost the same argument as the pseudospectrum case. Assume that

there is a sequence {Γk} of general algorithms such that Γk(A) → sp(A) for all A ∈ ΩSA, and consider
operators of the type (8.5). The spectrum is {0, 2} disjoint to B 1

2
(1), independently of the choice of {lr}.

By the same procedure as before, one obtains again that 1 belongs to the partial limiting set of Γk(A) for a
certain A, hence a contradiction.

Step V: {Ξsp,Ωf} /∈ ∆G
2 . Recall that Ωf denotes the set of bounded operators on l2(N) whose dispersion

is bounded by f . Thus, to show the claim, it suffices to show that for any height one general tower of
algorithms {Γn}n∈N for Ξsp, there exists a weighted shift S, with (Su)1 = 0 for all u ∈ l∞(N) and
Sen = αnen+1 where α = {αn}n∈N ∈ l∞(N), such that Γm(S) 9 sp(S) when m → ∞, Obviously
S ∈ Ωf (recall f(n) ≥ n+ 1). To construct such an S, we let

α = {0, 0, . . . , 0, 1, 0, 0, . . . , 0, 1, 1, 0, 0, . . . , 0, 1, 1, 1, 0, . . .}, αlj+1, αlj+2, . . . , αlj+j = 1,

for some sequence {lj}j∈N where lj+1 > lj + 2j that we will determine. Observe that regardless of the
choice of {lj}j∈N we have that sp(S) = B1(0) (the closed disc centered at zero with radius one). Indeed,
on the one hand ‖S‖ = 1, hence sp(S) ⊂ B1(0). On the other hand, one can define the elementary shift
operator V : en 7→ en+1, n ∈ N, and its left inverse V − : en+1 7→ en, n ∈ N, e1 7→ 0. Then the shifted
copies (V −)ljSV lj converge strongly to the limit operator V whose spectrum sp(V ) = B1(0) is necessarily
contained in the essential spectrum of S (cf. [100] or [88]).

To construct S we will inductively choose {lj}j∈N with the help of another sequence {mj}j∈Z+
that

will also be chosen inductively. Before we start, define, for any A ∈ Ωf and m ∈ N, N(A,m) to be the
smallest integer so that ΛΓm(A) only includes matrix entries Aij = 〈Aej , ei〉 with i, j ≤ N(A,m). Now let
m0 = 1 and choose l1 > N(0,m1). Suppose that l1, . . . , ln and m0, . . . ,mn−1 are already chosen. Note
that sp(PrS) = {0}, since PrS = PrSPr can be regarded as a r × r-triangular matrix with zero-diagonal.
Thus, since by assumption {Γm}m∈N is a General tower of algorithms for Ξ1, there is an mn such that
Γm(Pln+n+1S) ⊂ B 1

2
(0), for all m ≥ mn. Let

(8.15) ln+1 > N(Pln+n+1S,mn) such that also ln+1 > ln + 2n.

Then, it follows that Γmn(S) = Γmn(Pln+1S) = Γmn(Pln+n+1S). Indeed, since any evaluation function
fi,j ∈ Λ just provides the (i, j)-th matrix element, it follows by (8.15) that for any evaluation functions fi,j ∈
ΛΓmn

(S) we have that fi,j(S) = fi,j(Pln+1
S) = fi,j(Pln+n+1S). Thus, by assumption (iii) in the definition

of a General algorithm (Definition 7.3), we get that ΛΓmn
(S) = ΛΓmn

(Pln+1
S) = ΛΓmn

(Pln+n+1S) which,
by assumption (ii) in Definition 7.3 implies the assertion. Thus, by the choice of the sequences {lj}j∈N and
{mj}j∈Z+ , it follows that Γmn(S) = Γmn(Pln+n+1S) ⊂ B 1

2
(0) for every n. Since sp(S) = B1(0) we

observe that Γm(S) 9 sp(S).
Step VI: {Ξsp,ΩB} /∈ ∆G

3 . To prove this, we need one of the results from §8.6. Namely, if we define Ω′

to be the collection of all infinite matrices {ai,j}i,j∈Z with entries ai,j ∈ {0, 1} and consider

Ξ′ : Ω′ 3 {ai,j}i,j∈Z 7→

(
∃D∀j

((
∀i

i∑
k=−i

ak,j < D

)
∨

(
∀R∃i

i∑
k=0

ak,j > R ∧
0∑

k=−i

ak,j > R

)))
(“there is a bound D such that every column has either less than D 1s or is two-sided infinite”)

(where we map into the discrete space {Yes,No}), then SCI(Ξ′,Ω′)G = 3.
We may identify ΩB = B(l2(N)) with Ω = B(X), where X = ⊕∞n=−∞Xn in the l2-sense and where

Xn = l2(Z). Consider sequences a = {ai}i∈Z over Z with ai ∈ {0, 1}, and define respective operators
Ba ∈ B(l2(Z)) with matrix representation Ba = {bk,i} by

bk,i :=


1 : k = i and ak = 0

1 : k < i and ak = ai = 1 and aj = 0 for all k < j < i

0 : otherwise.
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Then Ba is again a shift on a certain subset of basis elements and the identity on the other basis elements,
hence we have the following possible spectra:

• sp(Ba) ⊂ {0, 1} if {ai} has finitely many 1s.
• sp(Ba) = T, the unit circle, if there are infinitely many i > 0 with ai = 1 and infinitely many i < 0

with ai = 1 (we say {ai} is two-sided infinite).
• sp(Ba) = D, the unit disc, if {ai} has infinitely many 1s, but only finitely many for i < 0 or finitely

many for i > 0 (we say {ai} is one-sided infinite in that case).

Next for a matrix {ai,j}i,j∈Z we define the operator

(8.16) C :=

∞⊕
k=−∞

Bk

on X , where Bk = B{ai,k}i∈Z corresponds to the column {ai,k}i∈Z in the above sense. Concerning its
spectrum, we have

⋃
k∈Z sp(Bk) ⊂ sp(C) ⊂ D since ‖C‖ = 1. Clearly, if one of the columns is one-sided

infinite, then sp(C) = D. The same holds if for every k ∈ N there is a finite column with at least k 1s.
Otherwise (that is if there is a number D such that for every column it holds that it either has less than D 1s
or is two-sided infinite) the spectrum sp(C) is a subset of {0} ∪ T.

Suppose for a contradiction that there exists a height two tower, Γn2,n1
solving {Ξsp,ΩB}. Consider the

intervals J1 = [0, 1/8], and J2 = [3/8,∞). Set αn2,n1
= dist(1/2,Γn2,n1

(A)). Let k(n2, n1) ≤ n1 be
maximal such that αn2,k(A) ∈ J1 ∪ J2. If no such k exists or αn2,k(A) ∈ J1 then set Γ̃n2,n1

({ai,j}) = No.
Otherwise set Γ̃n2,n1({ai,j}) = Yes. It is clear from the construction of the matrix C from {ai,k}i∈Z that
this defines a generalized algorithm. In particular, given N we can evaluate {fk,l(C) : k, l ≤ N} using
only finitely many evaluations of {ai,j}, where we can use a bijection between the canonical bases to view
C as acting on l2(N). The point of the intervals J1, J2 is that we can show limn1→∞ Γ̃n2,n1

({ai,j}) =

Γ̃n2
({ai,j}) exists (the distance to the point 1/2 cannot oscillate infinitely often between J1 and J2). If

Ξ′({ai,j}) = No then for large n2 we have limn1→∞ αn2,n1
(A) < 1/8 and hence limn2→∞ Γ̃n2

({ai,j}) =

No. Similarly, if Ξ′({ai,j}) = Yes then for large n2 we have limn1→∞ αn2,n1(A) > 3/8 and hence
limn2→∞ Γ̃n2({ai,j}) = Yes. Hence Γ̃n2,n1 is a height two tower of general algorithms solving {Ξ′,Ω′}, a
contradiction. �

Remark 8.6. In the case of self-adjoint bounded operators, the spectrum sp(A) is real, and the function g
can be chosen as x 7→ x. Thus, in the definition of Υδ

K(ζ) it suffices to consider compact K ⊂ R, the real
grid Gδ(K) := (K + [−δ, δ]) ∩ (δZ), and for all z ∈ Gδ(K) only the two points z1/2 := z ± ζ(z) in Iz .
Also, in the case of normal operators, where g : x 7→ x does the job again, the construction simplifies. In
particular, for a given function ζ : C → [0,∞) we may define sets Υδ

K(ζ) as follows: For z ∈ Gδ(K)

consider Iz := {z + ζ(z)ejδi : j = 0, 1, . . . ,
⌈
2πδ−1

⌉
} and define Υδ

K(ζ) again as in (8.8). The proof is
then the same, up to some obvious adaptations.

Proof that {Ξsp,Ωf ∩ ΩN} ∈ ΣA,eigv
1 . Since Ωf ∩ ΩN ⊂ Ωfg , the only part left of the proof is the result

concerning approximate eigenvectors. Let {Γn}n∈N denote the sequence of arithmetic algorithms defined
in Step III of the above proof. By the now standard argument of taking subsequences, it is enough to show
that given z ∈ Γn(A) and δ ∈ Q>0 with δ < 1, we can compute in finitely many arithmetic operations and
comparisons a vector ψn such that max {‖Aψn − zψn‖, |1− ‖ψn‖|} ≤ En(A) + 2cn + 2δ, where En(A)

is defined in (8.14). Without loss of generality, we can assume that z = 0 by an appropriate shift of the
operator A. By construction of the algorithm, we must have that σinf(Pf(n)ÃPn) + cn < En(A) + δ, where
Ã is the approximation of the matrix A used when computing Γn(A) (recall we deal with ∆1 information).
We assume, without loss of generality, that ‖APn − Pf(n)ÃPn‖ ≤ cn + δ/2. Let ε = (En(A) + δ)2 and
consider the matrix

B =
(
Pf(n)ÃPn

)∗ (
Pf(n)ÃPn

)
− εI ∈ Cn×n
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which is Hermitian but not positive definite. It follows that B can be put into the form PBPT = LDL∗,

where L is lower triangular with 1’s along its diagonal, D is block diagonal with block sizes 1 or 2 and P is a
permutation matrix. This can be computed in finitely many arithmetic operations. Without loss of generality,
we assume that P = I . Let x be an eigenvector of B with non-positive eigenvalue then set y = L∗x. Such
an x exists by assumption. Note that, since δ > 0,

(8.17) 〈y,Dy〉 = 〈L∗x,DL∗x〉 = 〈x,Bx〉 < 0.

It follows that there exists a non-zero vector yn with 〈yn, Dyn〉 ≤ 0. Since the inequality in (8.17) is strict,
such a vector is easy to compute using arithmetic operations by considering determinants and traces of 1

blocks or 2 blocks in the block diagonal matrix D. L∗ is invertible and upper triangular so we can solve for
ψ̃n = (L∗)−1yn. We can then approximately normalize ψ̃n to ψn using finitely many arithmetic operations
(e.g., by approximating the norm of ψ̃n) so that 1− δ < ‖ψn‖ ≤ 1. Note also that

‖Pf(n)ÃPnψn‖2 = 〈ψn, Bψn〉+ ‖ψn‖2ε =
‖ψn‖2

‖ψ̃n‖2
〈yn, Dyn〉+ ‖ψn‖2ε ≤ ε.

It follows that (using ψn to also denote the zero padding of ψn to form a vector in l2(N))

‖APnψn‖ ≤ En(A) + δ + ‖APn − Pf(n)ÃPn‖‖ψn‖

≤ En(A) + δ + (cn + δ/2)(1 + δ) ≤ En(A) + 2cn + 2δ

since δ < 1. The result now follows. �

8.4. Essential Spectrum. In this section, we prove the results for the essential spectrum. Since ΩD ⊂
Ωfg ⊂ Ωf and ΩSA ⊂ ΩN ⊂ Ωg ⊂ ΩB, we only need to prove that {Ξe-sp,ΩD} /∈ ∆G

2 , {Ξe-sp,ΩSA} /∈ ∆G
3 ,

{Ξe-sp,ΩB} ∈ ΠA
3 and {Ξe-sp,Ωf} ∈ ΠA

2 .

Proof of Theorem 4.4 for the essential spectrum. Step I: {Ξe-sp,ΩD} /∈ ∆G
2 . To see this, suppose for a

contradiction that a height one tower Γn solves the computational problem. For the contradiction we
will construct A ∈ ΩD with diagonal entries in {0, 1} such that Γn(A) does not converge. Let An =

diag(0, 0, ..., 0) ∈ Cn×n and Bn = diag(1, 1, ..., 1) ∈ Cn×n (we let A∞ and B∞ be the obvious infinite
analogues). We will construct

A =
⊕
n∈N

Aan ⊕Bbn ,

for an, bn ∈ N inductively. Suppose that a1, b1, a2, b2, ..., am, bm have been chosen. Then the operator

Cm :=
( m⊕
n=1

Aan ⊕Bbn
)
⊕A∞

has essential spectrum {0}. Hence there exists nm ≥ m such that Γnm(Cm) ⊂ B1/4(0). However, by the
definition of a general tower, there must exist some N(m) such that Γnm(Cm) only uses the evaluations of
matrix elements fi,j(Cm) with i, j ≤ N(m). Now choose am+1 ≥ max{Nm−(a1 +b1 + ...+am+bm), 1}
then we must have Γnm(A) = Γnm(Cm). Similarly, if a1, b1, a2, b2, ..., bm, am+1 have been chosen then we
consider

Dm :=
( m⊕
n=1

Aan ⊕Bbn
)
⊕Am+1 ⊕B∞

and choose bm+1 large so that Γn̂m(A) = Γn̂m(Dm) ⊂ B1/4(1) for some n̂m ≥ nm. This gives the required
contradiction since the sequence Γn(A) does not converge.

Step II: {Ξe-sp,ΩSA} /∈ ∆G
3 . Suppose for a contradiction that Γn2,n1

is a height two tower solving this
problem. Let (M, d) be the discrete space {Yes,No}, let Ω′ denote the collection of all infinite matrices
{ai,j}i,j∈N with entries ai,j ∈ {0, 1} and consider the problem function

Ξ′({ai,j}) : Does {ai,j} have (only) finitely many columns with (only) finitely many 1s?
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In Section 8.6 we prove that SCI(Ξ′,Ω′)G = 3. We will gain a contradiction by using the supposed height
two tower for {Ξe-sp,ΩSA}, Γn2,n1 , to solve {Ξ′,Ω′}.

Without loss of generality, identify ΩSA with self adjoint operators in B(X) where X =
⊕∞

j=1Xj in
the l2-sense with Xj = l2(N). Now let {ai,j} ∈ Ω′ and for the jth column define Bj ∈ B(Xj) with the
following matrix representation:

Bj =

Mj⊕
r=1

Aljr , Am :=



1 1

0
. . .

0

1 1

 ∈ Cm×m,

where if Mj is finite then ljMj
=∞ with A∞ = diag(1, 0, 0, ...). The ljr are defined by the relation

(8.18)

∑m
i=1 ai,j∑
r=1

ljr = m+

m∑
i=1

ai,j ,

and measure the lengths (+1) of successive gaps between 1’s in the jth column. Define the self-adjoint
operator A =

⊕∞
j=1Bj . We then have that

spess(A) =

{0, 1, 2}, if Ξ′({ai,j}) = No

{0, 2}, otherwise .

Consider the intervals J1 = [0, 1/2], and J2 = [3/4,∞). Set αn2,n1
= dist(1,Γn2,n1

(A)). Let
k(n2, n1) ≤ n1 be maximal such that αn2,k(A) ∈ J1 ∪ J2. If no such k exists or αn2,k(A) ∈ J1

then set Γ̃n2,n1
({ai,j}) = No. Otherwise set Γ̃n2,n1

({ai,j}) = Yes. It is clear from (8.18) and the
definition of the Am that this defines a generalized algorithm. In particular, given N , we can evaluate
{Ak,l : k, l ≤ N} using only finitely many evaluations of {ai,j}, where we can use a bijection between
the canonical bases to view A as acting on l2(N). Again, the point of the intervals J1, J2 is that we
can show limn1→∞ Γ̃n2,n1

({ai,j}) = Γ̃n2
({ai,j}) exists. If Ξ′({ai,j}) = No then for large n2 we have

limn1→∞ αn2,k(A) < 1/2 and hence limn2→∞ Γ̃n2
({ai,j}) = No. Similarly, if Ξ′({ai,j}) = Yes then for

large n2 we have limn1→∞ αn2,k(A) > 3/4 and hence limn2→∞ Γ̃n2
({ai,j}) = Yes. Hence Γ̃n2,n1

is a
height two tower of general algorithms solving {Ξ′,Ω′}, a contradiction.

Step III: {Ξe-sp,ΩB} ∈ ΠA
3 . We start by defining the following functions on C, where Qn := I − Pn,

µm,n,k : z 7→ min{σinf(Pk(A− zI)QmPn), σinf(Pk(A− zI)∗QmPn)}

µm,n : z 7→ min{σinf((A− zI)QmPn), σinf((A− zI)∗QmPn)}

µm : z 7→ min{σinf((A− zI)Qm), σinf((A− zI)∗Qm)}.

Here Pk(A − zI)QmPn is considered as operator on Ran(QmPn), etc. as usual. Recall from the previous
proofs that, for every n,m, µm,n,k → µm,n pointwise and monotonically from below as k → ∞ and
for every m µm,n → µm pointwise and monotonically from above as n → ∞. Furthermore, {µm}m∈N
is pointwise increasing and bounded, hence converges as well. By Proposition 8.2 we can compute with
finitely many arithmetic operations and comparisons, for any given z, an approximation µ̃m,n,k(z) ∈ Q with
|µm,n,k(z)− µ̃m,n,k(z)| ≤ 1/k. Furthermore, we can approximate from below and assume without loss
of generality (by taking successive maxima) that µ̃m,n,k(z) converges to µm,n pointwise and monotonically
from below (again, this also includes the case of ∆1-information).

Next, we define the finite grids

Gn :=

{
s+ it

2n
: s, t ∈ {−22n, . . . , 22n}

}
,
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and, for A ∈ B(l2(N)),

Γ̂m,n,k(A) :=

{
z ∈ Gn : µ̃m,n,k(z) ≤ 1

m

}
Γ̂m,n(A) :=

⋂
k∈N

Γ̂m,n,k(A) = lim
k→∞

Γ̂m,n,k(A),(8.19)

Γ̂m(A) :=
⋃
n∈N

Γ̂m,n(A) = lim
n→∞

Γ̂m,n(A),(8.20)

Γ̂(A) :=
⋂
m∈N

Γ̂m(A) = lim
m→∞

Γ̂m(A).(8.21)

It follows again that all Γ̂m,n,k are general algorithms in the sense of Definition 7.3 that require only finitely
many arithmetic operations. We shall show that for large enough n, the above sets are non-empty and
establish the limits in (8.19), (8.20) and (8.21) and that Γ̂(A) equals spess(A). We will show that it is
possible to choose subsequences of n such that this holds (each output and any limits must never empty
since we require convergence in the Hausdorff metric), allowing us to construct a height three arithmetic
tower. The final limit will be from above and hence the ΠA

3 classification.
To do that we abbreviateH := l2(N) and first show that

(8.22) µ(z) := lim
m→∞

µm(z) equals ‖(A− zI +K(H))−1‖−1 for all z ∈ C,

where A − zI + K(H) denotes the element in the Calkin algebra B(H)/K(H) and where we use the con-
vention ‖b−1‖−1 := 0 if the element b is not invertible. Clearly, it suffices to consider z = 0. The estimate
“≤” is trivial in case µ(0) = 0. So, let µ(0) > ε > 0. Choose m ∈ N such that µm(0) ≥ µ(0) − ε. The
operator A0 := AQm : RanQm → Ran(AQm) is invertible, hence the kernel of A = AQm + APm has
finite dimension. σinf(A

∗Qm) > 0 yields that RanA has finite codimension, hence both A and AQm are
Fredholm. Let R be the orthogonal projection onto RanAQm, B0 the inverse of A0 and B := B0R. Then

BA− I = (BA− I)Pm + (BA− I)Qm = (BA− I)Pm and

AB − I = (AB − I)(I −R) + (AB − I)R = (AB − I)(I −R)

are compact, i.e. B is a regulariser for A. Now

‖(A+K(H))−1‖−1 ≥ ‖B‖−1 = ‖B0R‖−1

≥ (‖B0‖‖R‖)−1 = ‖B0‖−1 = σinf(AQm) ≥ µ(0)− ε

gives the estimate “≤” since ε is arbitrary.
Conversely, there is nothing to prove if A is not Fredholm, so let ε > 0 and B ∈ (A + K(H))−1 be a

regulariser with ‖B‖ ≤ ‖(A + K(H))−1‖ + ε. Since the operator K := BA − I is compact we get for
all sufficiently large m that ‖QmBAQm − Qm‖ = ‖QmKQm‖ is so small such that Qm + QmKQm is
invertible in B(Ran(Qm)),

Qm(Qm +QmKQm)−1QmB︸ ︷︷ ︸
=: B1 ∈ B(H)

AQm = Qm and ‖QmB −B1‖ < ε.

We get that σinf(AQm) > 0, hence the compression AQm : Ran(Qm) → Ran(AQm) is invertible and
the compression B1|Ran(AQm) : Ran(AQm) → Ran(Qm) is its (unique) inverse. Thus, we have ‖B1‖ ≥
‖B1|Ran(AQm)‖ = σinf(AQm)−1 and further ‖B‖ ≥ ‖QmB‖ ≥ ‖B1‖−‖QmB−B1‖ ≥ σinf(AQm)−1−ε.
We conclude that for sufficiently large m that σinf(AQm)−1 ≤ ‖B‖ + ε ≤ ‖(A + K(H))−1‖ + 2ε. Since
ε > 0 is arbitrary we arrive at limm→∞ σinf(AQm) ≥ ‖(A + K(H))−1‖−1. Applying this observation to
A∗ we also find

lim
m→∞

σinf(A
∗Qm) ≥ ‖(A∗ +K(H∗))−1‖−1 = ‖(A+K(H))−1‖−1,
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which finishes the proof of (8.22). In particular, we now can apply that all of the above functions µm,n,k,
µm,n, µm, µ are continuous with respect to z, and together with the already discussed pointwise monotone
convergence results, Dini’s Theorem gives that the convergences are even locally uniform.

We can now establish the limits in (8.19), (8.20) and (8.21) for large enough n. Obviously, {Γ̂m,n,k(A)}k
is decreasing. If Γ̂m,n(A) = ∅ then there must exist some finite k with Γ̂m,n,k(A) = ∅ since the sets
are nested, closed and uniformly bounded. Furthermore, {Γ̂m,n(A)}n is increasing since, for every k,
Γ̂m,n(A) ⊂ Γ̂m,n,k(A) ⊂ Γ̂m,n+1,k(A). Let z ∈ spess(A). For m ∈ N, µm(z) = 0 and furthermore,
there is an n0(m) and a zm ∈ Gn0(m) with |z − zm| < 1/m, µm(zm) < 1/(2m) and µm,n(zm) < 1/m

for every n ≥ n0(m). Then, for every k, µ̂m,n,k(zm) < 1/m as well. Since the essential spectrum of a
bounded linear operator is non-empty, it follows that there exists a minimal N(m) such that if n ≥ N(m)

then Γ̂m,n(A) 6= ∅.
We now alter Γ̂m,n,k as follows. For a givenm,n and k we successively compute Γ̂m,n,k(A), Γ̂m,n+1,k(A), ...

and choose N(m,n, k) ≥ n minimal such that Γ̂m,N(m,n,k),k(A) 6= ∅. By the above remarks, it fol-
lows that this process must terminate. We also have that Γm,n(A) := limk→∞ Γm,n,k(A) exists (in fact
Γm,n,k(A) is eventually constant as we increase k since µ̂m,n,k is increasing) and also that Γm,n(A) =

Γ̂m,max{n,N(m)}(A). Since Γm,n(A) are increasing in n, it then follows that

Γm(A) := lim
n→∞

Γm,n(A) =
⋃
n∈N

Γm,n(A) =
⋃
n∈N

Γ̂m,n(A).

Finally, {Γm(A)}m is decreasing. To see this, choose z ∈ Γm(A) and a sequence (zn) with zn → z and
zn ∈ Γ̂m,n(A) (for large n), respectively. The functions µm,n are non-decreasing in m and hence we have

Γ̂m,n(A) =

{
z ∈ Gn : µm,n(z) ≤ 1

m

}
⊂ Γ̂m−1,n(A)

from which we conclude zn ∈ Γ̂m−1,n(A), hence z ∈ Γm−1(A). It follows that the limit Γ(A) :=

limm→∞ Γm(A) exists.
We are left with proving that Γ(A) = spess(A). Let z ∈ spess(A). Arguing as before, for m ∈ N,

µm(z) = 0 and furthermore, there is an n0(m) and a zm ∈ Gn0(m) with |z−zm| < 1/m, µm(zm) < 1/(2m)

and µm,n(zm) < 1/m for every n ≥ n0(m). Then for every k µm,n,k(zm) < 1/m as well. We conclude
that zm ∈ Γm(A) ⊂ Γl(A), l = 1, . . . ,m. Thus the limit z of the sequence {zm} belongs to all Γl(A) and
hence spess(A) ⊂ Γ(A). Conversely, let z /∈ spess(A). Then µ(z) > ε > 0 for a certain ε > 0 and for all z
in a certain neighbourhood U of z. Moreover there is an m0 > 3/ε such that µm(z) > ε/2 for all m ≥ m0

and z ∈ U , hence µm,n(z) > ε/2 for all m ≥ m0, all n and all z ∈ U . Further, for every m > m0 and n
there is a k0(m,n) such that µm,n,k(z) > ε/3 > 1/m0 > 1/m for all k ≥ k0(m,n) and z ∈ U . Thus, the
intersection of U and Γ(A) is empty, in particular z /∈ Γ(A).

