A Theoretical Framework for Backward Error Analysis on Manifolds

Anders C. Hansen, University of Cambridge

The Problem

Let \mathcal{M} be a smooth manifold and let $X \in \mathfrak{X}(\mathcal{M})$ be a smooth vector field with flow map θ_t i.e.

$$\frac{d}{dt}\theta_t(p) = X_{\theta_t(p)}.$$

Let Φ_h be a numerical integrator for X i.e. Φ_h is a one-parameter family of diffeomorphisms that is smooth in h, $\Phi_0 = id$ and $\frac{d}{dh}\Big|_{h=0} \Phi_h = X$.

- Find a vector field \widetilde{X} such that the flow map $\tilde{\theta}_t$ of \widetilde{X} is close to the numerical solution i.e. $d(\tilde{\theta}_h(p), \Phi_h(p))$ is small for some metric d on \mathcal{M} .
- Determine the geometric properties of \widetilde{X} from the geometric properties of Φ_h .

The Estimates

Theorem 1 (ACH) Let $X \in \mathfrak{X}(\mathcal{M})$ and let Φ_h be a consistent integrator for X and suppose $K \subset \mathcal{M}$ is a compact and connected subset. Then,

(i) for sufficiently small h > 0 there exists a family of smooth vector fields $\{X_i\}$ on \mathcal{U} , an open set containing K, such that for $\tilde{X}_N(h) = X_0 + hX_1 + \ldots h^N X_N$ we have

 $d(\tilde{\theta}_h(p), \Phi_h(p)) \le C_N h^N, \quad p \in K, \quad C_N > 0,$

where $\tilde{\theta}_h$ is the flow map of $\tilde{X}_N(h)$ and d is some metric on \mathcal{M} .

(ii) if \mathcal{M} , X and Φ_h are analytic. Then for sufficiently small h > 0 there exists an analytic vector field $\widetilde{X}(h)$ and $C, \gamma > 0$ such that

 $d(\Phi_h(p), \tilde{\theta}_h(p)) \le Che^{-\gamma/h}$

for all $p \in K$.

Preliminaries

If $\varphi: \mathcal{M} \to \mathcal{M}$ is smooth and τ is a covariant tensor field then the pull-back $\varphi^* \tau$ is given by

$$(\varphi^*\tau)_p(X_1,\ldots,X_n)=\tau_{\varphi(p)}(\varphi_*X_1,\ldots,\varphi_*X_n), \quad X_1,\ldots,X_n\in T_p\mathcal{M}.$$

Let $X \in \mathfrak{X}(\mathcal{M})$ and τ a covariant tensor field on \mathcal{M} . The Lie derivative of τ with respect to X is given by

$$(\mathcal{L}_X \tau)_p = \lim_{t \to 0} \frac{\theta_t^*(\tau_{\theta_t(p)}) - \tau_p}{t},$$

where θ_t is the flow map of X.

By a k-form we mean a smooth covariant alternating k-tensor field on \mathcal{M} . The set of k-forms is denoted by $\Omega^k(\mathcal{M})$.

Cartan's Subgroups

- $Diff(\mathcal{M})$, the group of all diffeomorphisms on \mathcal{M} .
- The diffeomorphisms preserving a symplectic 2-form ω on \mathcal{M} , that is the set of diffeomorphisms φ such that $\varphi^* \omega = \omega$.
- The diffeomorphisms preserving a volume form μ on \mathcal{M} , that is the set of diffeomorphisms φ such that $\varphi^*\mu = \mu$.
- The diffeomorphisms preserving a given contact 1-form α up to a scalar function, that is the set of diffeomorphisms φ such that $(\varphi^* \alpha)_p = c_{\varphi}(p) \alpha_p$.
- The group of diffeomorphisms preserving a given symplectic form ω up to an arbitrary constant multiple, that is the set of diffeomorphisms φ such that $\varphi^* \omega = c_{\varphi} \omega$.
- The group of diffeomorphisms preserving a given volume form μ up to an arbitrary constant multiple, that is the set of diffeomorphisms φ such that $\varphi^* \omega = c_{\varphi} \omega$.

