
CAN STABLE AND ACCURATE NEURAL NETWORKS BE COMPUTED? – ON THE
BARRIERS OF DEEP LEARNING AND SMALE’S 18TH PROBLEM

VEGARD ANTUN∗, MATTHEW J. COLBROOK†, AND ANDERS C. HANSEN†

ABSTRACT. Deep learning (DL) has had unprecedented success and is now entering scientific computing with
full force. However, DL suffers from a universal phenomenon: instability, despite universal approximating prop-
erties that often guarantee the existence of stable neural networks (NNs). We show the following paradox. There
are basic well-conditioned problems in scientific computing where one can prove the existence of NNs with great
approximation qualities, however, there does not exist any algorithm, even randomised, that can train (or com-
pute) such a NN. Indeed, for any positive integers K > 2 and L, there are cases where simultaneously: (a) no
randomised algorithm can compute a NN correct to K digits with probability greater than 1/2, (b) there exists a
deterministic algorithm that computes a NN with K − 1 correct digits, but any such (even randomised) algorithm
needs arbitrarily many training data, (c) there exists a deterministic algorithm that computes a NN with K − 2

correct digits using no more than L training samples. These results provide basic foundations for Smale’s 18th
problem and imply a potentially vast, and crucial, classification theory describing conditions under which (stable)
NNs with a given accuracy can be computed by an algorithm. We begin this theory by initiating a unified theory
for compressed sensing and DL, leading to sufficient conditions for the existence of algorithms that compute stable
NNs in inverse problems. We introduce Fast Iterative REstarted NETworks (FIRENETs), which we prove and nu-
merically verify are stable. Moreover, we prove that onlyO(| log(ε)|) layers are needed for an ε accurate solution
to the inverse problem (exponential convergence), and that the inner dimensions in the layers do not exceed the
dimension of the inverse problem. Thus, FIRENETs are computationally very efficient.

CONTENTS

1. Introduction 1
2. Main Results I: Fundamental barriers and existence of algorithms 6
3. Main Results II: Algorithms compute stable and accurate NNs in specific cases 8
4. FIRENET: Balancing the trade-off between stability and accuracy 11
5. Main Results III: Precise formulations of Theorem 5.5 and Theorem 5.10 13
6. FIRENET: Example of the exponential convergence and pseudocode 20
7. Connections with previous work 23
8. Proof of Theorem 2.2 and tools from the SCI hierarchy 24
9. Proof of Theorem 5.5 34
10. Proof of Theorem 5.10 41
Acknowledgments 45
References 45

1. INTRODUCTION

Deep learning (DL) has demonstrated unparalleled accomplishments in fields ranging from image classi-
fication and computer vision [56, 67, 76], voice recognition and automated diagnosis in medicine [43, 69, 82],
to inverse problems and image reconstruction [12, 63, 71, 85] (this list of areas is by no means exhaustive,
see [78], for example). However, at the same time, there is now overwhelming empirical evidence that DL
leads to unstable methods, a phenomenon that seems universal and present in all of the applications listed

∗DEPARTMENT OF MATHEMATICS, UNIVERSITY OF OSLO.
†DEPARTMENT OF APPLIED MATHEMATICS AND THEORETICAL PHYSICS, UNIVERSITY OF CAMBRIDGE.
E-mail addresses: vegarant@math.uio.no, m.colbrook@damtp.cam.ac.uk, a.hansen@damtp.cam.ac.uk.
Key words and phrases. Foundations of computational mathematics, computational neural networks, stability and accuracy, SCI Hierar-
chy, inverse problems, deep learning, Smale’s 18th problem.

1

2 THE BARRIERS OF DEEP LEARNING AND SMALE’S 18TH PROBLEM

above [7, 9, 36, 52, 70, 90, 105] and in most of the new artificial intelligence (AI) technologies. These in-
stabilities are often detected by what has become commonly known in the literature as “adversarial attacks”.
Moreover, the instabilities can be present even in random cases and not just worst-case scenarios [59] (see also
“stealth attacks” introduced in [108] which concern perturbations to the AI system itself as opposed to inputs).
There is a growing awareness of this problem in high-stake applications and society as a whole [13, 52, 64],
and instability seems to be the Achilles’ heel of modern AI and DL – see Figure 1 for an example (this is to be
contrasted with Figure 2). However, classical approximation theorems show that a continuous function can be
approximated arbitrarily well by a neural network (NN). Thus, stable problems described by stable functions
can always be solved stably with a NN. This leads to the basic question:

Why does DL lead to universally unstable methods even when one can prove that stable and
accurate neural networks exist?