Step IV: {Ξe-sp,Ωf} ∈ ΠA
2 . Knowing a bound f on the dispersion of A suggests to plug it into the

previously defined algorithms and define

κm,n : z 7→ min{σinf(Pf(n)(A− zI)QmPn), σinf(Pf(n)(A− zI)∗QmPn)}

Γ̃m,n(A) :=

{
z ∈ Gn : κ̂m,n(z) ≤ 1

m

}
.

Where, as usual, we will approximate κm,n to within 1/n by a function κ̂m,n taking rational values that can
be computed (using Proposition 8.2 to cope with ∆1-information if needed) at any point using finitely many
arithmetic operations and comparisons. Unfortunately, all we know about the functions κm,n, µm is that they
are Lipschitz continuous with Lipschitz constant 1 and that κm,n converge pointwise to µm, but not, whether
or when this convergence is monotone. Therefore, we have to make a modification in order to guarantee the
existence of the desired limiting sets. The following idea is similar to using the intervals J1 and J2 in Step II
and avoids possible oscillations at the boundary.
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Let Vm denote the square Vm := {z ∈ C : |<(z)|, |=(z)| ≤ 2−(m+1)} and Vm(z) := z + Vm the
respective shifted copies. Moreover, set Zm := { s+it

2m : s, t ∈ Z} and

Sm,n(z) := {i = m+ 1, . . . , n : ∃z ∈ Vm(z) ∩Gi : κ̂m,i(z) ≤ 1/m}

Tm,n(z) := {i = m+ 1, . . . , n : ∃z ∈ Vm(z) ∩Gi : κ̂m,i(z) ≤ 1/(m+ 1)},

as well as

Em,n(z) := |Sm,n(z)|+ |Tm,n(z)| − n

Im,n := {z ∈ Zm : Em,n(z) > 0 and |z| ≤ n}

Γ̂m,n(A) :=
⋃

z∈Im,n

Vm(z).

Roughly speaking, Γ̂m,n(A) is the union of a family of squares Vm(z) with Em,n(z) being positive, which
is the case if “most of the κ̂m,i are small on Vm(z)”.

To make this precise, we first notice that all κ̂m,i(z), i ≥ m + 1, with z outside the compact ball
K := B2‖A‖+2(0) are larger than one, Im,n are finite, and all Γ̂m,n(A) are contained in K, due to a sim-
ple Neumann series argument. Furthermore, κ̂m,n → µm uniformly on K due to the Lipschitz continuity
(uniform in n) of κ̂m,n and µm.

We now show that for eachm ≥ 5, the sign ofEm,n(z) are eventually constant with respect to n for every
z ∈ Zm ∩ K, if n is sufficiently large. That is, for every z there is an n(z) such that either Em,n(z) ≤ 0

or Em,n(z) > 0 for all n ≥ n(z). For fixed z and m ≥ 5, we have to consider three possible cases: The
first one is µm(w) > 1/m for all w ∈ Vm(z). Then there exists an n0 such that κ̂m,n(w) > 1/m for all
n ≥ n0 and all w ∈ Vm(z) (take into account that Vm(z) is compact and κ̂m,n → µm locally uniformly),
hence |Sm,n(z)| + |Tm,n(z)| is constant and Em,n(z) is monotonically decreasing. Secondly, assume that
µm(w) < 1/m for all w ∈ Vm(z). Then there exists an n0 such that κ̂m,n(w) < 1/m for all n ≥ n0

and all w ∈ Vm(z), hence |Sm,n(z)| = n − c with a certain constant c, and Em,n(z) = |Tm,n(z)| − c is
monotonically increasing. Finally, assume that 1/m belongs to the interval

[min{µm(w) : w ∈ Vm(z)},max{µm(w) : w ∈ Vm(z)}]

and notice that the length of that interval is at most 2−m, which is less than 1/m−1/(m+1) form ≥ 5. Then
there exists an n0 such that κ̂m,n(w) > 1/(m+1) for all n ≥ n0 and allw ∈ Vm(z), hence {|Tm,n(z)|}n≥n0

is constant, and

Em,n(z) = (|Sm,n(z)| − n) + |Tm,n(z)|

is monotonically decreasing.
Taking the maximum N of the finite set {n(z) : z ∈ Zm ∩K} then yields that the Γ̂m,n(A), n ≥ N , are

constant, hence converge (if this constant set is non-empty) as n → ∞. If z0 ∈ spess(A) then µ(z0) = 0,
hence µm(z0) = 0 for all m. So, for fixed m, we have κ̂m,n(z) < 1/(m + 1) for all sufficiently large n
and all z in the neighbourhood U1/(2m)(z0). Choose z ∈ Zm such that z0 ∈ Vm(z) ⊂ U1/(2m)(z0). This
is possible since m ≥ 5. Then it is immediate from the definitions that Em,n(z) = n − c with a constant
c for all sufficiently large n, hence z0 ∈ Γm,n(A) for n large. Now given m,n, successively compute
Γ̂m+5,n(A), Γ̂m+5,n+1(A), ... and let N(m,n) ≥ n be minimal such that Γ̂m+5,N(m,n)(A) 6= ∅. Define
Γm,n(A) = Γ̂m+4,N(m,n)(A). The above arguments, in particular the fact that spess(A) 6= ∅, demonstrate
that this sequence of computations halts and Γm,n is an arithmetical algorithm. Note also that Γm(A) :=

limn→∞ Γm,n(A) exists, and the above argument shows that it contains the essential spectrum. Note also
that Γm,n(A) is in fact equal to Γm(A) for large n.

We claim that {Γm(A)}m is a decreasing nested sequence, hence converges as well. Indeed, let z ∈
Γm+1(A), then z ∈ Γ̂m+5,n(A) for large n, i.e. z ∈ Vm+5(w) for a w ∈ Im+5,n, i.e. w ∈ Zm+5 and
Em+5,n(w) > 0. Clearly, (for large enough n) there exists a w0 ∈ Zm+4 with Vm+5(w) ⊂ Vm+4(w0),
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and further (since we can assume without loss of generality by computing maxima over successive m that
κ̂m+4,i(z) ≤ κ̂m+5,i(z) holds whenever n > m+ 5)

Sm+5,n(w) = {i = m+ 6, . . . , n : ∃z ∈ Vm+5(w) ∩Gi : κ̂m+5,i(z) ≤ 1/(m+ 5)}

⊂ {i = m+ 5, . . . , n : ∃z ∈ Vm+4(w0) ∩Gi : κ̂m+4,i(z) ≤ 1/(m+ 4)} = Sm+4,n(w0)

and analogously Tm+5,n(w) ⊂ Tm+4,n(w0). Therefore Em+5,n(w) ≤ Em+4,n(w0), which shows that
w0 ∈ Im+4,n and thus z ∈ Γm(A).

It remains to prove that the final limiting set limm→∞ Γm(A) coincides with the essential spectrum.
We have already proven that it must contain the essential spectrum. Conversely, let z0 /∈ spess(A), i.e.
µ(z0) > 0. Then, for large m0, there exists an ε > 3/m0 such that µm(z0) > ε and κ̂m,n(z0) > ε/2 for
m ≥ m0 and large n, and then also κ̂m,n(z) > ε/3 > 1/m0 for all z in a certain neighbourhood U of z0.
For all sufficiently large m ≥ m0 all Vm(z) which contain z0 are subsets of U , hence Em,n(z) = d − n
with a constant d for large n, that is limn→∞ Γ̂m,n(A) and {z0} are separated. But since the {Γm(A)}m are
nested, it follows z0 is not in the limiting set limm→∞ Γm(A). This finishes the proof. �

8.5. Determining if a point z lies in sp(A). Recall that for this problem, we restrict to z ∈ R when
considering ΩD or ΩSA. We also restrict to z 6= 0 when considering ΩC. Since ΩD ⊂ Ωfg ⊂ Ωf ,
ΩC ⊂ Ωf and ΩSA ⊂ ΩN ⊂ Ωg ⊂ ΩB it is enough to prove that {Ξzsp,ΩSA} 6∈ ∆G

3 , {Ξzsp,ΩB} ∈ ΠA
3 ,

{Ξzsp,Ωf} ∈ ΠA
2 , {Ξzsp,ΩD} 6∈ ∆G

2 and {Ξzsp,ΩC} 6∈ ∆G
2 .

Proof of Theorem 4.4 for determining if a point lies in the spectrum. Step I: {Ξzsp,ΩSA} 6∈ ∆G
3 . By consid-

ering the shift A − zI , we can, without loss of generality, assume that z = 0. Suppose for a contradiction
that Γn2,n1

is a height two tower solving {Ξ0
sp,ΩSA}. Let (M, d) be the discrete space {Yes,No}, let Ω′

denote the collection of all infinite matrices {ai,j}i,j∈N with entries ai,j ∈ {0, 1} and consider the problem
function

Ξ′({ai,j}) : Does {ai,j} have (only) finitely many columns with (only) finitely many 1s?

In Section 8.6 we prove that SCI(Ξ′,Ω′)G = 3. Our strategy will be the same as the proof that {Ξsp,ΩB} /∈
∆G

3 - we will gain a contradiction by using the supposed height two tower Γn2,n1
to solve {Ξ′,Ω′}.

First, we need a certain periodic semi-infinite Jacobi matrix, which gives rise to spectral pollution when
applying the finite section method. Define

A∞ :=



0 3

3 0 1

1 0 3

3 0 1

1 0
. . .

. . . . . .


It is well known that sp(A∞) = [−4,−2]∪ [2, 4] (see for instance [42]). However, an easy check shows that
0 is an eigenvalue of the finite truncated matrix PnA∞Pn whenever n is odd. With an abuse of notation, we
also define An := PnA∞Pn ⊕C∞ ∈ B(l2(N)), where Cn denotes the n× n diagonal matrix with diagonal
entries equal to −4.

Without loss of generality, we identify ΩSA with self adjoint operators in B(X) where X =
⊕∞

j=1Xj in
the l2-sense with Xj = l2(N). Now let {ai,j} ∈ Ω′ and for the jth column define Bj ∈ B(Xj) as follows.
Let Ij = {i ∈ N : ai,j = 1} and Jj = {i ∈ N : ai,j = 0}. We partition N into two sets:

N1(j) = {1} ∪ {2k, 2k + 1 : k ∈ Ij}, N2(j) = {2k, 2k + 1 : k ∈ Jj}.

On span{ek : k ∈ N1(j)} we let Bj act as A|N1(j)|, whereas on span{ek : k ∈ N2(j)} we let Bj act as
C|N2(j)| (both with respect to the natural bases and ordering). It is clear that Bj is unitarily equivalent to
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A|N1(j)| ⊕ C|N2(j)|. Hence sp(Bj) is equal to [−4,−2] ∪ [2, 4] ∪Kj , where K = {0} if
∑
i ai,j < ∞ and

Kj = ∅ otherwise.
Next, we define the operator

C :=

∞⊕
j=1

(
Bj +

1

2j
I

)
on X . Concerning its spectrum, we note that any non-zero point of sp(C) inside the interval [−1, 1] is equal
to 1/(2j) corresponding to precisely when the column {ai,j}i∈N has finitely many 1’s. It is also clear that
0 ∈ sp(C) precisely when this happens infinitely many times (0 is a limit point of a descending sequence in
the spectrum). Hence Ξ0

sp(C) = Yes if and only if Ξ′({ai,j}) = No.
We then define Γ̃n2,n1

({ai,j}) = Yes if Γn2,n1
(C) = No and Γ̃n2,n1

({ai,j}) = No if Γn2,n1
(C) = Yes.

Given N , we can evaluate {fk,l(C) : k, l ≤ N} using only finitely many evaluations of {ai,j}, where we
can use a bijection between the canonical bases to view C as acting on l2(N). This follows since given any
finite i, we can compute the sets {1, ..., i}∩N1(j) and {1, ..., i}∩N2(j). Hence Γ̃n2,n1

defines a generalized
algorithm and provides a height two tower of general algorithms solving {Ξ′,Ω′}, a contradiction.

Step II: {Ξzsp,ΩB} ∈ ΠA
3 . By considering the shift A − zI , we can, without loss of generality, assume

that z = 0 (note also that only having ∆1-information regarding z is captured by only having ∆1-information
on matrix entries after this shift). Define the numbers

γ := min{σinf(A), σinf(A
∗)}, γm := min{σinf(APm), σinf(A

∗Pm)},

γm,n := min{σinf(PnAPm), σinf(PnA
∗Pm)}

δm,n := min{2−mk : k ∈ N, 2−mk ≥ σinf(PnAPm) or 2−mk ≥ σinf(PnA
∗Pm)}.

As pointed out before, A is invertible if and only if γ > 0. Furthermore, note that γm ↓m γ, and that
γm,n ↑n γm for every fixedm. The sequences {δm,n}n are bounded and monotonically non-decreasing, and
γm,n ≤ δm,n ≤ γm,n + 2−m ≤ γm + 2−m. Thus, for ε > 0 there is an m0, and for every m ≥ m0 there is
an n0 = n0(m) such that

(8.23) |γ − δm,n| ≤ |γ − γm|+ |γm − γm,n|+ |γm,n − δm,n| ≤ ε/3 + ε/3 + 2−m ≤ ε

whenever m ≥ m0 and n ≥ n0(m). So we see that the numbers δm,n converge monotonically from
below for every m as n → ∞, and the respective limits form a non-increasing sequence with respect
to m, tending to γ. Moreover, each δm,n can be computed with finitely many arithmetic operations by
Proposition 8.1. Thus, if we define Γk,m,n(A) := (δm,n < k−1), the monotonicity ensure that Γk(A) :=

limm→∞ limn→∞ Γk,m,n(A) exists. Moreover, if γ < k−1 then Γk(A) = Yes. If Γk(A) = No then we
must have that γ ≥ k−1 and hence Ξ0

sp(A) = No. Finally, if γ > k−1 then Γk(A) = No. Hence Γk,m,n

provides a ΠA
3 tower.

Step III: {Ξzsp,Ωf} ∈ ΠA
2 . Again, by considering the shift A − zI , we can, without loss of generality,

assume that z = 0. If one considers operators for which a bound f on their dispersion is known, then
choosing n = f(m) turns (8.23) into

(8.24) |γ − δm,f(m)| ≤ |γ − γm|+ |γm − γm,f(m)|+ |γm,f(m) − δm,f(m)| ≤ ε/3 + ε/3 + 2−m ≤ ε

for largem taking |σinf(BPm)−σinf(Pf(m)BPm)| ≤ ‖(I−Pf(m))BPm‖ into account. Therefore, a natural
first guess for our general algorithms could be Γ̃k,m(A) := (δm,f(m) < k−1). Unfortunately, although
δm,f(m) converges to γ as m → ∞ by (8.24), this is not monotone in general. Hence, it might be the case
that γ = k−1, but δm,f(m) oscillates around k−1 such that {Γ̃k,m(A)}m may not converge. To overcome
this drawback, we can use the same interval trick as before. Define J1

k = [0, k−1] and J2
k = [2k−1,∞). For

any given m, let j(m) ≤ m be maximal such that δj,f(j) ∈ J1
k ∪ J2

k . If no such j exists or δj,f(j) ∈ J2
k

then set Γk,m(A) = No, otherwise set Γk,m(A) = Yes. By our now standard argument, this converges as
m → ∞. If γ > 0, then for large enough k (such that 2k−1 < γ), Γk,m(A) = No for large m. Conversely,
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if γ = 0 then for any k, δm,f(m) ∈ J1
k for large m and hence Γk,m(A) = Yes for large m. This gives ΠA

2

convergence.
Step IV: {Ξzsp,ΩD} 6∈ ∆G

2 . Again, by considering the shift A − zI , we can, without loss of generality,
assume that z = 0. If we assume that there is a general height-one-tower of algorithms {Γn} over ΩD then
we can again construct counterexamples very easily: For a decreasing sequence {ai} of positive numbers
we consider the diagonal operator A := diag{ai}. Clearly, 0 belongs to the spectrum of A if and only if
the ais tend to zero. As a start, set {a1

i } := {1, 1, . . .}, choose n1 such that Γn(diag{a1
i }) = No for all

n ≥ n1, and i1 such that max{i, j | fi,j ∈ ΛΓn1
(diag{a1

i })} < i1. This is possible by (iii) in Definition 7.3
and our now standard argument. Then set {a2

i } := {1, 1, . . . , 1, 1/2, 1/2, . . .} with 1/2s starting at the i1th
position. If n1, . . . , nk−1 and i1, . . . , ik−1 are already chosen then pick nk such that Γn(diag{aki }) = No
for all n ≥ nk, and ik such that max{i, j | fi,j ∈ ΛΓnk

(diag{aki })} < ik, and modify {aki } to {ak+1
i } :=

{1, . . . , 2−k, 2−k, . . .} with 2−ks starting at the ikth position. Now, the contradiction is as in the previous
proofs, and we see that {Ξ0,ΩD} 6∈ ∆G

2 .
Step V: {Ξzsp,ΩC} 6∈ ∆G

2 . Recall in this case that z 6= 0. By scaling any A ∈ ΩC by the factor
3/(2z), we can assume without loss of generality that z = 3/2. Suppose for a contradiction that a general

height-one-tower of algorithms {Γn} solves {Ξ
3
2
sp,ΩC}. Consider the arrowhead matrix:

An(ε) :=



1 ε ε2 · · · εn

ε 0

ε2
. . .

... 0

εn 0


,

where ε ∈ (0, 1). A simple calculation yields that the eigenvalues of An(ε) are {0, 1/2±
√

1 + 4an(ε)/2},
where an(ε) = ε2(1−ε2n)

1−ε2 . In particular, we choose ε =
√

3/7 for which the only positive eigenvalue is bn :=

1+
√

1+3(1− 3n

7n )

2 . We now choose an increasing sequence of integers (greater than 1) r1, r2, ... inductively,
and define A ∈ ΩC such that when projected onto the span of the basis vectors {e1, er1 , ..., ern} (with
the natural order), with projection denoted by Qn, QnAQn has matrix An(

√
3/7). We also enforce that if

j /∈ {rn}n∈N∪{1}, then the jthe column and row ofA are zero. In other words,A1,rn = Arn,1 = (
√

3/7)n,

A1,1 = 1 and all other entries are 0. It follows that sp(A) = {0, 1/2±1} and hence Ξ
3
2
sp(A) = Yes. However,

we choose {rn} such that there is an increasing sequence {cn}with Γcn(A) = No, yielding the contradiction.
Suppose that r1, ..., rn have been chosen. Then let Bn be the infinite matrix with QnBnQn having

matrix An(
√

3/7) and zeros elsewhere. Clearly the only positive eigenvalue of Bn is bn < 3/2 and hence

Ξ
3
2
sp(Bn) = No. So there exists cn > rn with Γcn(Bn) = No. But by our now standard argument using the

Definition 7.3 of a general algorithm, we can choose rn+1 > rn large such that Γcn(A) = Γcn(Bn). �

Remark 8.7. To deal with ∆1-information in Step II of the above proof, we can approximate δm,n from
below to accuracy 1/n (taking rational values) and take successive maxima to preserve monotonicity as
n → ∞. In Step III, we approximate δm,f(m) to accuracy 1/m (taking rational values). In both cases, we
use Proposition 8.2.

8.6. Techniques for proving lower bounds. Here, we collect two results concerning decision-making prob-
lems, which are used to show lower bounds for two of our spectral problems. Within this section, we exclu-
sively deal with problems (functions)

Ξ : Ω→M := {Yes,No},

whereM is equipped with the discrete metric. This means that for such problems, we search for General
algorithms Γnk,...,n1

: Ω → M which, for a given input ω ∈ Ω, answer Yes or No. We will refer to
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such problems as decision-making problems. Clearly, a sequence {mi} ⊂ M of such “answers” converges
to m ∈ M if and only if finitely many mi are different from m. Let Ω1 denote the collection of all
infinite matrices {ai,j}i,j∈N with entries ai,j ∈ {0, 1} and let Ω2 denote the collection of all infinite matrices
{ai,j}i,j∈Z with entries ai,j ∈ {0, 1}. Consider the following two problems:

Ξ1 : Ω1 3 {ai,j}i,j∈N 7→ Does {ai,j} have (only) finitely many columns with (only) finitely many 1s?

Ξ2 : Ω2 3 {ai,j}i,j∈Z 7→

(
∃D∀j

((
∀i

i∑
k=−i

ak,j < D

)
∨

(
∀R∃i

i∑
k=0

ak,j > R ∧
0∑

k=−i

ak,j > R

)))
(“there is a bound D such that every column has either less than D 1s or is two-sided infinite”)

Theorem 8.8 (Decision making problems). Given the setup above, we have

SCI(Ξ1,Ω1)G = SCI(Ξ1,Ω1)A = 3,

SCI(Ξ2,Ω2)G = SCI(Ξ2,Ω2)A = 3.

Remark 8.9. Note that the SCI of the decision problems above are considered with respect to general and
arithmetic towers. These towers do not assume any computability model but only a model on the mathe-
matical tools allowed (arithmetic operations in the case of an arithmetic tower) and how the algorithm can
read the available information (only a finite amount of input). However, the SCI framework with towers of
algorithms fit naturally into the classical theory of computability and the Arithmetical Hierarchy.

To prove Theorem 8.8, we must introduce some helpful background. Equip the set of all sequences
{xi}i∈N ⊂ {0, 1} with the following metric:

(8.25) dB({xi}, {yi}) :=
∑
n∈N

3−n|xn − yn|.

The resulting metric space is known as the Cantor space. By the usual enumeration of the elements of N2 this
metric translates to a metric on the set Ω1 of all matrices A = {ai,j}i,j∈N with entries in {0, 1}. Similarly,
we do this for the set Ω2 of all matrices A = {ai,j}i,j∈Z with entries in {0, 1}. In each case, this gives a
complete metric space, hence a so-called Baire space, i.e., it is of second category (in itself). To make this
precise, we recall the following definitions:

Definition 8.10 (Meager set). A set S ⊂ Ω in a metric space Ω is nowhere dense if every open set U ⊂ Ω

has an open subset V ⊂ U such that V ∩ S = ∅, i.e. if the interior of the closure of S is empty. A set S ⊂ Ω

is meager (or of the first category) if it is an at most countable union of nowhere dense sets. Otherwise, S is
non-meager (or of the second category).

Notice that every subset of a meager set is meager, as is every countable union of meager sets. By the
Baire category theorem, every (non-empty) complete metric space is non-meager.

Definition 8.11 (Initial segment). We call a finite matrix σ ∈ Cn×m an initial segment for an infinite matrix
A ∈ Ω1 and say that A is an extension of σ if σ is in the upper left corner of A. In particular, σ = PnAPm

for some n,m ∈ N, where we, with slight abuse of notation, consider PnAPm ∈ Cn×m. Pn is as usual the
projection onto span{ej}nj=1, where {ej}j∈N is the canonical basis for l2(N).

Similarly, a finite matrix σ ∈ C(2n+1)×(2m+1) is an initial segment for an infinite matrix B ∈ Ω2 if σ is
in the centre of B i.e. σ = P̃nBP̃m where P̃n is the projection onto span{ej}nj=−n, where {ej}j∈Z is the
canonical basis for l2(Z). We denote that A is an extension of σ by σ ⊂ A, and the set of all extensions of σ
by E(σ). The notion of extension extends in an obvious way to finite matrices.

Notice that the set E(σ) of all extensions of σ is a non-empty open and closed neighborhood for every
extension of σ.
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Lemma 8.12. Let {Γn}n∈N be a sequence of General algorithms mapping Ω1 → M, T ⊂ Ω1 be a non-
empty closed set, and S ⊂ T be a non-meager set (in T ) such that ξ = limn→∞ Γn(A) exists and is the
same for all A ∈ S. Then there exists an initial segment σ and a number n0 such that ET (σ) := T ∩ E(σ)

is not empty, and such that Γn(A) = ξ for all A ∈ ET (σ) and all n ≥ n0. The same statement is true if we
consider Ω2 instead of Ω1.