$\operatorname{Diff}(\mathcal{M})$ as a Lie group

Recall that $T_{id}\mathrm{Diff}(\mathcal{M})=\mathfrak{X}(\mathcal{M})$ i.e.

$$T_{id} \operatorname{Diff}(\mathcal{M}) = \left\{ \frac{d}{dt} \Big|_{t=0} \theta_t : \theta_t \text{ is a flow map} \right\}.$$

Note that

$$T_{id} \mathsf{Diff}(\mathcal{M}) = \left\{ \frac{d}{dt} \Big|_{t=0} \Phi_t : \Phi_t \text{ is a one parameter family} \right\}.$$

Definition 2 Let $S \subset \text{Diff}(\mathcal{M})$ be a set of smooth one parameter families of diffeomorphisms. Define

$$T_{id}S = \{ X \in \mathfrak{X}(\mathcal{M}) : X = \frac{d}{dt} \Big|_{t=0} \Phi_t, \ \Phi_t \in S \},\$$

where $T_{id}S$ will be called the tangent space at the identity.

Subsets of $Diff(\mathcal{M})$	Subsets of $\mathfrak{X}(\mathcal{M})$
Let $\omega\in \Omega^2(\mathcal{M})$ be symplectic.	
$\{\varphi\in Diff(\mathcal{M}):\varphi^*\omega=\omega\}$	$\{X \in \mathfrak{X}(\mathcal{M}) : \mathcal{L}_X \omega = 0\}$
$\{arphi\in Diff(\mathcal{M}): arphi^*\omega=c_arphi\omega\}$	$\{X \in \mathfrak{X}(\mathcal{M}) : \mathcal{L}_X \omega = \beta_X \omega\}$
Let $\mu\in \Omega^n(\mathcal{M})$ be a volume form.	
$\{arphi\in Diff(\mathcal{M}): arphi^*\mu=\mu\}$	$\{X \in \mathfrak{X}(\mathcal{M}) : \mathcal{L}_X \mu = 0\}$
$\{arphi\in Diff(\mathcal{M}): arphi^*\mu=c_arphi\mu\}$	$\{X \in \mathfrak{X}(\mathcal{M}) : \mathcal{L}_X \mu = \beta_X \mu\}$
Let $lpha\in \Omega^1(\mathcal{M})$ be a contact form.	
$\{\varphi\in Diff(\mathcal{M}): (\varphi^*\alpha)_p = c_\varphi(p)\alpha_p\}$	$\{X \in \mathfrak{X}(\mathcal{M}) : (\mathcal{L}_X \alpha)_p = \beta_X(p)\alpha_p\}$
Let $f\in C^\infty(\mathcal{M}).$	
$\{\varphi\in Diff(\mathcal{M}): f\circ\varphi=f\}$	$\{X \in \mathfrak{X}(\mathcal{M}) : f_*X = 0\}$
Let $\sigma : \operatorname{Diff}(\mathcal{M}) \to \operatorname{Diff}(\mathcal{M})$ be smooth.	
$\{\varphi\in \mathrm{Diff}(\mathcal{M}): \sigma(\varphi)=\varphi^{-1}\}$	$\{X \in \mathfrak{X}(\mathcal{M}) : \sigma_* X = -X\}$

Theorem 3 (ACH) Suppose that $X \in A \subset \mathfrak{X}(\mathcal{M})$ where A is a linear subspace. Let $S \subset \text{Diff}(\mathcal{M})$ be a set of smooth one parameter families of diffeomorphisms such that S is a semi group and that $A = T_{id}S$. Let Φ_h be an integrator for X and suppose also that $\Phi_h \in S$. Then the perturbed vector field $\widetilde{X}(h) \in A$.

WARNING!!!

Note that if $A = T_{id}S$ there may exist \tilde{S} such that $S \neq \tilde{S}$ and $A = T_{id}\tilde{S}$. The reason is that $\exp : \mathfrak{X}(\mathcal{M}) \to \mathsf{Diff}(\mathcal{M})$ is not locally onto.

Example: Let ω be a symplectic 2-form on \mathcal{M} . Let $A = \{X \in \mathfrak{X}(\mathcal{M}) : \mathcal{L}_X \omega = 0\}$ and $S = \{\varphi_t \in \text{Diff}(\mathcal{M}) : \varphi_t^* \omega = \omega, \varphi_t \text{ is a flowmap}\}.$ Then $A = T_{id}S.$ Let $X \in A$ and let the integrator Φ_h be Euler's method applied to X and let

 $ilde{S} = S \cup \Phi_h$. By consistency

$$\frac{d}{dh}\Big|_{h=0}\Phi_h = X.$$

Hence $T_{id}\tilde{S} = A$.

The Lie derivative

Note that the previous example shows that the set S in Theorem 3 must have some structure, for if we relax the semi-group hypothesis in Theorem 3 and require S only to be a set then \tilde{S} is a set and $T_{id}\tilde{S} = A$ so the perturbed vector field of Euler's method would be symplectic, a contradiction.