It is important to note that proof of the existence of suitable NNs does not immediately imply that they can
be constructed by an algorithm. In particular, we are faced with the following fundamental problem:

(Question I: Can neural networks that provably exist be trained/computed?) Let ΩT be a collection of
training data ι = {xj}, and suppose that for each ι ∈ ΩT one can prove that there exists a NN Φι ∈ N (with
certain properties). In particular, there is a mapping K : ΩT → N . Does there exist an algorithm, taking
ι ∈ ΩT as input, that computes an approximation to K(ι) = Φι for all ι ∈ ΩT , and to what accuracy?

Question I is the key problem that we address (see §1.2 for a detailed summary), and our barriers, as well as
our positive results, help shed light on why the desired NNs that exist can or cannot be computed.

Remark 1.1 (Stability/accuracy trade-off and existence of algorithms). It is, of course, not difficult to
compute stable NNs: the zero network is stable, however, not particularly useful. Hence, the big problem
is to compute accurate and stable NNs. Scientific computing is based on two pillars: stability and accuracy,
however, there is often a trade-off between the two [93]. There may be barriers preventing the existence of
accurate and stable algorithms, and some accuracy may have to be sacrificed in order to secure stability. �

1.1. Hilbert’s program, Smale’s 18th problem and the foundations of AI. The strong optimism regarding
the abilities of AI and DL is summarised in The New Yorker’s (April 2017 issue) quote of G. Hinton: “They
should stop training radiologists now.” One can argue that this optimism is comparable to the optimism about
mathematics in the early 20th century, led by D. Hilbert. Hilbert believed that mathematics could prove or
disprove any statement and, moreover, that there were no restrictions on which problems could be solved by
algorithms. The latter being emphasised in Hilbert’s 10th problem [84]: “Find an algorithm to determine
whether a given polynomial Diophantine equation with integer coefficients has an integer solution.” Hilbert
did not consider the case that such an algorithm may not exist (even though, indeed, no such algorithm exists),
suggesting a substantial optimism on what mathematics and algorithms can solve. However, Hilbert was also
well aware that such foundations were not established in mathematics and initiated a vast program leading to
the beginning of modern logic and subsequently modern computer science.

Gödel [57] and Turing [106] turned Hilbert’s optimism upside down by their foundational contributions
establishing impossibility results on what mathematics and digital computers can achieve [94]. We argue that
a program on the foundations of AI, similar to Hilbert’s program, is needed, where impossibility results are
provided in order to establish the boundaries of DL and AI. Such a program is already suggested in Smale’s
18th problem, from the list of mathematical problems for the 21st century [103], which echoes Turing’s paper
from 1950 [107] on the question: what is AI? Turing asks if a computer can think, and suggests the imitation
game as a test for his question about AI. Smale takes the question even further and asks in his 18th problem:

“What are the limits of intelligence, both artificial and human?”
— Smale’s 18th problem (from the list of mathematical problems for the 21st century [103])

The question is followed by a discussion on the problem that ends as follows: “Learning is a part of human
intelligent activity. The corresponding mathematics is suggested by the theory of repeated games, neural

THE BARRIERS OF DEEP LEARNING AND SMALE’S 18TH PROBLEM 3

Original |x| |x+ r1| |x+ r2| |x+ r3|

Ψ(A(x)) Ψ(A(x+ r1)) Ψ(A(x+ r2)) Ψ(A(x+ r3))

FIGURE 1. (Unstable neural network in image reconstruction). The neural network AUTOMAP (Na-
ture (2018) [113]) represents the tip of the iceberg of DL in inverse problems. The paper promises that one
can “... observe superior immunity to noise...”. Moreover, the follow-up announcement (Nature Meth-
ods “AI transforms image reconstruction,” [104]) proclaims: “A deep-learning-based approach improves
speed, accuracy and robustness of biomedical image reconstruction”. However, the figure shows |x+ rj |,
where x is the original image and the rjs are perturbations meant to simulate worst-case effect, as well
as the that AUTOMAP reconstruction Ψ(A(x + rj)) from the subsampled Fourier MRI data A(x + rj)