Proof. We are in a complete metric space T . Since S =
⋃
k∈N Sk with Sk := {A ∈ S : Γn(A) = ξ ∀n ≥ k}

and S is non-meager, not all of the Sk can be meager, hence there is a non-meager Sk, and we set n0 := k.
Now, let A be in the closure Sn0

, i.e. there is a sequence {Aj} ⊂ Sn0
converging to A. Note that by

assumption (i) in Definition 7.3 and the fact that Γn are General algorithms, we have that, for every fixed
n ≥ n0, |ΛΓn(A)| < ∞. Thus, by (ii) in Definition 7.3, the General algorithm Γn only depends on a
finite part of A, in particular {Af}f∈ΛΓn (A) where Af = f(A). Since each f ∈ ΛΓn(A) represents a
coordinate evaluation of A and by the definition of the metric dB in (8.25), it follows that for all sufficiently
large j, f(A) = f(Aj) for all f ∈ ΛΓn(A). By assumption (iii) in Definition 7.3, it then follows that
ΛΓn(Aj) = ΛΓn(A) for all sufficiently large j. Hence, by assumption (ii) in Definition 7.3, we have that
Γn(A) = Γn(Aj) = ξ for all sufficiently large j. Thus, Γn(A) = ξ for all n ≥ n0 and all A ∈ Sn0

. Since
Sn0

is not nowhere dense, we can choose a point Ã in the interior of Sn0
and fix a sufficiently large initial

segment σ of Ã such that ET (σ) is a subset of Sn0 . The assertion of the lemma now follows. The extension
of the proof to Ω2 is clear. �

Roughly speaking, this shows that there is a nice open and closed non-meager subspace of T for which
limn→∞ Γn(A) exists even in a uniform manner. Note that this result particularly applies to the case T = Ω.

Proof of Theorem 8.8. Step I: SCI(Ξ1,Ω2)G ≥ 3. We argue by contradiction and assume that there is a
height two tower {Γr}, {Γr,s} for Ξ1, where Γr denote, as usual, the pointwise limits lims→∞ Γr,s. We
will inductively construct initial segments {σn} with σn+1 ⊃ σn yielding an infinite matrix A ⊃ σn for
all n ∈ N, such that limr→∞ Γr(A) does not exist. We construct {σn} with the help of two sequences of
subsets {Tn} and {Sn} of Ω, with the properties that Tn+1 ⊂ Tn, each Tn is closed, and either Tn = Ω1 or
there is an initial segment σ ∈ Cm×m where m ≥ n such that Tn is the set of all extensions of σ with all the
remaining entries in the first n columns being zero.

Suppose that we have chosen Tn. Note that the subset of all matrices in Tn with one particular entry
being fixed is closed in Tn. Hence, the set of all matrices with one particular column being fixed is closed
(as an intersection of closed sets). The latter set has no interior points in Tn; hence, it is nowhere dense in
Tn. This provides that the set of all matrices in Tn for which a particular column has only finitely many 1s
is a countable union of nowhere dense sets in Tn, hence is meager in Tn. Hence, the set of all matrices in
A ∈ Tn with Ξ1(A) = No (i.e., matrices with infinitely many “finite columns”) is meager in Tn as well. Let
R be its complement in Tn, i.e., the non-meager set of all matrices A ∈ Tn with Ξ1(A) = Yes.

Clearly, R =
⋃
r∈NRr with Rr := {A ∈ R : Γk(A) = Yes ∀k ≥ r}, and there is an rn such that Sn :=

Rrn is non-meager in Tn. Note that Γrn,s are General algorithms and Γrn(A) = lims→∞ Γrn,s(A) = Yes
for all A ∈ Sn. Thus, Lemma 8.12 applies and yields an initial segment σn, such that

(8.26) ETn(σn) 6= ∅ and Γrn(A) = Yes for all A ∈ ETn(σn).

Now, let Tn+1 ⊂ Tn be the (closed) set of all matrices in ETn(σn) with all remaining 1 entries in the first
n+ 1 columns being zero. Letting T0 = Ω1 we have completed the construction.

The nested initial segments σn+1 ⊃ σn yield a matrix A ∈ ∩∞n=0Tn and this A has only finitely many 1s
in each of its columns. However, by the construction of {Tn}, we have that A ∈ ETn(σn) for all n ∈ N.
Thus, Ξ1(A) = No, but by (8.26), Γk(A) = Yes for infinitely many k.

1I.e. outside the initial segment σn.
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Step II: SCI(Ξ2,Ω2)G ≥ 3. The proof is very similar to the proof of Step I. In particular, we argue by
contradiction and assume that there is a height two tower {Γr}, {Γr,s} for Ξ2. As above, we inductively
construct initial segments {σn} with σn+1 ⊃ σn yielding an infinite matrix A ⊃ σn for all n ∈ N, such
that limr→∞ Γr(A) does not exist. We construct {σn} with the help of two sequences of subsets {Tn} and
{Sn} of Ω2, with the properties that Tn+1 ⊂ Tn, each Tn is closed, and either Tn = Ω2 or there is an
initial segment σ ∈ C(2m+1)×(2m+1) where m ≥ n such that Tn is the set of all extensions of σ with all
±nth semi-columns being filled by n additional 1s and infinitely many 0s, and and all the other kth columns,
|k| ≤ n− 1, are being filled with zeros. In particular, if {ai,j}i,j∈Z ∈ Tn then

{ai,±n}i∈Z = {. . . , 0, 1, . . . , 1︸ ︷︷ ︸
n times

, σ−m,±n, . . . , σm,±n, 1, . . . , 1︸ ︷︷ ︸
n times

, 0, . . .}T ,

{ai,k}i∈Z = {. . . , 0, σ−m,k, . . . , σm,k, 0, . . .}T , k ∈ Z+, |k| ≤ n− 1.

(8.27)

Suppose that we have chosen Tn. We argue as in Step I and deduce that for k ∈ Z the set of all matrices
in Tn with one of the two kth semi-columns being fixed is nowhere dense in Tn, hence the set of all matrices
in Tn with (one of the two) kth semi-columns having finitely many 1s is meager in Tn. We conclude that the
set of all matrices in Tn with one semi-column having finitely many 1s is meager, thus its complement in Tn,
the set of all matrices with all semi-columns having infinitely many 1s, is non-meager. Therefore the same
holds for the superset {A ∈ Tn : Ξ2(A) = Yes}. Denoting this set by R we obviously have R =

⋃
r∈NRr

with Rr := {A ∈ R : Γk(A) = Yes ∀k ≥ r}, and there is an rn such that Sn := Rrn is non-meager in
Tn. Note that Γrn,s are General algorithms and Γrn(A) = lims→∞ Γrn,s(A) = Yes for all A ∈ Sn. Thus,
Lemma 8.12 applies and yields an initial segment σn, such that

(8.28) ETn(σn) 6= ∅ and Γrn(A) = Yes for all A ∈ ETn(σn).

Now, let Tn+1 ⊂ Tn be the (closed) set of all matrices {ai,j}i,j∈N in ETn(σn) with the property that (8.27)
holds with σ = σn. Letting T0 = Ω2 concludes the construction. The nested sequence {σn}again defines
a matrix A ∈ ∩∞n=0Tn with the property that A has finitely many but at least k non-zero entries in the each
of its kth semi-column which gives Ξ2(A) = No, but, by (8.28), Γk(A) = Yes for infinitely many k, a
contradiction.

Step III: SCI(Ξ1,Ω1)A ≤ 3 and SCI(Ξ2,Ω2)A ≤ 3. This can again be proved by defining an appropriate
tower of height 3 directly. For Ξ1 we define

Γk,m,n({ai,j}i,j∈N) = Yes ⇔ |{j = 1, . . . ,m :

n∑
i=1

ai,j < m}| < k.

For Ξ2 we define

Γk,m,n({ai,j}i,j∈Z) = Yes ⇔ |{j = −m, . . . ,m : k <

n∑
i=1

ai,j < m or k <
−1∑
i=−n

ai,j < m}| = 0.

It is straightforward to show that these provide height three arithmetical towers. �

The lower bounds of the SCI of the decision problems Ξ1 and Ξ2 allow us to obtain the lower bounds of
the SCI of spectra and essential spectra of operators.

9. PROOFS OF THEOREM 5.3 AND THEOREM 5.5

Remark 9.1 (Fourier Transform). In this section we require the Fourier transform on L2(Rd), which will be
denoted by F : L2(Rd)→ L2(Rd). Our definition of F is as follows:

[Fψ](ξ) =

∫
Rd
ψ(x)e−2πix·ξ dx.

We write ψ̂ instead of Fψ for brevity. With this definition F is unitary on L2(Rd).
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Remark 9.2 (The Attouch–Wets Topology). In (7.4), we introduced the Attouch–Wets metric dAW on the
spaceM of non-empty closed subsets of C. Since it is not convenient to work with dAW directly, we make
a note of the following simple characterization of convergence w.r.t. dAW. Let A ⊂ C and An ⊂ C be a
sequence of closed and non-empty sets. Then:

(9.1) dAW(An, A)→ 0 if and only if dK(An, A)→ 0 for any compact K ⊂ C,

where

(9.2) dK(S, T ) = max

{
sup

s∈S∩K
d(s, T ), sup

t∈T∩K
d(t, S)

}
,

where we use the convention that sups∈S∩K d(s, T ) = 0 if S∩K = ∅. We refer to [12, Chapter 3] for details
and further discussion. Equivalently, we observe that

dAW(An, A)→ 0

if and only if

∀δ > 0, K ⊂ C compact, ∃N s.t. ∀n > N, An ∩ K ⊂ Nδ(A) and A ∩ K ⊂ Nδ(An)

(9.3)

where Nδ(X) is the usual open δ-neighbourhood of the set X . In this section, we will use the notation
An → A to denote this convergence since there is no room for confusion.

9.1. The case of bounded potential V : The proof of Theorem 5.3. We will split the proof of Theorem
5.3 into two sections:

a. SCI(Ξsp,Ωφ,g)A = 1: While the proof of this is somewhat long and technical (extra care has been
taken to deal with ∆1-information and arithmetic algorithms over Q), it is done via similar steps to
the proof of Theorem 4.4 in §8.3, namely through approximations of the resolvent norm. However,
some work is needed to convert point samples of V into approximations of the relevant matrices
with respect to a Gabor basis. Lemmas 9.6 and 9.7 are technical lemmas needed to achieve this,
whereas Lemma 9.8 concerns the approximations obtained via discretizations of the relevant inner
products (and is needed to gain the ΣA1 classification).

b. Error control and rest of proof: Lemma 9.8 is used to prove {Ξsp,Ωφ,g} ∈ ΣA1 and we extend the
argument in §8.3 to prove {Ξsp,Ωφ,SA} ∈ ΣA,eigv

1 . To prove the rest of the theorem, we argue that it
is enough to prove {Ξsp,ε,Ωφ} ∈ ΣA1 . This is done via Lemma 9.10, which uses the approximations
of γ(z) constructed in part (a).

Before we embark on the proof, the reader unfamiliar with Halton sequences may want to review this
material. An excellent reference is [97] (see p. 29 for definition). We will also need the following definition
and theorem to prove Theorem 5.3.

Definition 9.3. Let {t1, . . . tN} be a sequence in [0, 1]d. Then we define the star discrepancy of {t1, . . . tN}
to be

D∗N ({t1, . . . tN}) = sup
K∈K

∣∣∣∣∣ 1

N

N∑
k=1

χK(tk)− ν(K)

∣∣∣∣∣ ,
where K denotes the family of all subsets of [0, 1]d of the form

∏d
k=1[0, bk), χK denotes the characteristic

function on K, bk ∈ (0, 1] and ν denotes the Lebesgue measure.

Theorem 9.4 ( [97]). If {tk}k∈N is the Halton sequence in [0, 1]d in the pairwise relatively prime bases
b1, . . . , bd, then

(9.4) D∗N ({t1, . . . tN}) ≤
d

N
+

1

N

d∏
k=1

(
bk − 1

2 log(bk)
log(N) +

bk + 1

2

)
N ∈ N.

For a proof of this theorem, see [97], p. 29. Note that as the right-hand side of (9.4) is somewhat
cumbersome, it is convenient to define the following constant.
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Definition 9.5. Define C∗(b1, . . . , bd) to be the smallest integer such that for all N ∈ N

d

N
+

1

N

d∏
k=1

(
bk − 1

2 log(bk)
log(N) +

bk + 1

2

)
≤ C∗(b1, . . . , bd)

log(N)d

N

where b1, . . . , bd are as in Theorem 9.4.

Further to these definitions, we shall require a Gabor basis, which is the core of the discretization to
produce the tower of algorithms. In particular, let

(9.5) ψk,l(x) = e2πikxχ[0,1](x− l), k, l ∈ Z.

It is well-known that ψk,l form an orthonormal basis for L2(R). Thus, by applying the Fourier transform,

(9.6) {ψ̂k1,l1 ⊗ ψ̂k2,l2 ⊗ · · · ⊗ ψ̂kd,ld : k1, l1, . . . , kd, ld ∈ Z}

forms an orthonormal basis for L2(Rd) since the Fourier transform F is unitary. Let {ϕj}j∈N be an enumer-
ation of the collection of functions above, define

(9.7) S = span{ϕj}j∈N

and let

(9.8) θ : N 3 j 7→ (k1, l1)× . . .× (kd, ld) ∈ Z2d

be the bijection used in this enumeration. Define

k̃(m, d) := max{|kp| : (kp, lp) = θ(j)p, p ∈ {1, . . . , d}, j ∈ {1, . . . ,m}},

l̃(m, d) := max{|lp| : (kp, lp) = θ(j)p, p ∈ {1, . . . , d}, j ∈ {1, . . . ,m}},
(9.9)

and let

(9.10) C1(m, d, a) := d2

(
4

(max{l̃(m, d)2 + l̃(m, d) + 1/3, 1})2

|a− k̃(m, d)|+ 1

)d
, m, d, a ∈ N,

(9.11) C2(m, d) := 2d
(

2((l̃(m, d) + 1)4 + l̃(m, d)4)2(2(k̃(m, d) + 1) + 2)
)d
, m, d ∈ N.

The quantities C1(m, d, a) and C2(m, d) may seem to come out of the blue. They stem from Lemma 9.6 and
Lemma 9.7 that are technical lemmas needed to construct the tower of algorithms. However, C1(m, d, a) and
C2(m, d) occur in the main proof, and thus it is advantageous to introduce them here to prepare the reader.

9.1.1. Proof that SCI(Ξsp,Ωφ,g)A = 1. The proof will make clear that we do not need to worry about the
algorithm outputting the empty set - given m, simply compute Γj(m)(V ) with j(m) ≥ m minimal such that
Γj(m)(V ) 6= ∅.

Proof of SCI(Ξsp,Ωφ,g)A = 1. Step I: Defining Γm({Vρ}ρ∈ΛΓm (V )) and ΛΓm(V ). To do so, recall S from
(9.7). Note that since D(H) = W2,2(Rd), it is easy to show that S is a core for H . Let Pm, m ∈ N, be the
projection onto span{ϕj}mj=1, and let z ∈ C. Define

Sm(V, z) := (−∆ + V − zI)Pm and S̃m(V, z) := (−∆ + V − zI)Pm.

Let

σinf(Sm(V, z)) := min{(〈Sm(V, z)f, Sm(V, z)f〉) 1
2 : f ∈ Ran(Pm), ‖f‖ = 1}

and σinf(S̃m(V, z)) := min{(〈S̃m(V, z)f, S̃m(V, z)f〉) 1
2 : f ∈ Ran(Pm), ‖f‖ = 1}, and define

(9.12) γm(z) := min{σinf(Sm(V, z)), σinf(S̃m(V, z))}}.

Note that if we could evaluate γm at any point z using only finitely many arithmetic operations of elements of
the form V (x), x ∈ Rd, we could have defined a general algorithm as desired by using Υ

1/m
Bm(0)(γm) where
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Υ
1/m
Bm(0) is defined in (8.8). Unfortunately, such evaluation is not possible (γm may depend on infinitely many

samples of V ), and we will now focus on finding an approximation to γm.
Let S = {tk}k∈N, where tk ∈ [0, 1]d is a Halton sequence (see [97] p. 29 for definition) in the pairwise

relatively prime bases b1, . . . , bd (note that the particular choice of the bjs is not important). Define, for
a > 0 and N ∈ N, the discrete inner product

(9.13) 〈f, u〉a,N =
(2a)d

N

N∑
k=1

fa(tk)ua(tk), f, u ∈ L2(Rd) ∩ BVloc(Rd)),

where we have defined the rescaling function on [0, 1]d by

(9.14) fa = f(a(2 · −1), . . . , a(2 · −1))|[0,1]d ,

(we will throughout the proof use the superscript a on a function to indicate (9.14)), where BVloc(Rd)) =

{f : TV(f |[−b,b]d) < ∞, ∀b > 0} and TV(f |[−b,b]d) denotes the total variation, in the sense of Hardy
and Krause (see [97]), of f restricted to [−b, b]d. Note that since V ∈ L∞(Rd) ∩ BVloc(Rd) and any
f ∈ Ran(Pm) is smooth we have that Sm(V, z)f ∈ L2(Rd) ∩ BVloc(Rd)). Hence, we can define for
n,m ∈ N

σinf,n(Sm(V, z)) := min{(〈Sm(V, z)f, Sm(V, z)f〉n,N(n))
1
2 : f ∈ Ran(Pm), ‖f‖ = 1}

σinf,n(S̃m(V, z)) := min{(〈S̃m(V, z)f, S̃m(V, z)f〉n,N(n))
1
2 : f ∈ Ran(Pm), ‖f‖ = 1},

(9.15)

where N(n) := dnφ(n)4e and where φ comes from the definition of Ωφ. We also set

Zm(z)ij = 〈Sm(V, z)ϕj , Sm(V, z)ϕi〉n,N(n), i, j ≤ m,

Z̃m(z)ij = 〈S̃m(V, z)ϕj , S̃m(V, z)ϕi〉n,N(n), i, j ≤ m.
(9.16)

We have the following expansion

〈Sm(V, z)ϕj , Sm(V, z)ϕi〉n,N =〈∆ϕj ,∆ϕi〉n,N − 〈V ϕj ,∆ϕi〉n,N − 〈∆ϕj , V ϕi〉n,N
+ 〈V ϕj , V ϕi〉n,N − 2<(z)〈∆ϕj , ϕi〉n,N
+ 〈2<(zV )ϕj , ϕi〉n,N + |z|2〈ϕj , ϕi〉n,N ,

(9.17)

with a similar expansion holding for the matrix entries of Z̃m(z). Recall that the ϕjs are an enumeration of
the Fourier transforms of the basis ψk,l(x) = e2πikxχ[0,1](x − l), k, l ∈ Z. It is easy to derive closed-form

expressions for ψ̂k,l and ∂2ψ̂k,l
∂ξ2 , and these expressions are variations of products of exponential functions

and functions of the form x 7→ 1/xp for p = 1, 2, 3. It follows that the matrix entries of Zm(z) and Z̃m(z)

also have closed-form expressions in terms of point evaluations of the potential V (at the Halton nodes - see
(9.13)). Note that the Halton nodes are rational. Using (9.17), it follows that given ∆1-information for Λ,
we can compute in finitely many arithmetic operations and comparisons, approximations to Zm(z) to any
required accuracy. The same holds true for Z̃m(z). From Proposition 8.2, it follows that σinf,n(Sm(V, z))

and σinf,n(S̃m(V, z)) can be computed to any given accuracy using finitely many arithmetic operations and
comparisons.

Consider the quantity

β̃(m,n) := (m+ 1)mC1(m, d, n)

+ (2n)dd2
(
m2 + σ2φ2(n) + 2(σm+ 1)(φ(n) + 1)

)
×
(
1 + σ2 + 2σ

)
C2(m, d)C∗(b1, . . . , bd)

log(N(n))d

N(n)
,

(9.18)

where σ = 3d−2d+1 + 2, C1(m, d, n) is defined in (9.10), C2(m, d) is defined in (9.11) and C∗(b1, . . . , bd)
is defined in Definition 9.5. The function β̃ may seem to come somewhat out of the blue. However, it stems
from certain bounds in (9.36) (see also (9.37)) on errors of discrete integrals related to (9.15). For any m,n,
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we can compute an upper bound in Q for β̃(m,n) accurate to 1/m4 using finitely many arithmetic operations
over Q. Denote such an approximation by τ̃(m,n) and set

(9.19) n(m) := min

{
n : τ̃(m,n) ≤ 1

m3

}
.

First, note that the choice of N(n) in (9.18) implies that β̃(m,n) → 0 as n → ∞. Thus, n(m) is well
defined since τ̃(m,n) < m−3 for large n. Second, note that it is clear that τ̃ , and hence also n(m), can be
evaluated by using finitely many arithmetic operations and comparisons.

We now let ζm(z) be a non-negative real valued function with

(9.20) 0 ≤ ζm(z)−min{σinf,n(m)(Sm(V, z)), σinf,n(m)(S̃m(V, z))} ≤ 1

m
.

Combining the above remarks shows that, given ∆1-information for Λ, we can compute such an approxi-
mation ζm(z) for any z ∈ C in finitely many arithmetic operations and comparisons over Q. We can now
define

Γm(V ) := Υ
1/m
Bm(0)(ζm),

where Υ
1/m
Bm(0)(ζm) is defined in (8.8). We conclude this step by noting that Γm are arithmetic towers of

algorithms using ∆1-information for Λ.
Step II: We show that Γm(V )→ Ξsp(V ), as m→∞. Note that, by the properties of the Attouch–Wets

topology, and as discussed in Remark 9.2, it suffices to show that for any compact set K ⊂ C

dK(Γm(V ),Ξsp(V )) −→ 0, m→∞,(9.21)

where dK is defined in (9.2). To show (9.21) we start by defining

γ(z) := min
{

inf{‖(−∆ + V − zI)ψ‖ : ψ ∈W2,2(Rd), ‖ψ‖ = 1},

inf{‖(−∆ + V − zI)ψ‖ : ψ ∈W2,2(Rd), ‖ψ‖ = 1}
}

= ‖(−∆ + V − zI)−1‖−1,
(9.22)

where we use the convention that ‖(−∆ +V −zI)−1‖−1 = 0 when z ∈ sp(−∆ +V ) and proceed similarly
to the proof of Theorem 4.4 with the following claim. Before we state the claim recall h from the definition
of Υδ

K(ζ) in Step II of the proof of Theorem 4.4 in §8.3.
Claim: LetK ⊂ C be any compact set, and letK be a compact set containingK such that sp(−∆+V )∩

K 6= ∅ and 0 < δ < ε < 1/2. Suppose that ζ is a function with ‖ζ − γ‖∞,K̂ := ‖(ζ − γ)χK̂‖∞ < ε on
K̂ := (K + Bh(diam(K)+2ε)+ε(0)), where χK̂ denotes the characteristic function of K̂ and h is the inverse
of g. Finally, let u be defined as in (8.9). Then limξ→0 u(ξ) = 0 and

(9.23) dK(Υδ
K(ζ), sp(−∆ + V )) ≤ u(ε).

To prove the claim, we first show that

(9.24) sup
s∈ΥδK(ζ)∩K

dist(s, sp(−∆ + V )) ≤ u(ε).

If Υδ
K(ζ)∩K = ∅, then there is nothing to prove. Thus we assume that Υδ

K(ζ)∩K 6= ∅. Let z ∈ Gδ(K) and
recall Gδ(K), hδ and Iz = Bhδ(ζ(z))(z) ∩ (δ(Z + iZ)) from the definition of Υδ

K(ζ) in Step II of the proof
of Theorem 4.4 in §8.3. Notice that we may argue exactly as in (8.10) and deduce that Iz ⊂ K̂. Suppose
that Mz 6= ∅. Note that from

‖(−∆ + V − zI)−1‖−1 ≥ g(dist(z, sp(H))),

the monotonicity of h, and the compactness of sp(−∆+V )∩K 6= ∅ there is a y ∈ sp(−∆+V ) of minimal
distance to z with |z − y| ≤ h(γ(z)). Since ‖ζ − γ‖∞,K̂ < ε, and by using the monotonicity of h, we get
|z−y| ≤ h(ζ(z)+ε). Hence, at least one of the v ∈ Iz , say v0, satisfies |v0−y| < h(ζ(z)+ε)−h(ζ(z))+2δ.
Thus, by noting that γ(v0) ≤ dist(v0, sp(−∆ + V )), and by the assumption that δ < ε, we get ζ(v0) <
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γ(v0) + ε < h(ζ(z) + ε) − h(ζ(z)) + 3ε. By the definition of Mz , this estimate now holds for all points
w ∈Mz . Thus, we may argue precisely as in (8.11) and deduce that

dist(w, sp(−∆ + V )) ≤ h(h(ζ(z) + ε)− h(ζ(z)) + 3ε),

which yields (9.24). To see that

(9.25) sup
t∈sp(−∆+V )∩K

dist(Υδ
K(ζ), t) ≤ u(ε),

(where we assume that sp(−∆ + V ) ∩ K 6= ∅) take any y ∈ sp(−∆ + V ) ∩ K ⊂ K. Then there is a point
z ∈ Gδ(K) with |z − y| < δ < ε, hence

ζ(z) < γ(z) + ε ≤ dist(z, sp(−∆ + V )) + ε < 2ε < 1.