Proposition 4 Let Φ_t be a one parameter family of diffeomorphisms that is smooth in t and satisfies $\Phi_0 = id$. Suppose that $X \in \mathfrak{X}(\mathcal{M})$ and $\frac{d}{dt}\Big|_{t=0} \Phi_t = X$. Let τ be a smooth covariant k-tensor field. Then

$$(\mathcal{L}_X \tau)_p = \lim_{t \to 0} \frac{\Phi_t^*(\tau_{\Phi_t(p)}) - \tau_p}{t}.$$

Corollary 5 Let $au \in \Omega^k(\mathcal{M})$ be a smooth k-form. Let

$$S_1 = \{ \Phi_t : \Phi_t^* \tau = \tau \}$$
$$S_2 = \{ \Phi_t : \Phi_t^* \tau = c_\Phi(t)\tau, \ c_\Phi \in C^\infty(\mathbb{R}) \}$$
$$S_3 = \{ \Phi_t : (\Phi_t^* \tau)_p = c_\Phi(t, p)\tau_p, \ c_\Phi \in C^\infty(\mathbb{R}, \mathcal{M}) \}.$$

Also, let

 $A_{1} = \{X \in \mathfrak{X}(\mathcal{M}) : \mathcal{L}_{X}\tau = 0\}$ $A_{2} = \{X \in \mathfrak{X}(\mathcal{M}) : \mathcal{L}_{X}\tau = \alpha_{X}\tau, \ \alpha_{X} \text{ constant}\}$ $A_{3} = \{X \in \mathfrak{X}(\mathcal{M}) : \mathcal{L}_{X}\tau = \alpha_{X}\tau, \ \alpha_{X} \in C^{\infty}(\mathcal{M})\}.$ Then $T_{id}S_{1} = A_{1}, T_{id}S_{2} = A_{2}$ and $T_{id}S_{3} = A_{3}$

Corollary 6 Let $X \in \mathfrak{X}(\mathcal{M})$ and $\tau \in \Omega^k(\mathcal{M})$. Let Φ_h be a numerical integrator for X.

(i) If
$$\mathcal{L}_X \tau = 0$$
 and $\Phi_h^* \tau = \tau$, then the perturbed vector field $\tilde{X}(h)$ satisfies $\mathcal{L}_{\tilde{X}} \tau = 0$.

(ii) If $\mathcal{L}_X \tau = \alpha_X \tau$ and $\Phi_h^* \tau = c_{\Phi}(h)\tau$, where α_X is constant and c_{Φ} is smooth, then the perturbed vector field $\tilde{X}(h)$ satisfies $\mathcal{L}_{\tilde{X}}\tau = \alpha_{\tilde{X}}\tau$.

(iii) If $\mathcal{L}_X \tau = \alpha_X \tau$ where $\alpha_X \in C^{\infty}(\mathcal{M})$ and $(\Phi_h^* \tau)_p = c_{\Phi}(h, p)\tau_p, c_{\Phi} \in C^{\infty}(\mathbb{R} \times \mathcal{M})$ }, then the perturbed vector field $\tilde{X}(h)$ satisfies $\mathcal{L}_{\tilde{X}} \tau = \alpha_{\tilde{X}} \tau$ where $\alpha_X \in C^{\infty}(\mathcal{M})$. **Theorem 7** (ACH) Let $X \in \mathfrak{X}(\mathcal{M})$ with corresponding flow map θ_t , and let Φ_h be a numerical integrator for X with corresponding perturbed vector field $\widetilde{X}(h)$ and flow map $\tilde{\theta}_t$. Then

- (i) if ω is a symplectic 2-form on \mathcal{M} such that $\theta_t^* \omega = \omega$ and $\Phi_h^* \omega = \omega$ then the perturbed vector field $\tilde{X}(h)$ is symplectic e.g. it satisfies $\mathcal{L}_{\tilde{X}(h)}\omega = 0$, and $\tilde{\theta}_t^* \omega = \omega$.
- (ii) if μ is a volume form on \mathcal{M} such that $\theta_t^* \mu = \mu$ and $\Phi_h^* \mu = \mu$ then the perturbed vector field $\tilde{X}(h)$ is divergence free e.g. it satisfies $\operatorname{div} \tilde{X}(h) = 0$, and $\tilde{\theta}_t^* \mu = \mu$.
- (iii) if ω is a symplectic 2-form on \mathcal{M} such that $\theta_t^* \omega = \alpha(t)\omega$ and $\Phi_h^* \omega = \beta(h)\omega$, where $\alpha, \beta : \mathbb{R} \to \mathbb{R}$ are smooth, then the perturbed vector field $\tilde{X}(h)$ satisfies $\mathcal{L}_{\tilde{X}(h)}\omega = \rho\omega$, where ρ is a real constant and $\tilde{\theta}_t^*\omega = \tilde{\alpha}(t)\omega$, where $\tilde{\alpha}$ is smooth.