(here A ∈ Cm×N is a subsampled Fourier transform, see §4 for details) concluding that this network is
completely unstable. Note that the condition number cond(AA∗) = 1, so the instabilities are not caused
by poor condition. As demonstrated in [9], this is a universal phenomenon in DL for inverse problems.
Experimental details are given in §4.

nets and genetic algorithms.” Given the recent unprecedented developments in DL and NNs [78], and the
impact these developments may have on AI, it is timely to consider Smale’s 18th problem. We interpret
the words “artificial intelligence” as the current state-of-the-art AI for which DL is essential. Our results
provide foundations for Smale’s 18th problem since they imply a potentially vast classification theory for
determining the limits of what DL can achieve. Importantly, this classification theory cannot be determined
by the extensive collection of non-constructive existence theorems (à la universal approximation theorems)
for NNs.

1.2. Summary of the main results. Our main results demonstrate that there are fundamental barriers pre-
venting NNs, despite their existence, from being computed by algorithms. This helps shed light on the intri-
cate question on why current algorithms in DL produce unstable networks, despite the fact that stable NNs
often exist in the particular application. Indeed, our results demonstrate that there is a rich and unknown
classification theory on which types of stable NNs can be computed by algorithms. Our proof techniques
stem from the Solvability Complexity Index (SCI) hierarchy that has recently been used to settle longstanding
questions in scientific computing [15, 18–20, 40, 41, 65], and that generalises the fundamental problems of S.
Smale on existence of algorithms [24, 25, 100–102] and work by C. McMullen [86, 87] and P. Doyle & C.
McMullen [48].

(I) (Neural networks may exist, but cannot be computed, even for well-conditioned problems). The answer
to Question I above is, in general, ‘no’, even for well-conditioned problems. Mappings that take training data

4 THE BARRIERS OF DEEP LEARNING AND SMALE’S 18TH PROBLEM

Original |x| |x+ v1| |x+ v2| |x+ v3|

Φ(A(x)) Φ(A(x+ v1)) Φ(A(x+ v2)) Φ(A(x+ v3))

FIGURE 2. (The FIRENET is stable to worst-case perturbations). Using the same method as in Figure
1, we compute perturbations vj in the image domain, to simulate worst-case effect for the FIRENET
Φ: Cm → CN . Here x and A ∈ Cm×N are the same image and sampling matrix as in Figure 1.
Moreover, for each j = 1, 2, 3 we have ensured that ‖vj‖l2 ≥ ‖rj‖l2 , where the rj’s are the perturbations
from Figure 1 (we have denoted the perturbations for FIRENET by vj to emphasise that these adversarial
perturbations are sought for FIRENET and have nothing to do with the perturbations in Figure 1). The
top row shows the perturbed images |x+ vj |, j = 0, 1, 2, 3 (assuming v0 = 0), and the bottom row shows
the network’s reconstruction from the perturbed measurementsA(x+vj). Experimental details are in §4.

to NNs may exist, however, no algorithm that computes approximations of the NNs from the training data
exists. This statement is made precise in Theorems 2.1 and 2.2, and is valid for any model of computation.

(II) (Randomised algorithms do not help in solving the issue). The answer to Question I is still ‘no’ for any
randomised algorithm. That is, as Theorem 2.2 reveals, replacing a deterministic algorithm with a randomised
algorithm (common randomised algorithms in DL include stochastic gradient descent) will not yield the
desired error with probability better than coin-flipping.

(III) (Algorithms may compute neural networks to K − 1 digits of accuracy, but not K). As Theorem 2.2
reveals, the answer to Question I above depends on the desired accuracy. For any integer K > 1 there exist
classes of problems for which there is a mapping taking the training data to the NN, however, there will only
exist an algorithm that can compute an approximation to the NN to K − 1 correct digits, and no algorithm –
even randomised – can compute an approximation to K correct digits.

(IV) (Algorithms may exist, but any algorithm will require arbitrary large training data). Theorem 2.2
also shows that there are classes of problems where one can compute an approximation to the desired NN
with K − 1 correct digits, however, for any M ∈ N and any algorithm, there will be a problem so that the
algorithm requires more than M training data to provide an approximation with at least K − 1 correct digits.
However, for the same class of problems, there exists an algorithm providing K − 2 correct digits using only
one training datum. Condition numbers (see §8.1) of the problems in Theorem 2.2 are all bounded by 1.