Thus, Mz is not empty and contains a point which is closer to y than h(ζ(z)) + ε ≤ h(2ε) + ε ≤ u(ε), and
this yields (9.25). The fact that limξ→0 u(ξ) = 0 is shown in Step II of the proof of Theorem 4.4 in §8.3,
and we have proved the claim.

Armed with this claim, we continue on the path to prove (9.21). We define

(9.26) γm,n(z) := min{σinf,n(Sm(V, z)), σinf,n(S̃m(V, z))}.

Then
∥∥ζm − γm,n(m)

∥∥
∞ ≤ 1/m where n(m) is defined as in (9.19). By Lemma 9.8 (below), ζm → γ

locally uniformly, when m → ∞. Let m0 be large enough so that for all m ≥ m0, Γm(V ) ∩ K =

Υ
1/m
Bm0

(0)(ζm) ∩ K. Choose K = Bm0
(0) and ε ∈ (0, 1/2) as in the claim. Then, by the claim, there is an

m1 > m0 such that for every m > m1, by (9.23), dK(Γm(V ),Ξsp(V )) ≤ u(ε). Since limξ→0 u(ξ) = 0

then (9.21) follows. �

To finish this step of the proof, we need to establish the convergence of the functions γm, ζm and γm,n.

Lemma 9.6. Consider the functions γm,n and γm defined in (9.26) and (9.12) respectively. Then γm,n →
γm, locally uniformly as n→∞.

Proof. Note that we will be using the notation TV[−a,a]d(f) = TV(f |[−a,a]d). Let, for s, t ∈ {0, 1},
i, j ≤ m and u ∈ {V, V , |V |2}

I(u,∆sϕj ,∆
tϕi) =

∫
Rd
u(x)

∑
p∈Φ(s),q∈Φ(t)

hi,j,p,q(x) dx,

where

hi,j,p,q(x) :=

(
ψ̂θ(j)1

(x1) · · ·
∂s̃ψ̂θ(j)p
∂xs̃p

(xp) · · · ψ̂θ(j)d(xd)

)

×

ψ̂θ(i)1
(x1) · · ·

∂ t̃ψ̂θ(i)q

∂xt̃q
(xq) · · · ψ̂θ(i)d(xd)

 ,

(9.27)

and

(9.28) Φ(t) =

{1, . . . , d}, t = 1

{1}, t = 0.

Observe that by the definition of γm,n and γm in (9.26) and (9.12) the lemma follows if we can show that

(9.29) I(u,∆sϕj ,∆
tϕi)−

(2n)d

N

N∑
k=1

un(tk)
∑

p∈Φ(s),q∈Φ(t)

hni,j,p,q(tk)) −→ 0, n→∞,
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where N = N(n) is from (9.16), i, j ≤ m, s, t ∈ {0, 1} and u is either V, V , |V |2 (recall the notation
V a from (9.14)). Note that, by the multi-dimensional Koksma–Hlawka inequality (Theorem 2.11 in [97]) it
follows that

∣∣∣∣∣∣I(u,∆sϕj ,∆
tϕi)−

(2n)d

N

N∑
k=1

un(tk)
∑

p∈Φ(s),q∈Φ(t)

hni,j,p,q(tk)

∣∣∣∣∣∣
≤

∥∥∥∥∥∥u
∑

p∈Φ(s),q∈Φ(t)

hi,j,p,qχR(n)

∥∥∥∥∥∥
L1

+ (2n)d · TV[−n,n]d

u ∑
p∈Φ(s),q∈Φ(t)

hi,j,p,q

D∗N (t1, . . . , tN ),

(9.30)

where R(n) = ([−n, n]d)c. To bound the first part of the right-hand side of (9.30), note that

(9.31)

∥∥∥∥∥∥u
∑

p∈Φ(s),q∈Φ(t)

hi,j,p,qχR(n)

∥∥∥∥∥∥
L1

≤ ‖u‖∞Ki,j(n),

where

Ki,j(n) :=
∑

p∈Φ(s),q∈Φ(t)

〈∣∣∣∣∣χ([−n,n]d)c ψ̂θ(j)1
· · ·

∂s̃ψ̂θ(j)p
∂xs̃p

· · · ψ̂θ(j)d

∣∣∣∣∣ ,
∣∣∣∣∣ψ̂θ(i)1

· · ·
∂ t̃ψ̂θ(i)q

∂xt̃q
· · · ψ̂θ(i)d

∣∣∣∣∣
〉
,

(recall θ from (9.8)) where χ([−n,n]d)c denotes the characteristic function on ([−n, n]d)c. To bound Ki,j(n),
note that it follows by the definition of ψk,l with k, l ∈ Z in (9.5) and some straightforward integration that
for 1 ≤ p ≤ d and (kp, lp) = θ(j)p we have

(9.32)
∣∣∣ψ̂kp,lp(xp)

∣∣∣ ≤
1 when kp − 1 ≤ xp ≤ kp + 1,

1
|xp−kp|+1 otherwise,

(9.33)

∣∣∣∣∣∂2ψ̂kp,lp
∂x2

p

(xp)

∣∣∣∣∣ ≤
l2p + lp + 1

3 when kp − 1 ≤ xp ≤ kp + 1,
l2p+lp+ 1

3

|xp−kp|+1 otherwise.

Hence, if

k̃ = k̃(m, d) := max{|kp| : (kp, lp) = θ(j)p, p ∈ {1, . . . , d}, j ∈ {1, . . . ,m}},

l̃ = l̃(m, d) := max{|lp| : (kp, lp) = θ(j)p, p ∈ {1, . . . , d}, j ∈ {1, . . . ,m}},

and n > k̃, then it follows that

Ki,j(n) ≤ d2 max
p∈Φ(s)
q∈Φ(t)
s,t∈{0,1}

{〈∣∣∣∣∣χ([−n,n]d)c ψ̂θ(j)1
· · ·

∂2sψ̂θ(j)p
∂x2s

p

· · · ψ̂θ(j)d

∣∣∣∣∣ ,
∣∣∣∣∣ψ̂θ(i)1

· · ·
∂2tψ̂θ(i)q
∂x2t

q

· · · ψ̂θ(i)d

∣∣∣∣∣
〉}

≤ d2

(
4

(max{l̃2 + l̃ + 1/3, 1})2

|n− k̃|+ 1

)d
=: C1(m, d, n).

(9.34)

To bound the second part of the right-hand side of (9.30), observe that, by Lemma 9.7, we have

(2n)d · TV[−n,n]d

u ∑
p∈Φ(s),q∈Φ(t)

hi,j,p,q


≤ (2n)dd2 max

p∈Φ(s),q∈Φ(t)

(
‖u‖∞‖hi,j,p,q‖∞ + σ2TV[−n,n]d(u)TV[−n,n]d(hi,j,p,q)

+ σ
(
TV[−n,n]d(u)‖hi,j,p,q‖∞ + TV[−n,n]d(hi,j,p,q)‖u‖∞

) )
≤ (2n)dd2 max

{
‖V ‖∞, ‖V 2‖∞,TV[−n,n]d(V ),TV[−n,n]d(|V |2)

} (
1 + σ2 + 2σ

)
C2(m, d),

(9.35)
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where σ = 3d − 2d+1 + 2 and C2(m, d) is defined in (9.11). Thus, by (9.30), (9.31), (9.34), (9.35), Lemma
9.7 and Theorem 9.4 (recall that {tk}k∈N is a Halton sequence) we get

∣∣∣∣∣∣I(u,∆sϕj ,∆
tϕi)−

(2n)d

N

N∑
k=1

V n(tk)
∑

p∈Φ(s),q∈Φ(t)

hni,j,p,q(tk)

∣∣∣∣∣∣
≤ max{‖V ‖∞, ‖V ‖2∞}C1(m, d, n) + (2n)dd2 max

{
‖V ‖∞, ‖V 2‖∞,TV[−n,n]d(V ),TV[−n,n]d(|V |2)

}
×
(
1 + σ2 + 2σ

)
C2(m, d)

(
d

N
+

1

N

d∏
k=1

(
bk − 1

2 log(bk)
log(N) +

bk + 1

2

))
≤ β(‖V ‖∞,m, n),

(9.36)

where the last inequality uses the bound on the total variation of V from (5.2) and

β(‖V ‖∞,m, n) := (‖V ‖∞ + 1)‖V ‖∞C1(m, d, n)

+ (2n)dd2
(
‖V ‖2∞ + σ2φ2(n) + 2(σ‖V ‖∞ + 1)(φ(n) + 1)

)
×
(
1 + σ2 + 2σ

)
C2(m, d)C∗(b1, . . . , bd)

log(N)d

N
, N(n) = dnφ(n)4e

(9.37)

(recall (9.15)) where C∗(b1, . . . , bd) is defined in Definition 9.5. Finally, note that, by the definition of
C1(m, d, n) and the fact that we have chosen N(n) according to (9.37), it follows that β(‖V ‖∞,m, n)→ 0

as n→∞. Hence, (9.29) follows via (9.37), and the proof is finished. �

Lemma 9.7. For all a > 0, i, j ≤ n2 and m,n ≤ d:

(i) TV(hai,j,m,n) = TV[−a,a]d(hi,j,m,n) ≤ C2(m, d),

(ii) ‖hai,j,m,n‖∞ ≤ C2(m, d),

(iii) for u ∈ BVloc(Rd) and σ = 3d − 2d+1 + 2 we have that

TV(uahai,j,p,q) = TV[−a,a]d(uhi,j,p,q) ≤ ‖u‖∞‖hi,j,p,q‖∞ + σ2TV[−a,a]d(u)TV[−a,a]d(hi,j,p,q)

+ σ
(
TV[−a,a]d(u)‖hi,j,p,q‖∞ + TV[−a,a]d(hi,j,p,q)‖u‖∞

)
,

(iv) TV[−a,a]d(|g|2) ≤ ‖g‖2∞ + σ2TV2
[−a,a]d(g) + 2σ‖g‖∞TV[−a,a]d(g)

where

C2(m, d) := 2d
(

2((l̃ + 1)4 + l̃4)2(2(k̃ + 1) + 2)
)d
,

and k̃, l̃ are defined in (9.9).

Proof. To prove both (i) and (ii), we will use the easy facts that TV(hai,j,p,q) = TV[−a,a]d(hi,j,p,q) and
TV(gahai,j,p,q) = TV[−a,a]d(ghi,j,p,q). To prove (i) of the claim let us first recall (see, for example [97], p.
19) that when ψ ∈ C1([−a, a]d) then

(9.38) TV[−a,a]d(ψ) =

d∑
k=1

∑
1≤i1<...<ik≤d

V (k)(ψ; i1, . . . , ik),

where V (k)(ψ; i1, . . . , ik) = V (k)(ψi1,...,ik) and

ψi1,...,ik : (y1, . . . , yk) 7→ ψ(ỹ1, . . . , ỹd), ỹj = a, j 6= i1, . . . , ik, ỹij = yj ,

V (k)(ϕ) =

∫ a

−a
· · ·
∫ a

−a

∣∣∣∣ ∂kϕ

∂x1 · · · ∂xk

∣∣∣∣ dx1 . . . dxk, ϕ ∈ C1([−a, a]k).
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Note that from (9.27) and (9.5) it follows that hai,j,p,q ∈ C∞([0, 1]d), so by the definition of h in (9.27) we
have that, for k ∈ {1, . . . , d} and 1 ≤ i1 < . . . < ik ≤ d,

V (k)(hai,j,p,q; i1, . . . , ik)

≤
d∏

µ=1

max

[
max
s,t=0,2

∫ a

−a

∣∣∣∣∣∣ ∂∂xµ
∂sψ̂θ(j)µ

∂xsµ
(xµ)

∂tψ̂θ(i)µ
∂xtµ

(xµ)

∣∣∣∣∣∣ dxµ,
max
s,t=0,2

xµ∈[−a,a]

∣∣∣∣∣∣∂
sψ̂θ(j)µ
∂xsµ

(xµ)
∂tψ̂θ(i)µ
∂xtµ

(xµ)

∣∣∣∣∣∣
]
, ∀k, p, q ≤ d.

(9.39)

We will now focus on bounding the right-hand side of (9.39). Note that by using the definition of ψk,l with
k, l ∈ Z in (9.5) and some straightforward integration, it follows that for 1 ≤ p ≤ d and (kp, lp) = θ(j)p we
have

(9.40)

∣∣∣∣∣∂ψ̂kp,lp∂xp
(xp)

∣∣∣∣∣ ≤
lp + 1

2 when kp − 1 ≤ xp ≤ kp + 1,
l+ 1

2

|xp−kp|+1 otherwise,

(9.41)

∣∣∣∣∣∂3ψ̂kp,lp
∂x3

p

(xp)

∣∣∣∣∣ ≤


(lp+1)4−l4p
4 when kp − 1 ≤ xp ≤ kp + 1,

(lp+1)4−l4p
4(|xp−kp|+1) otherwise.

Thus, by using (9.32), (9.33), (9.40) and (9.41) it follows that

max
s,t=0,2

∫ a

−a

∣∣∣∣∣∣ ∂∂xµ
∂sψ̂θ(j)µ

∂xsµ
(xµ)

∂tψ̂θ(i)µ
∂xtµ

(xµ)

∣∣∣∣∣∣ dxµ
≤ 2 max

s,t=0,1,2,3

∫ ∞
−∞

∣∣∣∣∣∣∂
sψ̂θ(j)µ
∂xsµ

(xµ)
∂tψ̂θ(i)µ
∂xtµ

(xµ)

∣∣∣∣∣∣ dxµ
≤ 2((l̃ + 1)4 + l̃4)2

(
2(k̃ + 1) +

∫
[−∞,−1]∪[1,∞]

1

y2
dy

)
= 2((l̃ + 1)4 + l̃4)2

(
2(k̃ + 1) + 2

)
,

(9.42)

where k̃ := max{|kp| : (kp, lp) = θ(j)p, p ∈ {1, . . . , d}, j ∈ {1, . . . , n}}, l̃ := max{|lp| : (kp, lp) =

θ(j)p, p ∈ {1, . . . , d}, j ∈ {1, . . . , n}}. Moreover, by (9.32) and (9.33)

(9.43) max
s,t=0,2

xµ∈[−a,a]

∣∣∣∣∣∣∂
sψ̂θ(j)µ
∂xsµ

(xµ)
∂tψ̂θ(i)µ
∂xtµ

(xµ)

∣∣∣∣∣∣ ≤ max{l̃2 + l̃ + 1/3, 1}, i, j ≤ m, 1 ≤ µ ≤ d.

Hence, from (9.39), (9.42) and (9.43) it follows that for k ∈ {1, . . . , d} and 1 ≤ i1 < . . . < ik ≤ d,

V (k)(hai,j,p,q; i1, . . . , ik) ≤
(

2((l̃ + 1)4 + l̃4)2(2(k̃ + 1) + 2)
)d

and thus, by (9.38) we get that

TV[−a,a]d(hi,j,p,q) ≤
(

2((l̃ + 1)4 + l̃4)2(2(k̃ + 1) + 2)
)d d∑

k=1

(
d

k

)
≤ 2d

(
2((l̃ + 1)4 + l̃4)2(2(k̃ + 1) + 2)

)d
,

and thus, we have proved (i) in the claim.
To prove (ii) in the claim, we observe that by (9.5), (9.27) and (9.43), it follows that

‖hai,j,p,q‖∞ ≤
d∏

µ=1

max
s,t=0,2

xµ∈[−∞,∞]

∣∣∣∣∣∣∂
sψ̂θ(j)µ
∂xsµ

(xµ)
∂tψ̂θ(i)µ
∂xtµ

(xµ)

∣∣∣∣∣∣ ≤
(

max{l̃2 + l̃ + 1/3, 1}
)d
,
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for i, j ≤ m and p, q ≤ d. The last part of the above inequality is bounded by C2(m, d), which yields the
assertion.

To prove (iii) and (iv), we will use the fact (see [20]) that

A = {f ∈M([−a, a]d) : ‖f‖∞ + TV[−a,a]d(f) <∞},

where M([−a, a]d) denotes the set of measurable functions on [−a, a]d, is a Banach algebra when A is
equipped with the norm ‖f‖A = ‖f‖∞ + σTV[−a,a]d(f), where σ > 3d − 2d+1 + 1. We will let σ =

3d − 2d+1 + 2. Hence, by the Banach algebra property of the norm and (i) and (ii),

TV[−a,a]d(uhi,j,p,q) ≤ ‖u‖∞‖hi,j,p,q‖∞ + σ2TV[−a,a]d(u)TV[−a,a]d(hi,j,p,q)

+ σ
(
TV[−a,a]d(u)‖hi,j,p,q‖∞ + TV[−a,a]d(hi,j,p,q)‖u‖∞

)
, u ∈ A,

finally proving (iii). The proof of (iv) is almost identical. �

Lemma 9.8. Recall ζm defined in (9.20). Then, ζm → γ locally uniformly, where γ is defined in (9.22).
Furthermore, if m ≥ ‖V ‖∞ then we have

ζm(z) ≥ γm(z)− 2 + |z|
m

,

where γm is defined in (9.12).

Proof. Observe that γm → γ locally uniformly as m → ∞. Indeed, let T = {‖(−∆ + V + zI)ψ‖ : ψ ∈
W2,2(Rd), ‖ψ‖ = 1}. Then, since S is a core forH (recall S from Step I of the proof of SCI(Ξsp,Ωφ,g)A =

1) then every element in T can be approximated arbitrarily well by ‖(−∆ + V + zI)ϕ̃‖ for some ϕ̃ ∈ S ,
thus it follows from (9.22) that we have convergence. Note that the convergence must be monotonically from
above by the definition of Pm, and thus Dini’s Theorem assures the locally uniform convergence. Thus, it
suffices to show that |ζm − γm| → 0 locally uniformly as m→∞.

Note that if we define, for z ∈ C, the operator matrices

Zm(z)ij = 〈Sm(V, z)ϕj , Sm(V, z)ϕi〉n,N , i, j ≤ m,

Z̃m(z)ij = 〈S̃m(V, z)ϕj , S̃m(V, z)ϕi〉n,N , i, j ≤ m, N = dnφ(n)4e,
(9.44)

where n = n(m) is defined in (9.19) and

Wm(z)ij = 〈Sm(V, z)ϕj , Sm(V, z)ϕi〉, i, j ≤ m,

W̃m(z)ij = 〈S̃m(V, z)ϕj , S̃m(V, z)ϕi〉, i, j ≤ m,

the desired convergence follows if we can show that ‖Zm(z) − Wm(z)‖ and ‖Z̃m(z) − W̃m(z)‖ tend
to zero as m tends to infinity for all z in some compact set. However, this follows from the choice of
n(m) = min{n : τ̃(m,n) ≤ 1

m3 } in (9.19). In particular, β(m,m, n) = β̃(m,n) ≤ τ̃(m,n) and clearly
β(‖V ‖∞,m, n) ≤ β(m,m, n) for ‖V ‖∞ ≤ m (recall β from (9.37)). We also have

〈Sm(V, z)ϕj , Sm(V, z)ϕi〉n,N =〈∆ϕj ,∆ϕi〉n,N − 〈V ϕj ,∆ϕi〉n,N − 〈∆ϕj , V ϕi〉n,N
+ 〈V ϕj , V ϕi〉n,N − 2<(z)〈∆ϕj , ϕi〉n,N
+ 〈2<(zV )ϕj , ϕi〉n,N + |z|2〈ϕj , ϕi〉n,N .

(9.45)

Thus it follows immediately by (9.36) that

max
{
|Zm(z)ij −Wm(z)ij | , |Z̃m(z)ij − W̃m(z)ij |

}
≤ (4(|z|+ 1) + |z|2)β(‖V ‖∞,m, n)

≤ 4(|z|+ 1) + |z|2

m3
.
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Using the fact that the operator norm of a matrix is bounded by its Frobenius norm ‖ · ‖F , it follows that for
z ∈ K ⊂ C, where K is compact, ‖Zm(z)−Wm(z)‖F = O( 1

m2 ) and ‖Z̃m(z)− W̃m(z)‖F = O( 1
m2 ) for

sufficiently large m. To see the explicit bound, note that the above shows for ‖V ‖∞ ≤ m that

γm(z)2 ≤ 4(|z|+ 1) + |z|2

m2
+ ζm(z)2 ≤

ζm(z) +

√
4(|z|+ 1) + |z|2

m

2

Taking square roots and re-arranging gives the result. �

9.1.2. Proof of the ∈ ΣA1 and ∈ ΣA,eigv
1 classifications in Theorem 5.3. To show the ΣA1 classification for

{Ξsp,Ωφ,g}, consider Γ̂m(A) = Γm+d‖V ‖∞e(V ) where we now use the fact that an upper bound on ‖V ‖∞
is included in the evaluation functions. From Lemma 9.8, if z ∈ Γ̂m(A) then

dist(z, sp(−∆ + V )) ≤ g−1

(
ζm+d‖V ‖∞e(z) +

2 + |z|
m

)
.

This can be approximated from above to within an error that converges to zero as m → ∞ using finitely
many evaluations of the function g at rational points. Taking the maximum over all z ∈ Γ̂m(A) gives us an
error bound which converges to 0 uniformly on compact subsets of C as m→∞. The following shows that
this is enough for the ΣA1 error control.

Lemma 9.9. Let Ξ : Ω→ (C(C), dAW) be a problem function and suppose that there is an arithmetic tower
of algorithms {Γm} for Ξ. Suppose also that there exists a function Em : Γm(A) 7→ R≥0 (which may
depend on A) computed along with each Γm (using finitely many arithmetic operations and comparisons)
and converging uniformly to zero on compact subsets, such that

dist(z,Ξ(A)) ≤ Em(z), ∀z ∈ Γm(A).

Suppose also that Γm(A) is finite for each m and A. Then we can compute in finitely many arithmetic
operations and comparisons a sequence of non-negative numbers bm → 0 such that Γm(A) ⊂ Am for some
Am ∈ C(C) with dAW(Am,Ξ(A)) ≤ bm. Hence, by taking subsequences if necessary, we can build an
arithmetic ΣA1 tower for {Ξ,Ω}.

Proof. Let anm = sup{Em(z) : z ∈ Γm(A) ∩Bn(0)}. Define

Anm =
(
(Ξ(A) +Banm(0)) ∩Bn(0)

)
∪ (Γm(A) ∩ {z : |z| ≥ n}).

It is clear that Γm(A) ⊂ Anm and given {Γm(A), Em(A)} (we assume Γm(A) 6= ∅), we can easily compute
a lower bound n1 such that Ξ(A) ∩ Bn1

(0) 6= ∅. Compute this from Γ1(A) and then fix it. Suppose that
n ≥ 4n1, and suppose that |z| < bn/4c. Then the points in Anm and Ξ(A) nearest to z must lie in Bn(0) and
hence dist(z,Anm) ≤ dist(z,Ξ(A)) and dist(z,Ξ(A)) ≤ dist(z,Anm) + anm. It follows that

dAW(Anm,Ξ(A)) ≤ anm + 2−bn/4c.

We now choose a sequence n(m) such that setting Am = A
n(m)
m and bm = a

n(m)
n + 2−bn(m)/4c proves the

result. Clearly, it is enough to ensure that bm is null. If m < 4n1 then set n(m) = 4n1, otherwise consider
4n1 ≤ k ≤ m. If such a k exists with akm ≤ 2−k, then let n(m) be the maximal such k, and finally, if no
such k exists, then set n(m) = 4n1. For a fixed n, anm → 0 as m→∞. It follows that for large m, we must
have an(m)

m ≤ 2−n(m) and that n(m)→∞. �

Finally, we extend the argument of §8.3 for the approximate eigenvectors.

Proof that {Ξsp,Ωφ,SA} ∈ ΣA,eigv
1 . We need only argue for the approximate eigenvectors, and we sketch

the proof since it is a simple adaptation of the discrete case considered in §8.3. Consider a Schrödinger
operator in Ωφ,SA with potential V and z ∈ Γ̂m(V ), where Γ̂m is the constructed ΣA1 tower for Ωφ,g . By
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taking subsequences if necessary, it suffices to show that we can compute a vector ψm ∈ Cm such that, for a
given δ ∈ Q>0 with δ < 1,

(9.46) 〈Zm(z)ψm, ψm〉 ≤
√
σinf(Zm(z)) + δ, 1− δ < ‖ψm‖ < 1,

where Zm(z) is the Hermitian positive (semi-)definite matrix defined via (9.44). The vector ψm will then
correspond to the first m coefficients with respect to the Gabor basis. To see why this is sufficient, note that
if T denotes the infinite matrix corresponding to −∆ + V − zI (with respect to the Gabor basis) and Pm
denotes the projection onto the span of the first m basis functions, then (9.46) implies that

‖TPmψm‖2 = 〈T ∗Tψm, ψm〉 = 〈Zm(z)ψm, ψm〉

and that
√
σinf(Zm(z)) is bounded above by a computable null sequence since z ∈ Γ̂m(V ). We can then

adapt the proof of {Ξsp,Ωf ∩ ΩN} ∈ ΣA,eigv
1 , in §8.3 with suitable approximations of Zm(z) (which

can be computed with error control using ∆1 information by the above arguments) replacing the matrix
(Pf(n)ÃPn)∗(Pf(n)ÃPn). �

9.1.3. Proof of the ∈ ΠA
2 classification in Theorem 5.3. It is clear that none of the problems lie in ∆G

1 .
Hence to finish the proof of Theorem 5.3, we must show that {Ξsp,ε,Ωφ} ∈ ΣA1 since by taking ε ↓ 0 this
will show {Ξsp,Ωφ} ∈ ΠA

2 since we have Ωφ,g ⊂ Ωφ. Note that through the use of ζm and Lemma 9.8 we
can compute, using finitely many arithmetic operations and comparisons for any z, a function γ̂m(z) that
converges uniformly to γ(z) from (9.22) on any compact subset of C with γ̂m(z) ≥ γ(z). The next Lemma
then says that this is enough.