(iv) if μ is a volume form on \mathcal{M} such that $\theta_t^* \mu = \alpha(t)\mu$ and $\Phi_h^* \mu = \beta(h)\mu$, where $\alpha, \beta : \mathbb{R} \to \mathbb{R}$ are smooth, then the perturbed vector field $\tilde{X}(h)$ satisfies $\mathcal{L}_{\tilde{X}(h)}\mu = \rho\mu$, where ρ is a real constant and $\tilde{\theta}_t^*\mu = \tilde{\alpha}(t)\mu$, where $\tilde{\alpha}$ is smooth.

(v) if τ is a contact 1-form on \mathcal{M} such that $(\theta_t^* \tau)_p = \alpha(t, p)\tau_p$ and $(\Phi_h^* \tau)_p = \beta(h, p)\tau_p$, where $\alpha, \beta \in C^{\infty}(\mathbb{R} \times \mathcal{M})$ then the perturbed vector field $\tilde{X}(h)$ satisfies $\mathcal{L}_{\tilde{X}(h)}\tau = \rho\tau$, where $\rho \in C^{\infty}(\mathcal{M})$ and $\tilde{(}\theta_t^* \tau)_p = \tilde{\alpha}(t, p)\tau_p$, where $\alpha \in C^{\infty}(\mathbb{R} \times \mathcal{M})$.

(vi) if $f : \mathcal{M} \to \mathbb{R}$ is a smooth function such that $f_*X = 0$ and $f \circ \Phi_h = f$. Then the perturbed vector field $\tilde{X}(h)$ satisfies $f_*\tilde{X}(h) = 0$ and $f \circ \tilde{\theta}_t = f$.

Smooth homomorphisms and their anti fixed points

Theorem 8 (ACH) Let \mathcal{M} be a compact manifold. Let $X \in \mathfrak{X}(\mathcal{M})$ with corresponding flow map θ_t and let Φ_h be a numerical integrator for X. Let $\sigma : \text{Diff}(\mathcal{M}) \to \text{Diff}(\mathcal{M})$ be a smooth homomorphism and define

$$A = \{ X \in \mathfrak{X}(\mathcal{M}) : \sigma_* X = -X \}, \quad S = \{ \varphi \in \mathsf{Diff}(\mathcal{M}) : \sigma(\varphi) = \varphi^{-1} \}.$$

Suppose that $\theta_t \in S$. If $\Phi_h \in S$ then the perturbed vector field $\widetilde{X}(h) \in A$ and $\widetilde{\theta}_t \in S$, where $\widetilde{\theta}_t$ is the flow map of $\widetilde{X}(h)$.

Let $\rho : \mathcal{M} \to \mathcal{M}$ be a diffeomorphism. Denote the mapping $\Psi \mapsto \rho \circ \Psi \circ \rho^{-1}$ by σ . Note that this is a homomorphism on $\text{Diff}(\mathcal{M})$, since $\sigma(\Psi \circ \Phi) = \sigma(\Psi) \circ \sigma(\Phi)$.

Theorem 9 (ACH) Let \mathcal{M} be a compact manifold. Let $X \in \mathfrak{X}(\mathcal{M})$ and let Φ_t be a numerical integrator for X. Suppose that σ is defined as above and that

$$\sigma(\theta_{X,h}) = \theta_{X,h}^{-1} \quad \text{and} \quad \sigma(\Phi_h) = \Phi_h^{-1}$$

then the perturbed vector field $\tilde{X}(h)$ of Φ_h satisfies $\sigma_* \tilde{X}(h) = -\tilde{X}(h)$ and $\sigma(\tilde{\theta}_{X,t}) = \tilde{\theta}_{X,t}^{-1}$, where $\tilde{\theta}$ is the flow of $\tilde{X}(h)$.

Acknowledgments

The author would like to thank F. Casas, A. Iserles, J. Marsden, R. McLachlan, R. Quispel and A. Weinstein for useful discussions and input.