(V) (Algorithms computing stable and accurate neural networks exist only in specific cases). (I)–(IV)
demonstrate that it is only in specific cases that there exists an algorithm that can compute the desired NN,
despite the fact that one can prove that the desired NN exists. This implies that there is a theory classify-
ing which NNs can be computed by algorithms and which conditions are sufficient and necessary for the
existence of algorithms. We initiate this classification theory below in Theorems 5.5 and 5.10.

THE BARRIERS OF DEEP LEARNING AND SMALE’S 18TH PROBLEM 5

(VI) (Unrolling optimisation algorithms as neural networks will, in general, not converge). The concept of
unrolling optimisation algorithms as a sequence of NNs is highly popular (see §7). Due to the specific choices
of mappings in Theorems 2.1 and 2.2 (see §2.1), our impossibility results imply that such sequences of NNs
will in general never converge. Indeed, potentially surprisingly, the objective function values of iterates will
converge, yet the unrolled NN’s output will in general never converge to the solution set.

(VII) (Under specific conditions, unrolling yields stable and accurate neural networks). Theorems 5.5 and
5.10 show that under specific conditions that typically are present in, for example, Magnetic Resonance
Imaging (MRI), the technique of unrolling optimisation algorithms will yield stable and accurate NNs for
certain inverse problems, hence providing an algorithm for constructing these NNs. Such NNs outperform
state-of-the-art unstable (displayed in Figure 1) trained NNs based on DL, such as AUTOMAP, and they can
withstand adversarial attacks, see Figure 2. When these specific conditions are present, the unrolling NNs
can even be used to stabilise any unstable NN, see Figure 3 for an example.

(VIII) (Specific conditions yield unrolled neural networks with exponential convergence in the number of lay-
ers and fast transforms to implement the linear maps). Given specific conditions, the unrolling procedure
can be manipulated through a careful restart scheme to yield exponential convergence: one can obtain an
error of ε by using a NN with order | log(ε)| layers. Moreover, the linear maps in the layers of the NN can
be implemented using fast transforms in many applications (e.g. those in §5.3). Hence, one obtains fast
algorithms to produce stable and accurate NNs that can be executed very efficiently. We demonstrate this
in §6, where only on the order of 10 layers are needed to obtain accurate recovery of undersampled noisy
images.

(IX) (Stability/accuracy trade-off and avoiding overperformance). There is a trade-off between stability and
accuracy in DL, with limits on how well a stable NN can perform in inverse problems (e.g. if a NN is trained
to accurately recover vectors whose difference lies close to the kernel of the forward map, the recovery is
necessarily unstable - see §3). Figure 5 demonstrates this with a U-net trained on images consisting of ellipses
and which is quite stable. However, when a detail not in the training set is added, it washes it out almost
entirely. This is a problem in real-world clinical practice - Facebook and NYU’s 2019 FastMRI challenge
reported that networks that performed well in terms of standard image quality metrics were prone to false
negatives, failing to reconstruct small, but physically-relevant image abnormalities [74]. The 2020 version
of the challenge subsequently focused on pathologies and also included a generalisation track, noting, “Our
challenge confirmed areas in need of research, particularly those along the lines of evaluation metrics, error
characterization, and AI-generated hallucinations” [91]. In contrast, as demonstrated in §4, our NNs offer a
blend of both stability and accuracy. However, they are by no means the end of the story. Tracing out the
optimal stability vs. accuracy trade-off curve is crucial for applications and will no doubt require a myriad of
different techniques to be developed to tackle different problems.

(X) (Numerical stability) It is important to understand the difference between the stability (or conditioning) of
a map and the stability of its numerical implementation (see, for example, the recent work in [23] which
considers common functions used in classification methods). As well as the former, our results cover the
latter by performing an error analysis of the forward pass of the NNs, assuming each layer is computed with
an error (see Remark 5.3). We show that only low precision is needed and that worst-case errors can only
ever accumulate slowly as the number of layers increase.

We call our neural networks Fast Iterative REstarted NETworks, or FIRENETs. The code and data, used
to produce all figures in this manuscript are available from:

www.github.com/Comp-Foundations-and-Barriers-of-AI/firenet.