Lemma 9.10. Suppose that γ̂m(z) ≥ γ(z) converge uniformly to
∥∥(−∆ + V − zI)−1

∥∥−1
as m → ∞ on

compact subsets of C. Set

Γm(V ) = (Bm(0) ∩ 1

m
(Z + iZ)) ∩ {z : γ̂m(z) < ε}.

For large m, Γm(V ) 6= ∅ so we can assume this without loss of generality. Also, dAW(Γm(V ), spε(−∆ +

V ))→ 0 as m→∞ and clearly Γm(V ) ⊂ spε(−∆ + V ).

Proof. Since the pseudospectrum is non-empty, for large m, Γm(V ) 6= ∅, so we may assume that this holds
for all m without loss of generality. We use the characterization of the Attouch–Wets topology where it
is enough to consider closed balls. Suppose that n is large such that Bn(0) ∩ spε(−∆ + V ) 6= ∅. Since
Γm(V ) ⊂ spε(−∆ + V ), we must show that given δ > 0, there exists N1 such that if m > N1 then
spε(−∆+V )∩Bn(0) ⊂ Γm(V ) +Bδ(0). Suppose for a contradiction that this was false. Then there exists
zj ∈ spε(−∆+V )∩Bn(0), δ > 0 andmj →∞ such that dist(zj ,Γmj (V )) ≥ δ. Without loss of generality,
we can assume that zj → z ∈ spε(−∆ + V ). There exists some w with

∥∥(−∆ + V − wI)−1
∥∥−1

< ε and
|z − w| ≤ δ/2. Assumingmj > n+δ, there exists ymj ∈ (Bmj (0)∩ 1

mj
(Z+iZ)) with

∣∣ymj − w∣∣ ≤ 1/mj .
It follows that

γ̂mj (ymj ) ≤
∣∣γ̂mj (ymj )− γ(ymj )

∣∣+
∣∣γ(w)− γ(ymj )

∣∣+
∥∥(−∆ + V − wI)−1

∥∥−1
.

But γ is continuous and γ̂mj converges uniformly to γ on compact subsets. Hence for largemj , γ̂mj (ymj ) <
ε so that ymj ∈ Γmj (V ). But

∣∣ymj − z∣∣ ≤ |z − w|+ ∣∣ymj − w∣∣ ≤ δ/2 + 1/mj which is smaller than δ for
large mj . This gives the required contradiction. �

9.2. The case of unbounded potential V : The proof of Theorem 5.5. In this section, we prove Theorem
5.5 on the SCI of spectra and pseudospectra of Schrödinger operators with unbounded potentials. First of
all, we will build the ∆A

2 algorithms. Let us outline the steps of the proof first:

a. Compactness of the resolvent: The assumptions on the potential imply that the operator H has a
compact resolvent R(H, z) (see Proposition 9.21). Therefore, the spectrum is countable, consisting
of eigenvalues with finite-dimensional invariant subspaces.
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b. Finite-dimensional approximations: The main part of the proof centers around showing that it is
possible to construct, with finitely many evaluations of V , square matrices H̃n whose resolvents
(when suitably embedded into the large space) converge to R(H, z0) in norm at a suitable point z0

(see Theorem 9.23). Note that this technique is very different from the techniques used so far in the
paper and is only possible due to compactness.

c. Convergence of the spectrum and pseudospectrum: We use the convergence at z0 to show conver-
gence at other points z in the resolvent set.

Once this is done, we prove that neither problem lies in ΣG1 ∪ΠG
1 .

We start with a general discussion as the argument is otherwise independent of the particular setup. In the
end, we demonstrate the construction of the matrices H̃n and the convergence of the resolvents. We assume
the following:

(i) Assumptions on the operator A: Given a closed densely defined operator A in a Hilbert space
H such that at z0 ∈ C the resolvent operator R(z0) = (A − z0)−1 is compact R(z0) ∈ K(H). Thus
sp(A) = {λj}, the spectrum of A, is at most countable with no finite accumulation points.

(ii) Assumptions on the approximations An: Suppose An is a finite rank approximation to A such that
if En is the orthogonal projection onto the range of An, then An = AnEn. We put further Hn = EnH
and denote by Ãn the matrix representing An when restricted to the invariant subspace Hn w.r.t. some
orthonormal basis. Now, take the resolvent (AnEn − zEn)−1 of this restriction, extend it to H⊥n by zero,
and denote this extension by Rn(z). Then Rn(z) = Rn(z)En, and Rn(z) = (An − z)−1 + (I − En)z−1

for all z 6= 0 for which the inverse exists. Finally we assume that Rn(z0) exist and

(9.47) lim
n→∞

‖Rn(z0)−R(z0)‖ = 0.

9.2.1. Convergence of the spectrum and pseudospectrum. The first step is to conclude that if the finite
rank approximations to the resolvent converge in operator norm at one point z0, then they also converge
locally uniformly away from the spectrum of A. To that end, denote by Ur(µ) the open disc at center µ and
radius r.

Proposition 9.11. Suppose R(z) and Rn(z) are as above and satisfy (9.47). Let K ⊂ C be compact, r > 0

and defineKr = K\
⋃
j Ur(λj). Then for large enough n,Rn(z) exists for all z ∈ Kr and supz∈Kr ‖Rn(z)−

R(z)‖ → 0 as n→∞.

Proof. Clearly R(z) = R(z0)(I − (z − z0)R(z0))−1 and Rn(z) = Rn(z0)(I − (z − z0)Rn(z0))−1 for all
z in which R(z), resp. Rn(z), exist. By (9.47) it suffices to prove the existence of Rn(z) and

sup
z∈Kr

‖(I − (z − z0)Rn(z0))−1 − (I − (z − z0)R(z0))−1‖ → 0.

However, we know that (I − (z − z0)R(z0))−1 is meromorphic in the whole plane and hence analytic in
the compact set Kr and in particular uniformly bounded. But this means that it is sufficient to show that the
inverses converge, which in turn is immediate from (9.47) since

sup
z∈Kr

‖(I−(z−z0)Rn(z0))−(I−(z−z0)R(z0))‖ ≤ ‖Rn(z0)−R(z0)‖+ sup
z∈Kr

|z−z0| ‖Rn(z0)−R(z0)‖.

To see that this suffices, write Tn(z) = (I − (z − z0)Rn(z0)), T (z) = (I − (z − z0)R(z0)) and Tn(z) =

T (z)[I + T (z)−1(Tn(z)− T (z))]. Then for large enough n and z ∈ Kr by a Neumann series argument

‖Tn(z)−1 − T (z)−1‖ ≤ ‖T (z)−1‖ [(1− ‖T (z)−1‖‖Tn(z)− T (z)‖)−1 − 1].

�

Proposition 9.12. LetK ⊂ C be compact and δ > 0. Then, for all large enough n, sp(A)∩K ⊂ Nδ(sp(An))

and sp(An) ∩ K ⊂ Nδ(sp(A)).
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Proof. Since the eigenvalues are precisely the poles of the resolvents, the claim follows immediately from
the previous proposition. �

The last proposition gives the convergence of the spectra. The discussion on pseudospectra is more
involved. We need to know that the resolvent norm is not constant in any open set. The following is a
theorem due to J. Globevnik, E.B. Davies, and E. Shargorodsky, which we formulate here as a lemma:

Lemma 9.13 ( [62] and [40]). Suppose A is a closed and densely defined operator in H such that the
resolvent R(z) = (A− z)−1 is compact. Let Ω ⊂ C be open and connected, and assume that, for all z ∈ Ω,
‖R(z)‖ ≤M. Then, for all z ∈ Ω, ‖R(z)‖ < M. This is particularly true ifH is finite-dimensional.

The theorem in [40] is formulated for Banach spaces X with the extra assumption that X or its dual are
complex strictly convex, a condition which holds for Hilbert spaces. The caseH being of finite dimension is
already settled by [62]. We put γ(z) = 1/‖R(z)‖ and γn(z) = 1/‖Rn(z)‖ and summarise the properties of
γ and γn as follows:

Lemma 9.14. If (i) and (ii) hold, then γn(z) → γ(z) uniformly on compact sets. Neither γ, nor γn
is constant in any open set, and they have local minima only where they vanish. Additionally, γ(z) ≤
dist(z, sp(A)). Consequently,

spε(A) = {z : γ(z) ≤ ε} = cl{z : γ(z) < ε}, spε(An) = {z : γn(z) ≤ ε} = cl{z : γn(z) < ε}.

Proof. Note that γ(z) ≤ dist(z, sp(A)) follows from a reformulation of a general property of resolvents.
Next, notice that ‖Rn(z)‖ = ‖R(An, z)‖ and that the norms of resolvents are subharmonic away from
spectra and therefore γ and γn cannot have proper local minima, except when they vanish. Furthermore,
they cannot be constant in an open set by Lemma 9.13.

To conclude the local uniform convergence, let M be such that along the curve {|z| = M} there are
no eigenvalues of A and choose K as the set {|z| ≤ M}. Choose any ε, small enough so that the discs
{|z − λj |} ≤ ε/3 separate the eigenvalues inside K. By Proposition 9.11, we may assume that n is large
enough so that for z ∈ Kε/3 (recall Kr from Proposition 9.11) we have |γn(z) − γ(z)| ≤ ε/3. On the
other hand, if |z − λj | ≤ ε/3 then γ(z) ≤ ε/3 and, since γn has to vanish also somewhere in that disc
(again for large enough n) and γn(z) ≤ dist(z, sp(An|Hn)), we have γn(z) ≤ 2ε/3 in that disc, hence
|γn(z)− γ(z)| ≤ γn(z) + γ(z) ≤ ε. Thus we have |γn(z)− γ(z)| ≤ ε for all z ∈ K.

Finally, to justify the equivalence of the characterizations of pseudospectra, notice that the level sets
{z : γ(z) = ε} and {z : γn(z) = ε} cannot contain open subsets or isolated points. �

Lemma 9.15. Assume ϕn and ϕ are continuous non-negative functions in C which have local minima only
when they vanish, are not constant in any open set, and ϕn converges to ϕ uniformly in compact sets. Set
S := {z : ϕ(z) ≤ 1} and Sn := {z : ϕn(z) ≤ 1}. Let K be compact and δ > 0. Then the following hold
for all large enough n: S∩K ⊂ Nδ(Sn), Sn∩K ⊂ Nδ(S), whereNδ(·) denotes the open δ neighbourhood.

Proof. Consider S ∩ K ⊂ Nδ(Sn), and assume that the left-hand side is not empty. Due to compactness of
S ∩K there are points zi ∈ S∩K for i = 1, . . . ,m such that S ∩K ⊂

⋃m
i=1 Uδ/2(zi). Notice that ϕ(zi) ≤ 1.

If ϕ(zi) < 1, set yi = zi. Otherwise, ϕ(zi) = 1, in which case zi cannot be a local minimum, but since ϕ is
not constant in any open set, there exists a point yi ∈ Uδ/2(zi) such that ϕ(yi) < 1. But since ϕn converges
uniformly in compact sets to ϕ we conclude that for all large enough n and all i we have ϕn(yi) < 1. Hence
zi ∈ Nδ/2(Sn) and so S ∩ K ⊂

⋃m
i=1 Uδ/2(zi) ⊂ Nδ(Sn).

Consider now Sn ∩ K ⊂ Nδ(S),. If it did not hold, there would exist a sequence {nj} and points
znj ∈ Snj ∩ K such that znj /∈ Nδ(S). Suppose znjk → ẑ. Then dist(ẑ,S) ≥ δ as well. However, writing
ϕ(ẑ) ≤ |ϕ(ẑ) − ϕ(znjk )| + |ϕ(znjk ) − ϕnjk (znjk )| + ϕnjk (znjk ) we obtain ϕ(ẑ) ≤ 1 as the first term
on the right tends to zero because ϕ is continuous, the second term converges to zero as ϕn approximate ϕ
uniformly in compact sets, and ϕnjk (znjk ) ≤ 1. Hence, ẑ ∈ S ∩ K, which is a contradiction. �
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Note that the same argument for Lemma 9.15 holds when replacing ≤ 1 by ≤ ε in the definitions of S
and Sn. Combining the results of this section, we can state the following result.

Proposition 9.16. Let K ⊂ C be compact and δ > 0. Then, for all large enough n,

spε(A) ∩ K ⊂ Nδ(spε(An)), spε(An) ∩ K ⊂ Nδ(spε(A)).

9.2.2. The general algorithms. Here A, An are operators in H as in (i), (ii) above, while Ãn is the matrix
representing An when restricted to the finite-dimensional invariant subspace Hn = EnH. In particular
‖Rn(z)‖ = ‖(Ãn−z)−1‖. Denoting by σinf the smallest singular value of a square matrix we have γn(z) =

1/‖Rn(z)‖ = σinf(Ãn− zI). Let r > 0 and define Gr := Br(0)∩ ( 1
2r (Z + iZ)). Suppose the matrices Ãn

are available with ∆1-information. From Proposition 8.2, it follows that we can compute, in finitely many
arithmetic operations and comparisons over Q, an approximation to γn(z) from above, accurate to 1/n2,
and taking values in Q≥0. Call this approximation γ̂n and let εn ∈ Q be an approximation of ε from below
accurate to 1/n2 and define Γ1

n and Γ2
n by

(9.48) Γ1
n(A) =

{
z ∈ Gn : γ̂n(z) ≤ 1

n

}
, Γ2

n(A) = {z ∈ Gn : γ̂n(z) ≤ εn} ,

which we shall prove to be the towers of algorithms for Ξsp and Ξsp,ε (as defined in Theorem 5.5), respec-
tively. Observe that Γ1

n(A) and Γ2
n(A) can be executed in a finite number of arithmetic operations over Q

using ∆1-information. Also, our proof will show that Γin(A) 6= ∅ for large n. Hence, by our usual trick of
searching for minimal n(m) ≥ m such that this is so, we can assume that this holds for all n without loss of
generality.

Proposition 9.17. The algorithms satisfy the following:

(9.49) Γ1
n(A) −→ sp(A), Γ2

n(A) −→ spε(A), n→∞.

Proof. We begin with the second part of (9.49). It suffices to show that given δ and a compact ball K, for
large n:

(i) Γ2
n(A) ∩ K ⊂ Nδ(spε(A)), (ii) spε(A) ∩ K ⊂ Nδ(Γ2

n(A)).

Note that Γ2
n(A) ⊂ spε(Ãn) ∩ Gn and hence, the first inclusion follows immediately from Proposition

9.16. To see (ii), we argue by contradiction and suppose not. Then by possibly passing to an increasing
subsequence {kn}n∈N ⊂ N there is a sequence zn ∈ (spε(A)∩K)\Nδ(Γ2

n(A)) for all n. Since spε(A)∩K
is a compact set, by possibly extracting a subsequence, we have that zn → z0 ∈ spε(A) ∩ K. Consider the
open ball Uδ/3(z0) which must contain all zn for n sufficiently large. Since γ(z) is continuous, positive, not
constant in any open set and without nontrivial local minima, it follows that spε(A) equals the closure of
its interior points. In particular int(spε(A)) ∩ Uδ/3(z0) 6= ∅. Suppose then r > 0 and y0 are such that the
closure of the open ball Ur(y0) is inside this open set: Br(y0) ⊂ int(spε(A)) ∩ Uδ/3(z0). We claim that
{z : γ̂n(z) ≤ ε} ∩ Ur(y0) = Ur(y0) for all large enough n. Indeed, since Ur(y0) bounded away from the
boundary of the pseudospectrum of A, we have γ(z) ≤ ε − s for some s > 0 and for all z ∈ Ur(y0). The
claim follows from the locally uniform convergence of γn and hence of γ̂n. By the definition of Gn we have
that Ur(y0) ⊂ Nδ/3(Ur(y0) ∩ Gn) for large n, so, by the claim, Ur(y0) ⊂ Nδ/3({z : γ̂n(z) ≤ ε} ∩ Gn).

Hence, since Ur(y0) ⊂ Uδ/3(z0), it follows that

zn ∈ Uδ/3(z0) ⊂ N2δ/3(Ur(y0)) ⊂ Nδ({z : γ̂n(z) ≤ ε} ∩Gn),

for large n, contradicting zn /∈ Nδ(Γ2
n(A)). To prove the first part of (9.49) we argue as follows. Given

δ > 0 and compact K, we need to show that for large n:

(iii) sp(A) ∩ K ⊂ Nδ({z : γ̂n(z) ≤ 1/n} ∩Gn) (iv) {z : γ̂n(z) ≤ 1/n} ∩Gn ∩ K ⊂ Nδ(sp(A)).

For notational convenience, we let an = 1/n− 1/n2.
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To show (iii), we start by defining G̃n := 1
2n (Z + iZ) and note that for λj ∈ sp(Ãn) we have that

Nan({λj}) ∩ G̃n 6= ∅ for large n. Hence, sp(Ãn) ⊂ N1/n

(
Nan

(
sp(Ãn)

)
∩ G̃n

)
. Since Nan(sp(Ãn)) ⊂

span(Ãn), it follows that sp(Ãn) ⊂ N1/n

(
span(Ãn) ∩ G̃n

)
. Now by the first part of Proposition 9.12 we

have that sp(A) ∩ K ⊂ Nδ/2(sp(Ãn)) for large n. Thus, combining the previous observations, we have for
large n that

sp(A) ∩ K ⊂ Nδ/2+1/n

(
span(Ãn) ∩ G̃n

)
⊂ Nδ/2+1/n

(
{z : γ̂n(z) ≤ 1/n} ∩ G̃n

)
.

However, since K is bounded we have that there exists an r > 0 such that if λ ∈ G̃n ∩ Ur(0)c then
Nδ({λ}) ∩ sp(A) ∩ K = ∅ for all n. Hence, sp(A) ∩ K ⊂ Nδ ({z : γ̂n(z) ≤ 1/n} ∩Gn) as desired.

To see (iv), let r > 0 be so large that Nδ(Ur(0)c) ∩ K = ∅. Note that spε(A) → sp(A) as ε → 0.
Thus, spε1(A) ∩ Br(0) ⊂ Nδ/2(sp(A)) for a sufficiently small ε1. Also, by the second part of Proposition
9.16 it follows that spε1(Ãn) ∩ K ⊂ Nδ/2(spε1(A)) for large n. However, by the choice of r we have that
spε1(Ãn) ∩ K ⊂ Nδ/2(spε1(A) ∩ Br(0)). Clearly, sp1/n(Ãn) ∩ K ⊂ spε1(Ãn) ∩ K for large n. Thus, by
patching the above inclusions together, we get that

{z : γ̂n(z) ≤ 1/n}∩Gn ∩K ⊂ sp1/n(Ãn)∩K ⊂ spε1(Ãn)∩K ⊂ Nδ/2(spε1(A)∩Br(0)) ⊂ Nδ(sp(A)),

for large n, as desired. This finishes the proof of Proposition 9.17. �

Next, we pass from these general considerations to the Schrödinger case.

9.2.3. Compactness of the resolvent. We first show that the resolvent of the Schrödinger operatorH ∈ Ω∞

is compact. To prove this, we recall some well-known lemmas and definitions from [83].

Definition 9.18. An operator A on the Hilbert space H is accretive if the Re〈Ax, x〉 ≥ 0 for x ∈ D(A).
It is called m-accretive if no proper accretive extension exists. If A (possibly after shifting with a scalar) is
m-accretive and additionally there exists β < π/2 such that | arg〈Ax, x〉| ≤ β for all x ∈ D(A), then A is
m-sectorial.

Lemma 9.19 ( [83, VI-Theorem 3.3]). Let A be m-sectorial with B = Re A. A has compact resolvent if
and only if B has.

Lemma 9.20 ( [83, V-Theorem 3.2]). If T is closed and the complement of Num(T ) is connected, then for
every ζ in the complement of the closure of Num(T ) the following hold: the kernel of T − ζ is trivial and
the range of T − ζ is closed with constant codimension.

Proposition 9.21. Suppose V is continuous Rd → C satisfying the following: V (x) = |V (x)|eiϕ(x) such
that |V (x)| → ∞ as x→∞, and there exist non-negative θ1, θ2 such that θ1 + θ2 < π and −θ2 ≤ ϕ(x) ≤
θ1. Denote by h the operator h = −∆ + V with domain D(h) = C∞c (Rd) and put in L2(Rd) H = h∗∗.
Then H = −∆ + V is a densely defined operator with compact resolvent, whose spectrum lies in the sector
{z : arg(z) ∈ [−θ2, θ1]}.

Proof. The proof goes as follows: First, the numerical range of H lies in a sector with opening 2β < π.
Then, we turn the sector into the symmetric position around the positive real axis to get the operator a(α). It
is clearly enough to show that A(α) = a(α)∗∗ is an m-sectorial operator with half-angle β = (θ1 + θ2)/2

which has a compact resolvent. Next, since the numerical range of a(α) is not the whole plane, the operator
is closable. Then, we conclude that every point away from the numerical range belongs to the resolvent set.
This is done based on the fact that the adjoint shares the same key properties asA(α). Then, the compactness
of the resolvent follows by considering the resolvent of the real part of A(α).

Here is the notation. Put α = (θ1 − θ2)/2 so that |α| < π/2. Then with

(9.50) ϑ(x) = ϕ(x)− α
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we have a(α) := e−iαh = −e−iα∆ + |V (x)|eiϑ(x) and after extending A(α) = a(α)∗∗ , in particular
H(α) := ReA(α) = −cosα ∆ + cosϑ(x)|V (x)|.

We claim that the operator A(α) := e−iαH is m-sectorial with half-angle β = (θ1 + θ2)/2. Indeed, it is
immediate that the numerical range satisfies the following Num(a(α)) ⊂ {z = reiθ : |θ| ≤ β, r ≥ 0 },
which is not the whole complex plane, and we can therefore (by [83, V-Theorem 3.4 on p. 268]) consider the
extended closed operatorA(α) instead. The next thing is to conclude that points away from this closed sector
are in the resolvent set of A(α). Take any point ζ = reiϕ with β < |ϕ| ≤ π, r > 0. We need to conclude
that ζ /∈ sp(A(α)). Since the complement of Num(A(α)) is connected, the following holds (by Lemma
9.20): the operator A(α) − ζ has closed range with constant codimension. Thus, we need that the range is
the whole space. Put for that purpose T = A(α)− ζ. Suppose there is g 6= 0 such that g ∈ Ran(T )⊥. Then
for all f ∈ D(T ) we have 〈Tf, g〉 = 0 which means, as D(T ) is dense, that T ∗g = 0. However, that is not
the case as A(α)∗ − ζ is also closed whose complement of the numerical range is connected and hence does
not have a non-trivial kernel.

The proof of Proposition 9.21 can now be completed by invoking Lemma 9.19 since it is well known
( [101], Theorem XIII.67) that (since α < π/2) the self-adjoint operator H(α) has compact resolvent when
the potential |V (x)| tends to infinity with x. �

We shall next consider the discretization of H and A(α). It shall be clear that the discrete versions have
their numerical ranges inside the same sectors, where the numerical range of an operator T is denoted by
Num(T ). Thus, all resolvents can be estimated using the fact that if (T − ζ)−1 is regular outside the closure
of Num(T ), then ‖(T − ζ)−1‖ ≤ 1/dist(ζ,Num(T )).

9.2.4. Discretizing the Schrödinger operator. We shall show how to assemble the matrices H̃n mentioned
above. The underlying Hilbert space is again L2(Rd) and we start with approximating the Laplacian. Let
1 ≤ j ≤ d, t ∈ R and define Uj,t to be the one-parameter unitary group of translations

Uj,tψ(x1, . . . , xd) = ψ(x1, . . . , xj − t, . . . , xd)

and let Pj be the infinitesimal generator of Uj,t so that Uj,t = eitPj and Pj = limt→0
1
it (Uj,t − I). Thus,

defining Φn(x) = n
i (ei 1

nx − 1) with n ∈ N and x ∈ R, it follows that

(9.51) |Φn|2(Pj)ψ(x) = n2(−ψ(x1, . . . , xj + 1/n, . . . xd)− ψ(x1, . . . , xj − 1/n, . . . xd) + 2ψ(x))

is the discretized Laplacian in the j direction. The full discretized Laplacian is therefore
∑d
j=1 |Φn|2(Pj).