1.3. Notation. We briefly collect some basic notation, further notation will be introduced throughout where
appropriate. We use Nm,N to denote the class of neural networks (NNs) from Cm to CN (see §5.1 for
the precise definition). Given a metric space (M, d), x ∈ M and X ⊂ M, d(x,X) = dist(x,X) =

infy∈X d(x, y). For a matrix A ∈ Cm×N , the norm ‖A‖ refers to the operator norm of A when Cm and CN

are equipped with the standard l2-norm. For x ∈ CN and p ∈ [1,∞], ‖x‖lp refers to the lp-norm of x. For

www.github.com/Comp-Foundations-and-Barriers-of-AI/firenet

6 THE BARRIERS OF DEEP LEARNING AND SMALE’S 18TH PROBLEM

a set of indices S and vector x, xS is the vector defined by (xS)j = xj if j ∈ S and (xS)j = 0 if j /∈ S.
Complex rationals Q + iQ are denoted by Q[i]. We use � to denote the end of a proof and � to denote the
end of a remark.

2. MAIN RESULTS I: FUNDAMENTAL BARRIERS AND EXISTENCE OF ALGORITHMS

The canonical inverse problem studied in this paper is to solve an underdetermined system of equations:

Given noisy measurements y = Ax+ e ∈ Cm of x ∈ CN , recover x. (2.1)

Here A ∈ Cm×N represents a model of typically undersampled sampling (m < N), such as a subsampled
discrete Fourier transform as in Magnetic Resonance Imaging (MRI). Problem (2.1) forms the basis for much
of inverse problems and image analysis. The possibility of y 6= Ax models noise or perturbations.

2.1. Existence of NNs is not enough, algorithms may not compute them sufficiently accurately. To
demonstrate that the results we introduce are present in applications, we consider basic mappings used in
modern mathematics of information, inverse problems and optimisation. Given a matrix A ∈ Cm×N and a
vector y ∈ Cm, we consider the following three minimisation problems:

(P1) argminx∈CN F
A
1 (x) := ‖x‖l1w , such that ‖Ax− y‖l2 ≤ ε, (2.2)

(P2) argminx∈CN F
A
2 (x, y, λ) := λ‖x‖l1w + ‖Ax− y‖2l2 , (2.3)

(P3) argminx∈CN F
A
3 (x, y, λ) := λ‖x‖l1w + ‖Ax− y‖l2 , (2.4)

known respectively as (quadratically constrained) basis pursuit [1,16,35], unconstrained LASSO [33,66] and
unconstrained square-root LASSO [17, 109]. In applications, one is often interested in the solution of (2.1)
rather than the problems (Pj). However, sparse regularisation is often used as a benchmark method for (2.1)
and we prove impossibility results for approximations of the solution maps of these sparse regularisation
problems. The solution maps of (Pj) are considerably simpler than the problem (2.1) (which is, in general,
ill-posed) and an impossibility result for these simpler problems is a striking computational barrier given that
one can prove the existence of accurate neural networks (Theorem 2.1).

The parameters λ and ε are positive rational numbers, and the weighted l1w norm is given by ‖x‖l1w :=∑N
l=1 wl|xl|, where each weight wj is a positive rational. Throughout, we use the following notation:

Ξ(A, y) is the set of minimisers for (Pj) given input A ∈ Cm×N , y ∈ Cm, (2.5)

where, for notational convenience, we have suppressed the dependence on ε or λ (which are usually fixed
parameters) and the index j. In certain cases, we will write Ξj to specify minimisers of problem (Pj). Let

A ∈ Cm×N , S = {yk}Rk=1 ⊂ Cm, R <∞.

We consider the following key question:

Given a collection Ω of such pairs (A,S), does there exists a neural network approximating
the mapping Ξ, and if so, can such an approximation be trained by an algorithm?