Now, we replace V with an appropriate approximation. Consider the lattice ( 1
nZ)d as a subset of Rd and for

y ∈ ( 1
nZ)d define the box

(9.52) Qn(y) =

{
x = (x1, . . . , xd) : xj ∈

[
yj −

1

2n
, yj +

1

2n

)
, 1 ≤ j ≤ d

}
.

Let Sn = [−b
√
nc, b
√
nc]d ⊂ Rd and define En to be the orthogonal projection onto the subspaceψ ∈ L2(Rd) : ψ =

∑
y∈( 1

nZ)d∩Sn

αyχQn(y), αy ∈ C

 ,(9.53)

where χQn(y) denotes the characteristic function on Qn(y). Define the approximate potential as

Vn(x) =

V (y) x ∈ Qn(y) ∩ Sn for some y ∈ ( 1
nZ)d,

0 otherwise.

Note that Vn = EnVnEn, but that, generally, Vn 6= EnV En. Finally, we define the approximate Schrödinger
operator Hn : L2(Rd)→ L2(Rd) defined as

(9.54) Hn = En

d∑
j=1

|Φn|2(Pj)En + Vn.
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Remark 9.22. Note that the restriction Hn|Ran(En) of Hn to the image of En has a matrix representation
H̃n ∈ Cm×m (where m = dim(Ran(En))) defined as follows. First, for y1, y2 ∈ ( 1

nZ)d ∩ Sn,

〈|Φn|2(Pj)Enn
d/2χQn(y1), n

d/2χQn(y2)〉 =


2n2 y1 = y2

−n2 y1 − y2 = ±1/nej

0 otherwise

and 〈Vnnd/2χQn(y1), n
d/2χQn(y2)〉 = V (y1) when y1 = y2 and zero otherwise. Thus, we can form the

matrix representation of Hn|Ran(En) with respect to the orthonormal basis {nd/2χQn(y)}y∈( 1
nZ)d∩Sn . It is

important to note that calculating the matrix elements of H̃n requires knowledge only of {Vf}f∈Λn where
we have Λn :=

{
fy : y ∈ (n−1Z)d ∩ Sn

}
and Vfy = fy(V ) = V (y).

9.2.5. Proof that {Ξsp,Ω∞} ∈ ∆A
2 , {Ξsp,ε,Ω∞} ∈ ∆A

2 . We have so far shown that Assumption (i) holds,
and we are left to show that the discretization we have chosen satisfies Assumption (ii). In particular, we
must demonstrate that our discretization satisfies (9.47). That is the topic of the following theorem.

Theorem 9.23. Let V ∈ C(Rd) be sectorial as defined in (5.3) satisfying |V (x)| → ∞ as |x| → ∞, and let
h = −∆ + V with D(h) = C∞c (Rd) and let H = h∗∗. Let Hn be as in (9.54). Then there exists z0 such
that ‖(H − z0)−1 − (Hn − z0)−1En‖ → 0, as n→∞.

Note that we immediately have

Theorem 9.23 + Proposition 9.17 ⇒ {Ξsp,Ω∞} ∈ ∆A
2 , {Ξsp,ε,Ω∞} ∈ ∆A

2 .

Thus, the rest of the section is devoted to proving Theorem 9.23.
We shall treat the discretizations similarly to the continuous case, namely by “rotating” the operator into

a symmetric position with respect to the real axis, and then, by taking the real part, we are dealing with a
sequence of self-adjoint invertible operators. Before we prove this theorem, we will need a couple of lemmas.
We recall the following definition.

Definition 9.24 (Collectively compact). A set T ⊂ B(H) is called collectively compact if the set {Tx :

T ∈ T , ‖x‖ ≤ 1} has compact closure.

Lemma 9.25. Let {Kn} be a collectively compact operator sequence and K∗n → 0 strongly. Then ‖Kn‖ →
0.

Proof. It is well known that on any compact set B the strong convergence K∗n → 0 turns into norm conver-
gence: sup{‖K∗nx‖ : x ∈ B} →n 0. Since B := cl{Knx : ‖x‖ ≤ 1, n ∈ N} is compact, we get

‖Kn‖2 = ‖K∗nKn‖ = sup{‖K∗nKnx‖ : ‖x‖ ≤ 1} ≤ sup{‖K∗ny‖ : y ∈ B} → 0 as n→∞.

�

We also need a modification of Lemma 9.19.

Lemma 9.26. Let {An} be m-sectorial with common semi-angle β < π/2 and denote Bn = Re An.
Assume that {En} is a sequence of orthogonal projections, converging strongly to identity and such that
AnEn = EnAnEn andBnEn = EnBnEn. Assume further that {B−1

n } is uniformly bounded. If {B−1
n En}

is collectively compact, then so is {A−1
n En}.

Proof. Denote by B1/2
n the unique self-adjoint non-negative square root of Bn. By [83, VI-Theorem 3.2 on

p.337] for each An there exists a bounded symmetric operator Cn satisfying ‖Cn‖ ≤ tan(β) and such that
An = B

1/2
n (1 + i Cn)B

1/2
n . Writing

A−1
n =

∫ ∞
0

e−tAndt
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we conclude that EnA−1
n En = A−1

n En and likewise for B−1
n . Assume now that {B−1

n En} is collectively
compact. But then so is {(Bn + t)−1En} = {B−1

n En(I + tB−1
n )−1En} and writing, compare [83, V

(3.43) on p.282],

B−1/2
n En =

1

π

∫ ∞
0

t−1/2(Bn + t)−1Endt

we see that {B−1/2
n En} is also collectively compact and B−1/2

n En = EnB
−1/2
n En. Finally {A−1

n En} is
then collectively compact as well since A−1

n En is of the form B
−1/2
n EnTn with Tn uniformly bounded. �

Proof of Theorem 9.23. Note that it is clear from the definition ofHn and the assumption on V that Num(Hn) ⊂
{reiρ : −θ2 ≤ ρ ≤ θ1, r ≥ 0} for all n. Thus, since Hn is bounded and by Proposition 9.21 we can choose
any point z0 ∈ C such that z0 has a positive distance d to the closed sector {reiρ : −θ2 ≤ ρ ≤ θ1, r ≥ 0},
and bothR(H, z0) = (H−z0)−1 andR(Hn, z0) = (Hn−z0)−1 for every nwill exist. Moreover,R(Hn, z0)

are uniformly bounded for all n, since for every x, ‖x‖ = 1,

‖(Hn − z0)x‖ ≥ |〈(Hn − z0)x, x〉| ≥ |〈Hnx, x〉 − z0| ≥ d.

Note that by Lemma 9.25 it suffices to show that (i)R(Hn, z0)∗En → R(H, z0)∗ strongly, and (ii) {R(Hn, z0)En−
R(H, z0)} is collectively compact, which follows if we can show that {R(Hn, z0)En} is collectively com-
pact.

To see (i) observe that C∞c (Rd) is a common core for H and for Hn. Hence by [83, VIII-Theorem
1.5 on p.429], the strong resolvent convergence R(Hn, z0)∗ → R(H, z0)∗ will follow if we show that
H∗nψ → H∗ψ as n→∞ for any ψ ∈ C∞c (Rd). Then the strong convergence R(Hn, z0)∗En → R(H, z0)∗

follows as well. Note that

(9.55) ‖H∗nψ −H∗ψ‖ ≤

∥∥∥∥∥∥
d∑
j=1

|Φn|2(Pj)Enψ −
d∑
j=1

P 2
j ψ

∥∥∥∥∥∥+ ‖(V n − V )ψ‖.

Also, |Φn|2(Pj) = n(τ−1/nej − I)n(τ1/nej − I), where τzψ(x) = ψ(x− z) and {ej} is the canonical basis
for Rd. Moreover, for ψ ∈ C∞c (Rd),

Enψ =
∑

y∈( 1
nZ)d∩Sn

(Ψn ∗ ψ)(y)χQn(y), Ψn = ρn ⊗ . . .⊗ ρn, ρn = nχ[− 1
2n ,

1
2n ),

where Sn was defined in (9.53). Thus, it follows from easy calculus manipulations and basic properties of
convolution that |Φn|2(Pj)Enψ =

∑
y∈( 1

nZ)d(Ψn ∗ ρ̃1 ∗j ρ̃2 ∗j ψ′′)(y)χQn(y), where ρ̃1 = nχ[−1/n,0],
ρ̃2 = nχ[0,1/n] and ∗j denotes the convolution operation in the jth variable. By standard properties of the
convolution we have that Ψn ∗ ρ̃1 ∗j ρ̃2 ∗j ψ′′ → ψ′′ uniformly as n → ∞. Thus, since ψ ∈ C∞c (Rd),
the first part of the right-hand side of (9.55) tends to zero as n → ∞. Due to the continuity of V and the
bounded support of ψ it also follows easily that ‖(V n − V )ψ‖ → 0 as n→∞.

To see (ii), we use the same trick as in the proof of Proposition 9.21. In particular, first set z0 = −eiα

(which is clearly in the resolvent set ofHn for α = (θ1−θ2)/2) then letAn(α) = e−iα(Hn−z0) and further
Hn(α) = Re An(α). Note that, by Lemma 9.26, we would be done if we could show that {Hn(α)−1} is
uniformly bounded and {Hn(α)−1En} is collectively compact as that would yield collective compactness
of {An(α)−1En} and hence of {R(Hn, z0)En}. To establish the uniform bound, note that

(9.56) Hn(α) = cosα En

d∑
j=1

|Φn|2(Pj)En + cosϑ(x)|Vn(x)|+ 1,

where ϑ is defined in (9.50). Thus ‖Hn(α)−1‖ ≤ 1 and by applying Lemma 9.27 we are now done. �

Lemma 9.27. Let Hn(α) be given by (9.56). Then the set {Hn(α)−1En} is collectively compact.
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Proof. We shall show that if we choose an arbitrary sequence {ψn} ⊂ L2(Rd) satisfying ‖ψn‖ ≤ 1, then the
sequence {ϕn} where ϕn = Hn(α)−1Enψn, is relatively compact in L2(Rd). The compactness argument
is based on Rellich’s criterion.

Lemma 9.28 (Rellich’s criterion ( [101] Theorem XIII.65)). Let F (x) and G(ω) be two measurable non-
negative functions becoming larger than any constant for all large enough |x| and |ω|. Then

S = {ϕ :

∫
|ϕ(x)|2dx ≤ 1,

∫
F (x)|ϕ(x)|2dx ≤ 1,

∫
G(ω)|Fϕ(ω)|2dω ≤ 1}

is a compact subset of L2(Rd).

To prove Lemma 9.27, we proceed as follows. First, we conclude that {ϕn} is a bounded sequence itself.
Then, to be able to define suitable functions F,G, we need to approximate the sequence by another one of the
form Ψn ∗ϕn. This approximation shall satisfy limn→∞ ‖Ψn ∗ϕn−ϕn‖ = 0, and this is very similar to the
standard result on local uniform convergence of mollifications of continuous functions. Then the Rellich’s
criterion holds for Ψn ∗ ϕn with F (x) essentially given by |V (x)| and G(ω) by |ω|2. We conclude that the
sequence {Ψn ∗ ϕn} is relatively compact. But since limn→∞ ‖Ψn ∗ ϕn − ϕn‖ = 0, the sequence {ϕn} is
relatively compact as well, completing the argument.

More precisely, since |ϑ(x)| ≤ α < π/2 we have from (9.56)

(9.57) |〈Hn(α)ϕn, ϕn〉| ≥ cosα

〈 d∑
j=1

|Φn|2(Pj)ϕn, ϕn

〉
+ 〈|Vn|ϕn, ϕn〉

+ ‖ϕn‖2.

However, |〈Hn(α)ϕn, ϕn〉| is bounded not only from below but also from above. Indeed, |〈Hn(α)ϕn, ϕn〉| =
|〈Enψn, ϕn〉| ≤ ‖Hn(α)−1En‖‖ψn‖2. Thus, we conclude first from (9.57) that the sequence {ϕn} is
bounded. Next, given (9.57), there exist constants C1, C2 > 0 such that for all n ∈ N

(9.58)

〈
d∑
j=1

|Φn|2(Pj)ϕn, ϕn

〉
≤ C1, 〈|Vn|ϕn, ϕn〉 ≤ C2.

First, we use the bound in the first part of (9.58). Letting F denote the Fourier transform, we have that
(FΦn(Pj)ϕn)(ω) = Φn(ωj)(Fϕn)(ω), for a.e. ω and for 1 ≤ j ≤ d. Letting Θn(ω) = sin(ω/2n)

ω/2n , an
application of the Fourier transform to (9.58) along with Plancherel’s theorem yield∫

Rd
|(Fϕn)(ω)|2

∑
1≤j≤d

|ωjΘn(ωj)|2 dω ≤ C1.

Moreover, since |Θn(ω)| ≤ 1 for all ω, we get

(9.59)
∫
Rd
|ω|2|Θn(ω1) · · ·Θn(ωd)|2|(Fϕn)(ω)|2 dω ≤ C1.

We now define the approximation Ψn∗ϕn. Let Ψ1(z) = χ[−1/2,1/2]d(z) and further Ψn(z) = ndΨ1(nz),
where χA(z) is the usual characteristic function for the set A. We shall prove below that limn→∞ ‖Ψn ∗
ϕn − ϕn‖ = 0, which in particular shows that the sequence {Ψn ∗ ϕn} is bounded. Observe then that
(FΨn)(ω) = Θn(ω1) · · ·Θn(ωd). Therefore we obtain from (9.59)

∫
Rd |ω|

2|F(Ψn ∗ ϕn)(ω)|2dω ≤ C1,

which shows that we can choose G(ω) to be (a constant times) |ω|2.
We must still establish the growth function F (x) for Ψn ∗ ϕn. Consider ϕn. It is of the form ϕn =

(En+EnBnEn)−1Enψn and henceEnϕn = ϕn. Therefore ϕn vanishes outside Sn, and we can essentially
replace Vn by V in the inequality in the last part of (9.58). To that end, put F (x) = min|y|≥|x| |V (y)|. Then,
with some constant C3

(9.60)
∫
Rd
F (x)|(Ψn ∗ ϕn)(x)|2dx ≤ C3.

In view of the bounds (9.59), (9.60) and since the sequence {Ψn ∗ ϕn}n∈N is bounded in L2, Rel-
lich’s criterion implies that {Ψn ∗ ϕn}n∈N is a relatively compact sequence and it therefore follows that
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{ϕn}n∈N is relatively compact, thus finishing the proof. Hence, our only remaining obligation is to show
that limn→∞ ‖Ψn ∗ ϕn − ϕn‖ = 0. This result is very similar to the standard result on local uniform
convergence of mollifications of continuous functions.

Let z ∈ Rd and define the shift operator τz on L2(Rd) by τzf(x) = f(x − z). Now observe that by
Minkowski’s inequality for integrals, it follows that

‖Ψn ∗ ϕn − ϕn‖ ≤
∫
Rd
‖τ 1

n z
ϕn − ϕn‖|Ψ1(z)| dz =

∫
[−1/2,1/2]d

‖ei
zd
n Pd . . . ei

z1
n P1ϕn − ϕn‖ dz.(9.61)

The claim follows from an ε/d argument and (9.61) combined with the dominated convergence theorem
(recall that {ϕn} is bounded): we need to show that for fixed z ∈ [−1/2, 1/2]d and for any 1 < j ≤ d,

lim
n→∞

∥∥∥ei zjn Pj . . . ei z1n P1ϕn − ei
zj−1
n Pj−1 . . . ei

z1
n P1ϕn

∥∥∥ = 0, lim
n→∞

∥∥∥ei z1n P1ϕn − ϕn
∥∥∥ = 0.(9.62)

Since ei
zj
n Pjei

zk
n Pk = ei

zk
n Pkei

zj
n Pj and ‖ei

zj
n Pj · · · ei

z1
n P1‖ ≤ 1 for 1 ≤ j, k ≤ d, (9.62) will follow if we

can show that ‖(ei
zj
n Pj − I)ϕn‖ → 0 as n → ∞. Note that, by the choice of the projections En, it follows

that for 1 ≤ j ≤ d, |((ei
zj
n Pj − I)ϕn)(x)| ≤ |((ei 1

nPj − I)ϕn)(x)|, for 0 ≤ zj ≤ 1/2 and x ∈ Rd. Also,

|((ei
zj
n Pj − I)ϕn)(x)| ≤ |((e−i 1

nPj − I)ϕn)(x)|, −1/2 ≤ zj < 0.

However the bound
∑

1≤j≤d ‖Φn(Pj)ϕn‖2 ≤ C1 implies that limn→∞ ‖(e±i
1
nPj − I)ϕn)‖ = 0, which

proves the claim. �

9.2.6. Proof that neither problem lies in ΣG1 ∪ ΠG
1 . Finally, we shall complete the proof of Theorem 5.5

by showing that {Ξsp,Ω∞} 6∈ ΣG1 ∪ΠG
1 and {Ξsp,ε,Ω∞} 6∈ ΣG1 ∪ΠG

1 .

Proof. Step I: {Ξsp,Ω∞} /∈ ΣG1 . Suppose for a contradiction that there exists a ΣG1 tower Γn which solves
the computational problem {Ξsp,Ω∞}. Now let V be any (real-valued) positive potential in the class Ω∞

such that the corresponding Schrödinger operator is self-adjoint and has a unique ground state (the operator
must be bounded below). Call the associated operator H0. For instance, in one dimension, this could be
the quantum harmonic oscillator V (x) = x2, and examples in arbitrary dimension (the harmonic oscillator
in d > 1 dimensions does not have a unique ground state) are well known in the physics literature. In this
case, let φ0 be the normalized ground state and E be the orthogonal complement of the span of this function
intersected with the domain of H0. Assume that H0φ0 = cφ0. Denoting the standard L2(Rd) inner product
by 〈·, ·〉, it follows that there exists some η > 0 such that

〈H0φ, φ〉 ≥ (c+ η) ‖φ‖2 , ∀φ ∈ E.

There exists n such that there is a point zn ∈ Γn(V ) with |zn − c| ≤ η/20 and such that Γn(V ) guarantees
there is a point in the spectrum Ξsp(V ) of distance at most η/20 to zn. Hence Γn(V ) guarantees there is
a point in the spectrum Ξsp(V ) of of distance at most η/10 from c. There also exists a finite set S =

{x1, ..., xM(n)} such that the computation of Γn(V ) only depends on the potential V evaluated at points
in S. Let Vm be a sequence of real-valued continuous potentials such that 0 ≤ Vm(x) ≤ 1, Vm(xj) = 0

∀xj ∈ S and such that Vm converges pointwise almost everywhere to 1 as m→∞. By construction and the
definition of a general algorithm (Definition 7.3) we must have for all a ∈ R+ that Γn(V + aVm) = Γn(V ).
In particular, this includes the guarantee of a point in the spectrum Ξsp(V + aVm) of distance at most η/10

from c. We will show that this gives rise to a contradiction for a choice of a ∈ R+ and m.
Indeed, choose m large such that 〈Vmφ0, φ0〉 ≥ 10

11 , and set a = η/2. It is well known that the minimum
of the spectrum Ξsp(V + aVm) is given by

inf
φ∈D(H0):‖φ‖=1

〈(H0 + aVm)φ, φ〉.
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In particular, H0 + aVm and H0 have the same domain as Vm is bounded. Now let φ ∈ D(H0) of norm 1.
Without loss of generality by a change of phase, we can write φ = δφ0 +

√
1− δ2φ1, with φ1 ∈ E of unit

norm and δ ∈ [0, 1]. Using the fact that H0φ0 = cφ0 and H0 is self-adjoint and 〈φ0, φ1〉 = 0, we have that

〈(H0 + aVm)φ, φ〉 = δ2c+ (1− δ2)〈H0φ1, φ1〉+ δ2a〈Vmφ0, φ0〉

+ a(1− δ2)〈Vmφ1, φ1〉+ 2Re(aδ
√

1− δ2〈Vmφ0, φ1〉)

≥ c+ (1− δ2)η +
10

11
δ2a− 2aδ

√
1− δ2,

where we have used that Vm is positive to throw away the 〈Vmφ1, φ1〉 term. It follows that the minimum of
the spectrum of H0 + aVm is at least

c+ inf
δ∈[0,1]

η(1− (1− 5/11)δ2 − δ
√

1− δ2) > c+
η

10
,

yielding the required contradiction.
Step II: {Ξsp,Ω∞} /∈ ΠG

1 . We argue as in Step I, but now the proof is less involved. Suppose for a
contradiction that there exists a ΠG

1 tower Γn which solves the computational problem {Ξsp,Ω∞}. We let
H0, V , φ0, and E be as in Step I, where we also assume as before that H0φ0 = cφ0. We also assume that
c ≥ 0 and V (x) ≥ 1.

Arguing as before, there exists some n such that Γn(V ) guarantees that the spectrum is disjoint from the
interval [c − 3/2, c − 1/2]. Again, there exists a finite set S = {x1, ..., xM(n)} such that the computation
of Γn(V ) only depends on the potential V evaluated at points in S. Let Vm be a sequence of real-valued
continuous potentials such that −1 ≤ Vm(x) ≤ 0, Vm(xj) = 0 ∀xj ∈ S but now such that Vm converges
pointwise almost everywhere to−1 asm→∞. We must have V +Vm ∈ Ω∞ since we assume the pointwise
inequality V (x) ≥ 1. By construction and the definition of a general algorithm (Definition 7.3), we must
have that Γn(V + Vm) = Γn(V ). In particular, this includes the guarantee that the spectrum of H0 + Vm is
disjoint from the interval [c− 3/2, c− 1/2]. But we have that

〈(H0 + Vm − (c− 1))φ0, φ0〉 = 〈Vmφ0, φ0〉+ 1→ 0,

as m → ∞. It follows for some large m that ‖R(c− 1, H0 + Vm)‖−1 ≤ 1/4 and hence that the spectrum
of H0 + Vm intersects the interval [c− 3/2, c− 1/2], since the operator is self-adjoint. But this contradicts
the ΠG

1 guarantee.
Step III: {Ξsp,ε,Ω∞} /∈ ΠG

1 ∪ΣG1 . The arguments are the same as in Steps I and II. The pseudospectrum
is simply the ε ball neighborhood of the spectrum in these self-adjoint cases. The arguments work once we
scale the operators by N/ε for some large N to gain the relevant separations. �

10. SMALE’S PROBLEM ON ROOTS OF POLYNOMIALS AND DOYLE-MCMULLEN TOWERS

In this section, we recall the definition of a tower of algorithms from [45]. We will name this type of tower
a Doyle–McMullen tower and demonstrate how the results in [94] and [45] can be put into the framework
of the SCI. In particular, we will demonstrate how the construction of the Doyle–McMullen tower in [45]
can be viewed as a tower of algorithms defined in Definition 7.5. Note that one can compute zeros of a
polynomial if one allows arithmetic operations and radicals and can pass to a limit. However, what if one
cannot use radicals but rather iterations of a rational map? A natural choice for such a rational map would
be Newton’s method. The only problem is that the iteration may not converge, which motivated the question
by Smale quoted in the introduction.

As we now know from [94], the answer is no. However, the results in [45] show that the quartic and
the quintic can be solved with several rational maps and limits, while this is not the case for higher degree
polynomials. Below, we first quote their results and then specify a particular tower of height three in the
form that it can be viewed as a tower of algorithms in the sense of this paper.
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10.1. Doyle–McMullen towers. A purely iterative algorithm [109] is a rational map 2

T : Pd → Ratm, p 7→ Tp

which sends any polynomial p of degree ≤ d to a rational function Tp of a certain degree m. An important
example of a purely iterative algorithm is Newton’s method. Furthermore, Doyle and McMullen call a purely
iterative algorithm generally convergent if

lim
n→∞

Tnp (z) exists for (p, z) in an open dense subset of Pd × Ĉ.

Here Tnp (z) denotes the nth iterate Tnp (z) = Tp(T
n−1
p (z)) of Tp. For instance, Newton’s method is generally

convergent only when d = 2. However, given a cubic polynomial p ∈ P3 one can define an appropriate
rational function q ∈ Rat3 whose roots coincide with the roots of p, and for which Newton’s method is
generally convergent (see [94], Proposition 1.2). In [45], the authors provide a definition of a tower of
algorithms, which we quote verbatim:

Definition 10.1 (Doyle–McMullen tower). A tower of algorithms is a finite sequence of generally convergent
algorithms, linked together serially, so the output of one or more can be used to compute the input to the
next. The final output of the tower is a single number, computed rationally from the original input and the
outputs of the intermediate generally convergent algorithms.

Theorem 10.2 (McMullen [94]; Doyle and McMullen [45]). For Pd there exists a generally convergent
algorithm only for d ≤ 3. Towers of algorithms exist additionally for d = 4 and d = 5 but not for d ≥ 6.

Note that, as shown in [107], there are generally convergent algorithms if, in addition, one allows the
operation of complex conjugation. In the following, we present how the Doyle–McMullen towers can be
recast as a general tower as defined in Definition 7.5.

10.2. A height three tower for the quartic. In the following X,Y, . . . denote variables in the polynomials
while x, y, · · · ∈ C. We build the tower following the standard reduction path, see, e.g., [43]. Given

p(X) := X4 + a1X
3 + a2X

2 + a3X + a4

one first transforms the equation by a change of variable Y = X + a1/4 to arrive at the polynomial

q(Y ) := Y 4 + b2Y
2 + b3Y + b4,

which one writes, with the help of a parameter z, as q(Y ) = (Y 2 + z)2 − r(Y, z) where

r(Y, z) = (2z − b2)Y 2 − b3Y + z2 − b4.

Here one wants a value of z such that r(Y, z) becomes a square which requires the discriminant to vanish:
4(2z − b2)(z2 − b4) − b23 = 0. Viewing this as a polynomial in Z, making a change of variable W =

Z + (1/6)b2 and scaling the polynomial to monic we arrive at asking for a root of

(10.1) s(W ) := W 3 + c2W + c3.

As all these are rational computations on the coefficients of p, we shall not express them explicitly.
We denote by N(f, ξ0) the function in Newton’s iteration with initial value ξ0:

ξj+1 := N(f(ξj)) where N(f(ξ)) = ξ − f(ξ)

f ′(ξ)

and further byNj the mapping from initial data to the jth iterateNj : (f, ξ0) 7→ ξj .We shall apply Newton’s
iteration to the rational function [45]

t(W ) :=
s(W )

3c2W 2 + 9c3W − c22
.

2I.e., it is a rational map of the coefficients of p.
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Thus wj = Nj(t, w0) denotes the jth iterate wj for a zero for s(w) = 0. This iteration converges in an open,
dense set of initial data. Denote w∞ := limj→∞ wj . Now we change the variable Z = W − (1/6)b2 and,
denoting by zj and z∞ the corresponding values, we obtain r(Y, z∞) as a square:

r(Y, z∞) = (2z∞ − b2)

(
Y − b3

2(2z∞ − b2)

)2

.

To find a zero of q(Y ), we shall need to have a generally convergent iteration for
√

2z − b2. Thus, we set
uj(V ) := V 2 + b2 − 2zj and apply Newton’s method for this, starting with initial guess v0 and iterating k
times and set vk,j := Nk(uj , v0). From q(Y ) = (Y 2 + z∞)2 − r(Y, z∞) = 0, we move to solve one of the
factors

Q(Y ) = Y 2 + z∞ −
√

2z∞ − b2
(
Y − b3

2(2z∞ − b2)

)
= 0.

However, we can do this only based on approximative values for the parameters, so we set

Qk,j(Y ) = Y 2 + zj − vk,j
(
Y − b3

2(2zj − b2)

)
= 0.

Now apply Newton’s iteration to this, say n times, using starting value y0 and denote the output by yn,k,j :

yn,k,j = Nn(Qk,j , y0).

Finally, we set xn,k,j = yn,k,j − a1/4 in order to get an approximation to a root of p. Suppose now
j = n1, k = n2, n = n3. If n1 → ∞ then wn1

→ w∞ and hence zn1
→ z∞, too. It is natural to denote

u(V ) := V 2 + b2 − 2z∞ and correspondingly vn2 := Nn2(u, v0) and

Qn2(Y ) = Y 2 + z∞ − vn2

(
Y − b3

2(2z∞ − b2)

)
= 0.

Then, in an obvious manner xn3,n2 = Nn3(Qn2 , y0) − a1/4. Then we have limn1→∞ xn3,n2,n1 = xn3,n2 .

If we denote xn3
= Nn3

(Q, y0)− a1/4, then clearly limn2→∞ xn3,n2
= xn3

. Finally x∞ = limn3→∞ xn3

is a root of p.
The link to the SCI. One unique feature of these towers, which are built on generally convergent algorithms,
is the following: in addition to the polynomial p, the initial values for the iterations have to be read into the
process via evaluation functions. Denoting the initial values for the three different Newton’s iterations by
d0 = (w0, v0, y0) ∈ C3 we can now put this Doyle–McMullen tower in the form of a general tower as
defined in Definition 7.5, with the slight weakening that, for each p ∈ P4, the tower might converge only at
a dense subset of initial values. In particular, set

Γn3
: P4 × C3 → C, by (p, d0) 7→ xn3

,

Γn3,n2 : P4 × C3 → C by (p, d0) 7→ xn3,n2 ,

Γn3,n2,n1
: P4 × C3 → C by (p, d0) 7→ xn3,n2,n1

.

Thus, if we let Ω = P4 × C3 and Ξ,M be as in Example 7.1 (III), and complement Λ by the mappings that
read w0, v0, y0 from the input, then by the construction above and Theorem 10.2 we have that

SCI(Ξ,Ω)DM ∈ {2, 3}.

10.3. A height three tower for the quintic. Let

p(X) = X5 + a1X
4 + a2X

3 + a3X
2 + a4X + a5

be the given quintic. Doyle and McMullen [45] give a generally convergent algorithm for the quintic in
Brioschi form. Thus, one needs first to bring the general quintic to Brioschi form, then apply the iteration,
and finally construct at least one root for p(X). In the following, we outline a path for doing this, which
follows L. Kiepert [85] except that the Brioschi quintic is solved by Doyle–McMullen iteration rather than
by using Jacobi sextic. This path can be found in [86].
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One begins applying a Tschirnhaus transformation Y = X2 − uX + v to arrive into principal form

q(Y ) = Y 5 + b3Y
2 + b4Y + b5.

Here v is obtained from a linear equation, but to solve u, one needs to solve a quadratic equation Q(U) =

U2 + αU + β, where the coefficients α, β are rational expressions of the coefficients of p(X) (see, for
example, p. 100, eq. (6.2-9) in [86]).

Here is the first application of Newton’s method. We are given an initial value u0 and iterate j times
uj = Nj(Q, u0).We may assume that v is known exactly, but we only have an approximation uj to make the
transformation. So, suppose the Newton iteration converges to u∞. Thus, we make the transformation using
uj and force the coefficients b2,j = b1,j = 0 while keeping the others as they appear. The transformation
being continuous yields polynomials

qj(Y ) = Y 5 + b3,jY
2 + b4,jY + b5,j ,

whose roots shall converge to those of q(Y ). The next step is transforming qj(Y ) into Brioschi form. Let
the Brioschi form corresponding to the exact polynomial q(Y ) be denoted by B(Z)

(10.2) B(Z) = Z5 − 10CZ3 + 45C2Z − C2 = 0,

while withBj(Z) we denote the exact Brioschi form corresponding to qj(Y ). The transformation from q(Y )

to B(Z) is of the form

(10.3) Y =
λ+ µZ

(Z2/C)− 3
.

Here λ satisfies a quadratic equation with coefficients being polynomials of the coefficients in the principal
form (p. 107, eq. (6.3-28) in [86]). Let us denote that quadratic by R(L) when it comes from q(Y ) and
by Rj(L) when it comes from qj(Y ), respectively. Thus, here we meet our second application of Newton’s
method. So, we denote by

λk,j := Nk(Rj , λ0)

the output of iterating k times for a solution of Rj(L) = 0. And, in a natural manner, we denote also

λk = Nk(R, λ0) and λ = lim
k→∞

Nk(R, λ0).

The corresponding values of µk,j , µk, and µ are then obtained by simple substitution (p. 107, eq. (6.3-30)
in [86]). The Tschirnhaus transformation with exact values (λ, µ) transforms the equation not yet to the
Brioschi form with just one parameter C but such that the constant term may be different. However, the
last step is just a simple scaling, and then one is in the Brioschi form (10.2). However, when we apply the
transformation with the approximated values (λk,j , µk,j) or with (λk, µk) we do not arrive at the Brioschi
form. So, we force the coefficients of the fourth and second powers to vanish and replace the coefficients of
the first power to match the coefficients in the third power. Finally, after scaling the constant terms, we have
the Brioschi quintics Bk,j and Bk, e.g.

(10.4) Bk,j(Z) = Z5 − 10Ck,jZ
3 + 45C2

k,jZ − C2
k,j = 0.

Provided that the Newton iterations converge, that is, the initial values (u0, λ0) are generic, these quintics
converge to the exact one.

Here, we apply the generally convergent iteration by Doyle and McMullen [45]. They specify a rational
function

TC(Z) = z − 12
gC(Z)

g′C(Z)

where g is a polynomial of degree 6 in the variable C and of degree 12 in Z. Starting from an initial guess
wo from an initial guess wn+1 = TC(TC(wn)) to convergence and applying TC still once, we obtain, after
a finite rational computation with these two numbers, two roots of the Brioschi, say zI and zII . If applied
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to the approximative quintics and if the iteration is truncated after n steps, together with the corresponding
post-processing, we have obtained e.g. a pair (zI,n,k,j , zII,n,k,j).

What remains is to invert the Tschirnhaus transformations. Suppose z is a root of the exact Brioschi form
(10.2). Then the corresponding root of the principal quintic is obtained immediately from (10.3)

ty =
λ+ µz

(z2/C)− 3
.

Naturally, we can only apply this using approximated values for the parameters. Finally, one needs to
transform the (approximative roots) of the principal quintic to (approximative) roots for the original general
quintic p(X). This is done by a rational function X = r(Y ) where r(Y ) is of second order in Y and the
coefficients are polynomials of the coefficients if the original p(X) and u and v (p. 127, eq. (6.8-3) in [86]).
Again, we would be using only approximative values uj instead of the exact u. In any case, we obtain a pair
of approximations to the roots of the original quintic. If we put n1 = j, n2 = k and n3 = n, then this pair
could be denoted by (xI,n3,n2,n1 , xII,n3,n2,n1).
The link to the SCI. In the same way as with the quartic, we assume that the initial value d0 = (u0, λ0, w0) ∈
C3 is generic so that all iterations converge for large enough values and since the transformations are con-
tinuous functions of the parameters in it, all necessary limits exist and match with each other. The functions
Γn3,n2,n1

can then be identified in a natural manner:

Γn3
: P5 × C3 → C2, by (p, d0) 7→ (xI,n3

, xII,n3
),

Γn3,n2 : P5 × C3 → C2 by (p, d0) 7→ (xI,n3,n2 , xII,n3,n2),

Γn3,n2,n1
: P5 × C3 → C2 by (p, d0) 7→ (xI,n3,n2,n1

, xII,n3,n2,n1
),

where (xI,n3,n2 , xII,n3,n2) and (xI,n3 , xII,n3) are the limits as n1 → ∞ and n2 → ∞ respectively. These
limits exist for initial values in an open dense subset of C3. Hence, we let Ω = P5 × C3, and Ξ,M,Λ be
as in case of the quartic. Then, by the construction above and Theorem 10.2 we have, again in a slightly
weakened sense, that

SCI(Ξ,Ω)DM ∈ {2, 3}.

10.4. Particular initial guesses and height one towers. The special feature of the above-mentioned Doyle–
McMullen towers is that they address whether one can achieve convergence to the roots of a polynomial p
for (almost) arbitrary initial guesses. With a slight change of perspective, one might also ask how large the
SCI gets if one applies purely iterative algorithms after a suitable clever choice of initial values. Indeed, the
answer to this question is very satisfactory: For polynomials of arbitrary degree, one can compute the whole
set of roots (more precisely: approximate it in the sense of the Hausdorff distance) by a tower of height one
which just consists of Newton’s method.

The key tool for the choice of the initial values is the main theorem of [78]:

Theorem 10.3 (Hubbard, Schleicher and Sutherland [78]). For every d ≥ 2 there is a set Sd consisting of at
most 1.11d log2 d points in C with the property that for every polynomial p of degree d and every root z of p
there is a point s ∈ Sd such that the sequence of Newton iterates {sn}n∈N := {Nn

p (s)}n∈N converges to z.
In particular, the proof is constructive, and these sets Sd can easily be computed.

A further important property of Newton’s method is that, in the case of convergence, the speed is at least
linear: If zn := Nn

p (s) tend to a root z of p then there exists a constant c such that |zn − z| ≤ c/n. Finally,
we have the following.

Proposition 10.4. Let p be a polynomial of degree d, ε > 0 and zn := Nn
p (s). If |zn− zn+1| < ε

d then there
is a root z of p with |zn − z| < ε.



68 J. BEN-ARTZI, M. J. COLBROOK, A. C. HANSEN, O. NEVANLINNA, AND M. SEIDEL

Proof. We have
∣∣∣ p(zn)
p′(zn)

∣∣∣ = |zn−zn+1| < ε
d , hence |p(zn)| < ε|p′(zn)|

d . Decompose p(x) = aΠd
i=1(x−xi),

notice that p′(x) = a
∑d
j=1 Πd

i=1,i6=j(x − xi), choose j such that |Πd
i=1,i6=j(zn − xi)| is maximal, and

conclude that

|aΠd
i=1(zn − xi)| = |p(zn)| < ε|p′(zn)|

d
≤ ε|aΠd

i=1,i6=j(zn − xi)|,

thus |zn − xj | < ε. Now z = xj is a root as asserted. �

Let p be a polynomial of degree d. For each s ∈ Sd let sn denote the nth Newton iterates of s, and define

(10.5) Γn(p) :=

{
sn : s ∈ Sd, |sn − sn+1| <

1√
n

}
.

Then (Γn(p)) converges to the set Z(p) of all zeros of p in the Hausdorff metric. Indeed, let z be a zero of p.
By Theorem 10.3 there is an initial value s ∈ Sd such that sn = Nn

p (s) tend to z with at least linear speed,
i.e.

|sn − sn+1| ≤ |sn − z|+ |sn+1 − z| ≤
2c

n
<

1√
n

for all large n, hence sn ∈ Γn(p) for all large n. Conversely, each sn ∈ Γn(p) has the property that its
distance to the set Z(p) is less than ε = d√

n
by Proposition 10.4.

Therefore we define Ωd = Pd to be the set of polynomials of degree d, M the set of finite subsets of
C equipped with the Hausdorff metric, and Ξ : Ωd → M be the mapping that sends p ∈ Ωd to the set of
its zeros. Further, Λd shall consist of the evaluation functions that read the coefficients of the polynomial
p ∈ Ωd, and the constant functions with the values s ∈ Sd. Note again that these values can be effectively
constructed.

Theorem 10.5. Consider (Ξ,Ωd,M,Λd) as above. Then, the algorithms (10.5) define an arithmetic tower
of height one for the computation of the roots of each input polynomial p with error control. Thus this tower
realises {Ξ,Ωd,M,Λd} ∈ ΣA1 . Moreover, this tower employs Newton’s Method, i.e., a purely iterative
algorithm.

11. COMPUTATIONAL EXAMPLES

This section aims to demonstrate that the new towers of algorithms developed to yield the sharp classi-
fications in the SCI hierarchy yield efficient, implementable algorithms. In the case of ΣA1 classifications,
up to a user-specified error tolerance, they will never produce incorrect output. This fact makes the algo-
rithms particularly suited for computer-assisted proofs. Moreover, they provide the first computations of
spectra of several types of operators that before were out of reach, as many quantum problems are not ex-
actly solvable [2]. Convergent algorithms that never make mistakes are highly desirable, and the reader may
consult [37] to see the algorithms used in practice for large-scale problems in physics.

11.1. Toeplitz operators. Toeplitz and Laurent operators are familiar test objects because their spectra are
very well understood [25, 26]. In this first example, we are concerned with operators that are banded with
known growth on their resolvents. In particular, the problem of computing the spectrum lies in ΣA1 and has
SCI = 1. Since the problem is not in ΠG

1 , we monitor the changes of Γn(A) as n → ∞. This is common
practice in computations when error control is not available. In particular, we choose an ε > 0 and K ∈ N
and stop the iteration when

(11.1) max{En(A), d(Γn(A),Γn+k(A))} ≤ ε for all k ≤ K.

Here En(A) refers to the error guarantee Γn(A) ⊂ sp(A) + BEn(A)(0) provided by the algorithm. To
visualize the convergence, we tested the tower of height one on the shift operator in Figure 3. Note that
it is crucial to know the SCI of the problem so that one can apply the tower of algorithms with the correct
height. In particular, solving this problem with a tower of height two would make the computation incredibly
complex. Compare, for example, with the experiment in §11.5.
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FIGURE 3. The figure shows a Γn(A) ∩ K (black) for a compact set K ⊂ C on top of
a part of sp(A) (blue) for different increasing values of n corresponding to the chosen ε,
where A is the shift operator on l2(Z).

11.2. Spectra and approximate eigenvectors of operators on aperiodic tilings. Quasicrystals,3 and more
generally aperiodic systems, have generated considerable interest due to their often exotic physical/spectral
properties [106,111]. However, the lack of reliable algorithms has limited the insight obtained from computa-
tions. We present the first rigorous spectral computational study with error bounds on an Ammann–Beenker
tiling, a standard 2D model of a quasicrystal [3, 112]. Such models are difficult to deal with due to the lack
of translational symmetry. The tiling has eight-fold rotational symmetry, shown in Figure 5 (left), which has
been found to occur in real quasicrystals, e.g., in [118]. We consider a magnetic Hamiltonian

(11.2) (Hψ)a = −
∑
a∼b

eiαb,aψb,

where the a ∼ b means vertices a and b are connected by an edge, and the summation is over connected
sites. A constant perpendicular magnetic field with potential A(x, y, z) = (0, xB, 0) with B ∈ R is applied,
leading to the Peierls phase factor between sites a and b:

αb,a =

∫ a

b

A · dl,

where l is the arclength. Figure 4 shows the output of the algorithm providing ΣA1 classification computing
spectra of the Hamiltonian in (11.2) for different values ofB ∈ [0, 2π] using the stopping criterion (11.1) and
an error tolerance of 10−2 . The algorithm correctly leaves out the gaps in the spectrum, avoiding spectral
pollution. We also show the output of the finite section method, which suffers from severe spectral pollution.
One can study quasiperiodic tilings via periodic approximates [46]. However, it is not clear how these
approximations affect the spectrum [93], and in the case of a magnetic field, this imposes severe restrictions
on the values of B allowed [114]. In contrast, there is no such limitation for the new algorithm, which also

3Discovered in 1982 by D. Shechtman who was awarded the Nobel prize in 2011 for his discovery.
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FIGURE 4. Top: Output of the algorithm providing ΣA1 classification computing spectra
of the Hamiltonian in (11.2) with error tolerance parameter 10−2 and different strengths of
the magnetic field. The algorithm correctly leaves out the gaps and shows the fractal nature
of the spectrum. Bottom: Output of the finite section method (4000 basis sites) showing
severe spectral pollution.

provides rigorous error bounds and is guaranteed to converge. The new algorithm can also be used for non-
constant magnetic fields. Finally, in Figure 5, we have also shown approximate eigenvectors for different
values of B.

11.3. Non-Hermitian Hamiltonians. Non-Hermitian Hamiltonians have been standard in open systems.
However, they have also found their way to quantum mechanics of closed systems due to the seminal work
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FIGURE 5. Left: Finite portion of the Ammann–Beenker tiling. The vertices correspond
to the sites. Middle and Right: Approximate states (eigenvectors) ψ corresponding to the
value λ = 0 for B = π, 2π (logarithm of absolute value shown). These have bounds of
‖(H − λ)ψ‖ by 3.3 × 10−7 and 1.5 × 10−6 respectively and were computed using 105

basis sites.
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FIGURE 6. Left: Pseudospectra for the operator given by (11.3) computed by the algo-
rithm providing ΣA1 classification of the problem of computing pseudospectra. The color-
bars correspond to the logarithm (base 10) of the resolvent norm (truncated at 4 for visi-
bility). Right: failed attempt of computing pseudospectra with classical square truncation
of the operator.

of C. Bender [16, 17]. There are also other variants of non-Hermitian quantum mechanics pioneered by
N. Hatano and D. R. Nelson [74, 75]. The non-self-adjointness makes spectral computations incredibly
difficult, and algorithms are typically unavailable for rigorous computations. As an example of computing
pseudospectra and to demonstrate generality, we consider a non-normal operator A on l2(N) given by

(11.3) (Ax)n =

xn−1 + i sin(n)xn − xn+1, if n+ 1 is prime

xn−1 + i sin(n)xn + xn+1, otherwise,
,

with the convention that x0 = 0. Figure 6 shows pseudospectra computed using the new algorithm provid-
ing ΣA1 classification and attempts of computing pseudospectra using square finite section truncations for
2000 basis vectors. We see that taking square truncations gives rise to overestimates of the resolvent norm,
resulting in incorrect spectral information.
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FIGURE 7. A portion of the computed spectrum of the one-dimensional Schrödinger op-
erator with potential Vλ from (11.4) computed with an algorithm, providing the ΣA1 clas-
sification, with error bound ε = 0.01.

11.4. Schrödinger operator on R. We now test the algorithm that computes spectra of Schrödinger opera-
tors

H = −∆ + V, V : Rd → R,

acting on W2,2(R) (i.e. a continuum model) with bounded potential. This example demonstrates the power
of the ΣA1 classification of Theorem 5.3. Recall that our algorithm uses only evaluations of the potential
itself. As the class of problems considered are ∈ ΣA1 and have SCI = 1, we shall use the stopping criterion
in (11.1) with ε = 0.01. We chose the slowly decaying potentials

(11.4) Vλ(x) = cos(x) + λ
sin(x)

x
.

When λ = 0, the operator is periodic, and computation of the spectrum reduces to computing spectra of two
differential operators on a compact interval (with periodic and anti-periodic boundary conditions), which
have compact resolvent. However, when λ 6= 0, eigenvalues appear in the gaps of the essential spectrum
(and below), and methods based on finite section produce spectral pollution. Additionally, the slow decay of
the potential makes this extremely difficult to detect via other means. In Figure 7, we display the computation
of a portion of the spectrum in [−1, 2] for various choices of λ and the error bound ε = 0.01. The algorithm
allows us to track eigenvalues in the gaps with error control guaranteeing the error bound.

11.5. The operator f(Q). If we consider the multiplication operator (Qg)(x) = xg(x) on L2(R), then,
for a bounded continuous function f : R → R, the spectrum of f(Q) is the range of the function f . In
this example we use f(x) = i(exp(−2πix)−1)

2πx . To create an infinite matrix representation of f(Q), we first
consider the following Gabor basis for L2(R):

e2πimxχ[0,1](x− n), m, n ∈ Z,

(where χ is the characteristic function) and then chose some enumeration of Z × Z into N to obtain a basis
{ψj} that is just indexed over N. To get our basis, we let ϕj = Fψj , where F is the Fourier Transform.
Finally, we obtain the infinite matrix representation Aij = 〈f(Q)ϕj , ϕi〉. Note that this becomes a full
infinite matrix; however, we know the growth of the resolvent of the operator. Thus, this is a problem in the
class ΣA2 with SCI = 2. As there are now two limits, our algorithm depends on two parameters, namely m
and n, and we compute Γn,m(A). This means the stopping criterion from (11.1) becomes as follows. Choose
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FIGURE 8. The left figure is a zoomed in part of sp(f(Q)). The two following figures
are Γn,m(A) and Γn+p,m+s(A) (restricted to the zoomed-in part) to visualize the stopping
criterion in (11.5). A smaller ε can be chosen to get a better approximation. A is the matrix
representation of f(Q). The right figure is the result of the finite section method trying to
compute sp(f(Q)).

ε > 0 and K ∈ N. Define, for any n, l ∈ N,

Γ̃n(A) := Γn,m(A), m = min{p : d(Γn,p(A),Γn,p+k(A) ≤ ε for all k ≤ K}

Γ̃(A) := Γ̃l(A), l = min{p : d(Γ̃p(A), Γ̃p+k(A) ≤ ε for all k ≤ K},
(11.5)

and let the output be Γ̃(A). This stopping criterion is a generalization of (11.1) and extends in an obvious
way to several limits. Note, however, how incredibly more complex it gets by adding one more limit. In
Figure 8, we have plotted Γn,m(A) and Γn+p,m+s(A) visualizing an output based on the two limit stopping
criterion in (11.5). We also plotted the result of the finite section method. As we are computing within the
class of problems with SCI = 2, there is, of course, no way that the finite section method could work.

APPENDIX A. PROOF OF PROPOSITION 7.15 AND GENERALIZATIONS

A.1. Proof of Proposition 7.15 parts (i) and (ii). Let (M, d) be a metric space with the Attouch–Wets or
Hausdorff topology induced by another metric space (M′, dM′). For the Attouch–Wets topology and any
fixed x0 ∈M′ we set

dAW(C1, C2) =

∞∑
n=1

2−n min{1, supdM′ (x0,x)≤n |dist(x,C1)− dist(x,C2)|},

for C1, C2 ∈ Cl(M′), where Cl(M′) denotes the set of non-empty closed subsets ofM′. IfM′ = C with
the usual metric, we take x0 = 0. Using the notation of §7, we have the following ‘sandwich’ lemma.
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Lemma A.1. Suppose that (M, d) is the Hausdorff or Attouch–Wets topology induced by a metric space
(M′, dM′). Let ε > 0. Suppose also that A,A′, B,B′, C ∈ M with A⊂M′ A′, C ⊂M′ B′, d(C,A′) ≤ ε

and d(B,B′) ≤ ε. Then d(A,C) ≤ d(A,B) + 2ε.

Proof. Suppose first that (M, d) is the Hausdorff topology. If x ∈ C then x ∈ B′ and dist(x,A) ≤
d(B′, A) ≤ d(A,B) + ε. On the other hand, if x ∈ A then x ∈ A′ and dist(x,C) ≤ d(A′, C) ≤ ε. The
result now follows.

Suppose now that (M, d) is the Attouch–Wets topology and let x ∈M′. Since C ⊂M′ B′ we must have

dist(x,A)−dist(x,C) ≤ dist(x,A)−dist(x,B′) ≤ |dist(x,A)− dist(x,B)|+|dist(x,B)− dist(x,B′)| .

Similarly, since A⊂M′ A′ we must have

dist(x,C)− dist(x,A) ≤ dist(x,C)− dist(x,A′) ≤ |dist(x,C)− dist(x,A′)| .

It follows that

|dist(x,A)− dist(x,C)| ≤ |dist(x,A)− dist(x,B)|+|dist(x,B)− dist(x,B′)|+|dist(x,C)− dist(x,A′)| .

The result now follows. �

Proposition A.2. Let (M, d) be either a metric space with the Attouch–Wets or Hausdorff topology induced
by another metric space (M′, dM′) or a totally ordered metric space with order respecting metric. Suppose
we have a computational problem

Ξ : Ω→M,

with a corresponding convergent Σαk tower Γ1
nk,...,n1

and a corresponding convergent Πα
k tower Γ2

nk,...,n1

(either both arithmetic or both general). Suppose also that 1 ≤ k ≤ 3 and that, in the case of arithmetic
towers, we can compute for every A ∈ Ω the distance d(Γ1

nk,...,n1
(A),Γ2

nk,...,n1
(A)) to arbitrary precision

using finitely many arithmetic operations and comparisons. Then {Ξ,Ω} ∈ ∆α
k .

Remark A.3. This proposition essentially says that we can combine the two notions of error control Πk and
Σk to reduce the number of limits needed by one.

Proof of Proposition A.2. Step I: For k = 1 and the case that (M, d) is either a metric space with the
Attouch–Wets or Hausdorff topology, this is a trivial consequence of Lemma A.1. Let δn1

be an approxima-
tion of

d(Γ1
n1

(A),Γ2
n1

(A)) + 2 · 2−n1

from above to accuracy 1/n1. Note that suitable approximations can easily be generated using approxima-
tions of d(Γ1

n1
(A),Γ2

n1
(A)). Let ε > 0, then simply choose n1 ∈ N minimal such that δn1 ≤ ε. In the case

that (M, d) is totally ordered with order respecting metric

d(Γ1
n1

(A),Ξ(A)) ≤ d(Γ1
n1

(A),Γ2
n1

(A)),

and we can take n1 large such that the right-hand side is less than the given ε (recall, we can compute the
right-hand side to arbitrary precision). Set Γ(A) = Γ1(A), then we have

d(Γ(A),Ξ(A)) ≤ ε.

Step II: For larger k, we use the same idea, but we must be careful to ensure the first k − 1 limits exist.
For the rest of the proof, d̃ will denote an approximation of d to accuracy 1/n1 (which by assumption can
always be computed).

We first deal with the case k = 2. Let ε > 0 and consider the intervals J1
ε = [0, ε] and J2

ε = [2ε,∞). Let
δn2,n1

(A) be an approximation of

d(Γ1
n2,n1

(A),Γ2
n2,n1

(A)) + 2 · 2−n2
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from above to accuracy 1/n1. Again, note that we can easily construct such approximations. It is clear
that limn1→∞ δn2,n1(A) = d(Γ1

n2
(A),Γ2

n2
(A)) + 2 · 2−n2 =: δn2(A) and that d(Γ1

n2
(A),Ξ(A)) ≤ δn2(A)

(again appealing to Lemma A.1 if we are in the case of the Attouch–Wets or Hausdorff topologies). Given
n1, n2, let l(n2, n1) ≤ n1 be maximal such that δn2,l(A) ∈ J1

ε ∪ J2
ε . If no such l exists or δn2,l(A) ∈ J1

ε

then define Osc(ε;n1, n2, A) = 1 otherwise define Osc(ε;n1, n2, A) = 0. Since δn2,n1
(A) cannot oscillate

infinitely often between the two intervals J1
ε and J2

ε , it follows that

Osc(ε;n2, A) := lim
n1→∞

Osc(ε;n1, n2, A)

exists. Define Γεn1
(A) as follows. Choose j ≤ n1 minimal such that Osc(ε;n1, j, A) = 1 if such a j exists,

and define Γεn1
(A) = Γj,n1

(A). If no such j exists then define Γεn1
(A) = C0 where C0 is any fixed member

of (M, d). In particular, Γεn1
is a type α algorithm. Now for large n2, we must have δn2

(A) < ε and hence
Osc(ε;n2, A) = 1. It follows that Γε(A) = limn1→∞ Γεn1

(A) exists and is equal to Γ1
N (A) where N ∈ N is

minimal with Osc(ε;N,A) = 1. It follows that d(Γε(A),Ξ(A)) ≤ 2ε.
We will use the Γεn1

(A) to construct a height one tower. Observe first of all that by our assumptions we
can compute d̃(Γε1m(A),Γε2n (A)) for m,n ∈ N and ε1, ε2 > 0. Given n1, choose j = j(n1) ≤ n1 maximal
such that for all 1 ≤ l ≤ j we have

(A.1) d̃(Γ2−j

n1
(A),Γ2−l

n1
(A)) ≤ 4(2−j + 2−l).

If no such j exists then set Γn1 = C0, otherwise set Γn1(A) = Γ2−j(n1)

n1
(A). Again, this is easily seen to

be a type α algorithm. Pick any N ∈ N, then by the convergence of the Γεn1
(A) and d(Γε(A),Ξ(A)) ≤ 2ε,

(A.1) must hold for j = N and 1 ≤ l ≤ N if n1 is large enough. Hence by definition of j(n1),

lim sup
n1→∞

d(Γn1
(A),Ξ(A)) ≤ lim sup

n1→∞
d(Γ2−N

n1
(A),Ξ(A)) + 23−N ≤ 24−N .

Since N was arbitrary, we must have convergence to Ξ(A).
Step III: We now deal with k = 3. The strategy will be similar to the k = 2 case but now we construct

Γεn2,n1
(A) such that Γεn2

(A) := limn1→∞ Γεn2,n1
(A) exists and is 3ε close to Ξ(A) for large n2, but may

not converge in (M, d). Using this, we will construct a height two type α tower.
As in Step II, let ε > 0 and consider the intervals J1

ε = [0, ε] and J2
ε = [2ε,∞). Let δn3,n2,n1

(A) be an
approximation of

d(Γ1
n3,n2,n1

(A),Γ2
n3,n2,n1

(A)) + 2 · 2−n3 ,

from above to accuracy 1/n1. Again, we have

lim
n2→∞

lim
n1→∞

δn3,n2,n1
(A) = d(Γ1

n3
(A),Γ2

n3
(A)) + 2 · 2−n3 =: δn3

(A)

exists with d(Γ1
n3

(A),Ξ(A)) ≤ δn3
(A). Given n1, n2 and j, let l(j, n2, n1) ≤ n1 be maximal such that

δj,n2,l(A) ∈ J1
ε ∪ J2

ε . If no such l exists or δj,n2,l(A) ∈ J1
ε then define Osc(ε;n1, n2, j, A) = 1 otherwise

define Osc(ε;n1, n2, j, A) = 0. Arguing as in Step I, we have

Osc(ε;n2, j, A) := lim
n1→∞

Osc(ε;n1, n2, j, A)

exists. Now consider Osc(ε;n1, n2, j, A) for j ≤ n2. If such a j exists with Osc(ε;n1, n2, j, A) = 1 then let
j(n1, n2) be the minimal such j and set Γεn2,n1

(A) = Γ1
j(n1,n2),n2,n1

(A). Otherwise set Γεn2,n1
(A) = C0,

where again C0 is some fixed member of (M, d). Since we only deal with finitely many j ≤ n2, it is clear
that Γεn2,n1

is a type α algorithm. Furthermore, we must have that Γεn2
(A) := limn1→∞ Γεn2,n1

(A) exists
and is defined as follows. Let j(n2) ≤ n2 be minimal with Osc(ε;n2, j, A) = 1 (if such a j exists). If such
a j exists then Γεn2

(A) = Γ1
j(n2),n2

(A), otherwise Γεn2
(A) = C0.

Now there exists N ∈ N such that δN (A) < ε/2 and hence δN,n2(A) < ε for large n2. But this implies
that Osc(ε;n2, N,A) = 1. Hence for n2 large, we must have j(n2) ≤ N . If δl(A) > 2ε then for large
n2 we must have δl,n2

(A) > 2ε and hence Osc(ε;n2, l, A) = 0. As n2 increases, j(n2) may not converge.
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However, the above arguments show that for large n2 it can take only finitely many values, say in the set
S = {s1, ..., sm}, all of which must have δsi(A) ≤ 2ε. It follows that for large n2 we must have

(A.2) d(Γεn2
(A),Ξ(A)) ≤ 3ε.

Now we get to work using these ‘towers’ (which do not necessarily converge in the last limit) and the
trick to avoid oscillations. Define

F (n1, n2, j, l, A) := d̃(Γ2−j

n2,n1
(A),Γ2−l

n2,n1
(A)),

F (n2, j, l, A) := lim
n1→∞

F (n1, n2, j, l, A) = d(Γ2−j

n2
(A),Γ2−l

n2
(A))

and the intervals J1
j,l = [0, 4(2−j+2−l)], J2

j,l = [8(2−j+2−l),∞). Given j, l, n1 and n2, let i(j, l, n2, n1) ≤
n1 be maximal such that F (i, n2, j, l, A) ∈ J1

j,l ∪ J2
j,l. If no such i exists or if it does and F (i, n2, j, l, A) ∈

J1
j,l then define Ôsc(n1, n2, j, l, A) = 1 otherwise define Ôsc(n1, n2, j, l, A) = 0. Choose j = j(n1, n2) ≤
n2 maximal such that for all 1 ≤ l ≤ j we have Ôsc(n1, n2, j, l, A) = 1. If no such j exists then set
Γn2,n1

= C0, otherwise set Γn2,n1
(A) = Γ2−j(n1,n2)

n2,n1
(A). Again, this is easily seen to be a type α algorithm.

Arguing as before, we have the existence of

Ôsc(n2, j, l, A) := lim
n1→∞

Ôsc(n1, n2, j, l, A).

Now define h = h(n2) ≤ n2 maximal such that for all 1 ≤ l ≤ h we have Ôsc(n2, h, l, A) = 1. If no such
h exists then we must have

Γn2(A) := lim
n1→∞

Γn2,n1(A) = C0,

otherwise we must have

Γn2(A) := lim
n1→∞

Γn2,n1(A) = Γ2−h(n2)

n2
(A).

By (A.2), for any fixed j, l we have Ôsc(n2, j, l, A) = 1 for large n2 and hence h(n2) exists for large n2 and
diverges to∞. Now let N ∈ N then it follows that

lim sup
n2→∞

d(Γ2−h(n2)

n2
(A),Ξ(A)) ≤ lim sup

n2→∞
d(Γ2−N

n2
(A),Ξ(A)) + d(Γ2−h(n2)

n2
(A),Γ2−N

n2
(A))

≤ 3 · 2−N + lim sup
n2→∞

8(2−h(n2) + 2−N ) ≤ 11 · 2−N .

Since N was arbitrary, we must have convergence to Ξ(A). �

Proof of Proposition 7.15 parts (i) and (ii). The statement regarding intersections follows directly from Propo-
sition A.2 and the following remark - no assumptions on being able to compute distances between the output
of algorithms is necessary when considering general towers. For the sharpness result in (i), we deal with
X = Σ, andX = Π follows from an identical argument. Suppose that ∆G

k 63 {Ξ,Ω} ∈ Σαk . If {Ξ,Ω} ∈ Πα
k ,

we would have {Ξ,Ω} ∈ Σαk ∩Πα
k ⊂ ΣGk ∩ΠG

k = ∆G
k , a contradiction. �

A.2. Proof of Proposition 7.15 part (iii). To prove this part, we consider the following alternative definition
in the case thatM = {0, 1}. Note that if we restricted to recursivity in the Turing sense with Ξ describing
subsets of N, this would correspond to the classical arithmetical hierarchy.

Definition A.4 (SCI hierarchy,M = {0, 1} (alternative definition)). Suppose thatM = {0, 1}. We define
the following

(i) We say that Ξ : Ω→M permits a representation by an alternating quantifier form of length m if

Ξ = (Qmnm) · · · (Q1n1)Γnm,...,n1
,

where (Qi) is a list of alternating quantifiers (∀) and (∃), and all Γnm,...,n1 : Ω → M are general
algorithms in the sense of Definition 7.3.
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(ii) We say that {Ξ,Ω} is Σm if an alternating quantifier form of length m exists with Qm being (∃),
and that {Ξ,Ω} is Πm if an alternating quantifier form of length m exists with Qm being (∀).

(iii) We say that {Ξ,Ω} is ∆m if {Ξ,Ω} is Σm and Πm.

It is not clear from the wordings of Definition 7.11 and Definition A.4 that they are equivalent. However,
the next proposition provides the link.

Proposition A.5 (The SCI hierarchy encompasses the arithmetical hierarchy). WhenM = {0, 1}, Definition
7.11 and Definition A.4 are equivalent, and hence the SCI encompasses generalizations of the arithmetical
hierarchy. This also holds for arithmetic towers, which extend the arithmetical hierarchy to arbitrary do-
mains.

This immediately implies part (iii) or Proposition 7.15, and hence the rest of this subsection is devoted to
proving Proposition A.5.

Remark A.6. In classical hierarchies the ∆k class is defined by ∆k = Σk ∩ Πk. This is not the case in the
SCI hierarchy. The ∆α

k classes form the core of the hierarchy, and only when there is an extra structure on
the metric space does it make sense to define the Σαk and the Πα

k . Moreover, in the general SCI hierarchy, we
may have that

∆α
k 6= Σαk ∩Πα

k .

Of course, in the special cases of the SCI hierarchy, such as the arithmetical hierarchy, then ∆k = Σk ∩Πk.
Also, we show that ∆α

k = Σαk ∩ Πα
k for k = 1, 2, 3 and α = G,A in the computational spectral problem

case, however, there is no reason that this should hold for k > 3 in general. Moreover, classical hierarchies
have that Σk \∆k−1 6= ∅ and Πk \∆k−1 6= ∅. This does not have to be the case in general SCI hierarchies.
Indeed, one may have that

Σαk \∆α
k−1 = ∅ or Πα

k \∆α
k−1 = ∅.

This happens, for example, in the SCI hierarchy for the computational spectral problem.

To prove Proposition A.5, we make the following definition corresponding to the SCI hierarchy in the
main text.

Definition A.7 (Limit forms). IfM = {0, 1}, we define the following with respect to a given type of tower
of algorithms (arithmetical, radical general, etc.):

(i) We say that {Ξ,Ω} is Σ̃m if there exists a height m tower solving the computational problem such
that the final limit is monotonic from below. We say that {Ξ,Ω} is Π̃m if a height m tower solves
the computational problem such that the final limit is monotonic from above.

(ii) We say that {Ξ,Ω} is ∆̃m+1 if there exists a height m tower solving the computational problem.

The following theorem demonstrates how the SCI framework can be viewed, in the special case ofM =

{0, 1}, as a generalization of the Arithmetical Hierarchy to arbitrary computational problems. In particular,
one can define a hierarchy for any kind of tower. Here, we do this for a general tower, which can obviously
be done for any tower. We will call the hierarchy described below a General Hierarchy.

Proposition A.8 (General Hierarchy). Suppose that M = {0, 1}. Following Definitions A.4 and A.7, for
any m ≥ 1 we have that

Σ̃m = Σm, Π̃m = Πm and ∆̃m = ∆m.

Proof of Proposition A.8. Step I: We show that if SCI(Ξ,Ω)G ≤ m then Ξ is ∆m+1. Let p = limi pi. Then

p = true ⇔ ∀n∃k(k ≥ n ∧ pk) ⇔ ∃n∀k(k ≤ n ∨ pk).
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Further, let ϕ : N → N × N, k 7→ (ϕ1(k), ϕ2(k)) be a bijection which enumerates all pairs of natural
numbers, and note that

∃n∃m(pn,m)⇔ ∃k(p(ϕ1(k), ϕ2(k))), ∀n∀m(pn,m)⇔ ∀k(p(ϕ1(k), ϕ2(k))),

for any family (pn,m)n,m∈N ⊂M. Thus, every limit in a tower of heightm can be converted alternately into
an expression with two quantifiers (∀∃ or ∃∀), and then m − 1 doubles ∃∃ or ∀∀ can be replaced by single
quantifiers. This easily gives the claim.

Step II: We show that if Ξ is Σm or Πm then SCI(Ξ,Ω)G ≤ m. In fact, we show that Σm ⊂ Σ̃m and
Πm ⊂ Π̃m. As a start let (pi) ⊂M be a sequence. Then

(∀i(pi)) = true ⇔

(
lim
n→∞

n∧
i=1

pi

)
= true, (∃i(pi)) = true ⇔

(
lim
n→∞

n∨
i=1

pi

)
= true.

Furthermore, the conjunction (disjunction) of limits coincides with the limit of the elementwise conjunction
(disjunction), hence

∀nm∃nm−1 · · · ∀n1Γnm,··· ,n1
= lim

km
lim
km−1

· · · lim
k1

km∧
im=1

km−1∨
im−1=1

· · ·
k1∧
i1=1

Γim,im−1,··· ,i1

and similarly for any other possible alternating quantifier form. Since the Γnm,··· ,n1 in the alternating quan-
tifier form at the left-hand side are General algorithms, the right-hand side yields a tower of algorithms of
height m. Moreover, we obtain the required monotonic final limits.

Step III: We show that ∆̃m = ∆m. Let m ∈ N be the smallest number with Ξ being ∆m+1. In the above
steps, we have already seen that m ≤ SCI(Ξ,Ω)G ≤ m+ 1, and we next prove the following: If

Ξ(y) = ∃i∀j(g0(i, j, y)) = ∀n∃m(g1(n,m, y))

then Ξ(y) = limk→∞ g(k, y) with a function g being easily derivable from g0, g1. The following construc-
tion is adopted from [63, Proofs of Theorems 1 and 3]. Fix y and define a function h0 : N→M recursively
as follows:
i(1) := 1, j(1) := 1, h0(1) := g0(i(1), j(1), y).

If h0(l) = true

then: i(l + 1) := i(l), j(l + 1) := j(l) + 1

else: i(l + 1) := i(l) + 1, j(l + 1) := 1.

l := l + 1.

h0(l) := g0(i(l), j(l), y).

We observe that, if Ξ(y) = true then h0(l) converges as l → ∞ with limit true. Otherwise, the limit does
not exist or is false. The same construction applies to ¬(∀n∃m(g1(n,m, y))) = ∃n∀m¬(g1(n,m, y)) and
yields a function h1 which converges to true if and only if Ξ(y) = false. Clearly, exactly one of the functions
h0, h1 converges to true. Now we derive the desired g from h0 and h1 as follows:
α(1) = 0.

If hα(k)(k) = true

then: α(k + 1) := α(k)

else: α(k + 1) := 1− α(k).

k := k + 1.

If α(k) = 0

then: g(k, y) := true

else: g(k, y) := false.

This provides Ξ(y) = limk→∞ g(k, y).
Next, let g0 and g1 be of the form gs(i, j, y) = limr f

s
i,j,r(y), s ∈ {0, 1}. Fix y. Then for every pair (i, j)

there is an r(i, j) such that fsu,v,r(y) = gs(u, v, y) for all u ≤ i, v ≤ j, s ∈ {0, 1} and r ≥ r(i, j). Thus,
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g is also of the form g(k, y) = limr fk,r(y) with fk,r being defined by the above procedure applied to the
functions (i, j, y) 7→ fsi,j,k(y) instead of gs(i, j, y) (s ∈ {0, 1}).

Now we are left with iterating this argument: If both functions gs (s ∈ {0, 1}) are of the form gs(i, j, y) =

limkm−1
limkm−2

· · · limk1
fsi,j,km−1,··· ,k1

(y) with certain General algorithms fsi,j,km−1,··· ,k1
, then also g is

of the form
g(k, y) = lim

km−1

lim
km−2

· · · lim
k1

fk,km−1,··· ,k1(y)

with fk,km−1,··· ,k1 being defined by the same procedure as before applied to the functions (i, j, y) 7→
fsi,j,km−1,··· ,k1

(y) instead of gs(i, j, y) (s ∈ {0, 1}). The resulting functions y 7→ fk,km−1,··· ,k1(y) are
General algorithms for every k, since their evaluation requires only finitely many evaluations of the General
algorithms fsi,j,km−1,··· ,k1

.
Step IV: It remains to show that Σ̃m ⊂ Σm and Π̃m ⊂ Πm. Suppose that Ξ ∈ Σ̃m(∈ Π̃m) then by

considering the first m−1 limits there exists a family Ξnm ∈ ∆̃m = ∆m (this is also trivially true if m = 1)
such that

Ξ(y) = lim
nm→∞

Ξnm(y)

with the final limit monotonic from below (above). But then we must have Ξ(y) = ∃nmΞnm(y) (Ξ(y) =

∀nmΞnm(y)). But Ξnm ∈ Σm(∈ Πm) and we can collapse the double quantifier ∃∃ (∀∀) to a single
∃(∀). �

A.3. The Baire hierarchy. To end this appendix, we also make some remarks on the Baire hierarchy. The
Baire hierarchy [84], which is closely related to the Borel hierarchy [84], in descriptive set theory, has
similarities to the SCI hierarchy; however, it is fundamentally different. However, it is worth mentioning
since the Baire hierarchy includes classes of functions obtained as limits of functions from lower levels in
the hierarchy. Hence, the two hierarchies share some similarities.

Recall that given metrizable spaces X,Y and a continuous function f : X → Y , we say that f is of Baire
class 0. We define a function g : X → Y to be in Baire class 1 if there is a sequence of functions {gn}, all
of Baire class 0, such that g(x) = limn→∞ gn(x) for all x ∈ X . In general, for 1 < ρ < ω1 we define a
function f : X → Y to be of Baire class ρ if it is the pointwise limit of a sequence of functions fn : X → Y ,
where fn is of Baire class ρn < ρ. In order to understand the similarities and differences between the two
hierarchies, we provide a short discussion below.

Similarities between the SCI and Baire hierarchies. The main similarity between the hierarchies is the
concept of pointwise limits. Indeed, for the integer values of the Baire classes, this number indeed resembles
the SCI.

Differences between the SCI and Baire hierarchies. The differences between the hierarchies are due to
the fact that they describe very different problems. This can be summed up as follows.

(i) (Generality). The SCI hierarchy is designed to be able to handle all types of computational problems,
such as Smale’s problem on iterative algorithms for polynomial root-finding, Doyle–McMullen tow-
ers, the insolvability of the quintic, etc. This is obviously not within the scope of the Baire hierarchy.
However, this was never the intention of this hierarchy.

(ii) (Refinements). An important difference between the hierarchies is that the SCI hierarchy, when extra
structure onM is available, allows for the refinements in terms of the Σαk and Πα

k classes. This type
of refinement is not captured by the Baire hierarchy. However, that has never been the motivation.

(iii) (Topology vs information). A striking difference is that the Baire hierarchy is based on metrizable
topologies, whereas the SCI hierarchy is based on the information Λ (see Definition 7.2) available
to the algorithm. The computational spectral problem is a good example to illustrate the issue. Let
Ξ : Ω 3 A 7→ sp(A) ∈ M where Ω is the set of self-adjoint operators in B(l2(N)) andM is the
collection of non-empty compact subsets of C with the Hausdorff metric. If we equip Ω with the
operator norm topology, then Ξ is Baire class 0. Yet, the SCI = 2 for Ξ. If one changes the metric on
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Ω, the Baire class will change, yet the SCI remains unchanged. Also, as a side note, the algorithms
used in this paper to show that the SCI = 2 are not continuous in any metrizable topology. Thus,
there is no metric on Ω such that these become Baire class 0.

Finally, if we consider self-adjoint Schrödinger operators on L2(Rd) with bounded potential V
such that V ∈ BVloc(Rd), then the SCI of the spectral map is 1 if we can access point samples of V .
Also, if we equip this set of operators with the natural graph metric (equivalent to norm convergence
in the bounded case) the spectral map is Baire class 0. However, if one changes Λ, such that we
are given matrix elements of the operator with respect to some orthonormal basis of the domain, we
may get that the SCI = ∞, as the matrix representation may not uniquely determine the spectrum.
Thus, the SCI changes with Λ (see Definition 7.2) that determines which information is available,
whereas the Baire class changes with the metric.
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