To make this question precise, we first note that A and the elements in S will typically never be exact, but can
be approximated to arbitrary precision. For example, this would be the case if A was a subsampled discrete
cosine transform. Thus, we can access approximations {yk,n}Rk=1 ⊂ Q[i]m and An ∈ Q[i]m×N such that

‖yk,n − yk‖ ≤ 2−n, ‖An −A‖ ≤ 2−n, ∀n ∈ N. (2.6)

(The bounds 2−n are chosen for convenience and can be replaced by any other sequence of positive rationals
converging to zero.) We also assume access to {xk,n}Rk=1 ⊂ Q[i]N such that

inf
x∗∈Ξ(An,yk,n)

‖xk,n − x∗‖ ≤ 2−n, ∀n ∈ N. (2.7)

THE BARRIERS OF DEEP LEARNING AND SMALE’S 18TH PROBLEM 7

Hence, the training set associated with (A,S) ∈ Ω for training a suitable NN must be

ιA,S := {(yk,n, An, xk,n) | k = 1, . . . , R, and n ∈ N} . (2.8)

Thus, given a collection of (A,S), we denote the class of all such admissible training data by

ΩT := {ιA,S as in (2.8) | (A,S) ∈ Ω, (2.6) and (2.7) hold} .

Precise statements addressing the above question are summarised in the following theorems (the first follows
directly from universal approximation theorems).

Theorem 2.1 (Neural networks exist for Ξ). Consider the problem (Pj) (j = 1, 2, 3) for fixed dimensions
m < N and parameters λ or ε. Then, for any family Ω of such (A,S) described above, there exists a mapping

K : ΩT → Nm,N , K(ιA,S) = ϕA,S , such that ϕA,S(y) ∈ Ξ(A, y), ∀y ∈ S.

In words, K maps the training data ΩT to NNs that solve the optimisation problem (Pj) for each (A,S) ∈ Ω.

Despite the existence of NNs guaranteed by Theorem 2.1, the problem of computing such a NN from
training data is a most delicate issue, as described in the following theorem (proven in §8).

Theorem 2.2 (Despite existence, neural networks may only be computed to a certain accuracy). For
j = 1, 2 or 3, consider the optimisation problem (Pj) for fixed parameters λ ∈ (0, 1] or ε ∈ (0, 1/2] and
wl = 1, where N ≥ 2 and m < N . Let K > 2 be a positive integer and let L ∈ N. Then there exists a class
Ω of elements (A,S) as in (2.5), with the following properties. The class Ω is well-conditioned with condition
numbers of the matricesAA∗ and the solution maps Ξ, as well as the feasibility primal local condition number
(see §8.1), all bounded by 1 independent of all parameters. However, the following hold:

(i) There does not exist any algorithm that, given a training set ιA,S ∈ΩT , produces a NN φA,S with

min
y∈S

inf
x∗∈Ξ(A,y)

‖φA,S(y)− x∗‖l2 ≤ 10−K , ∀ (A,S) ∈ Ω. (2.9)

Furthermore, for any p > 1/2, no probabilistic algorithm (BSS, Turing or any model of computation) can
produce a NN φA,S such that (2.9) holds with probability at least p.

(ii) There does exist a deterministic Turing machine that, given a training set ιA,S ∈ΩT , produces a NN φA,S

with
max
y∈S

inf
x∗∈Ξ(A,y)

‖φA,S(y)− x∗‖l2 ≤ 10−(K−1), ∀ (A,S) ∈ Ω. (2.10)

However, for any probabilistic Turing machine (Γ,P), M ∈ N and p ∈
[
0, N−m

N+1−m

)
that produces a NN

φA,S , there exists a training set ιA,S ∈ ΩT such that for all y ∈ S,

P
(

inf
x∗∈Ξ(A,y)

‖φA,S(y)−x∗‖l2>101−K or the training data size needed to construct φA,S>M
)
>p.

(2.11)
(iii) There does exist a deterministic Turing machine that, given a training set ιA,S ∈ ΩT and using only L

training data from each ιA,S , produces a NN φA,S(y) such that

max
y∈S

inf
x∗∈Ξ(A,y)

‖φA,S(y)− x∗‖l2 ≤ 10−(K−2), ∀ (A,S) ∈ Ω. (2.12)

Remark 2.3 (Meaning of the notation (Γ,P)). The notation (Γ,P) in (ii) is used to denote a (possibly)
randomised algorithm Γ and its law P. This includes scenarios such as stochastic gradient descent, random
selection of training data, random computation with training data etc. The precise setup is detailed in §8.1.�

Remark 2.4 (Generalisations of Theorem 2.2). For simplicity, we have stated Theorem 2.2 for errors mea-
sured in the l2-norm and the case of unweighted l1 regularisation (all the wl = 1) in the problems (Pj).

However, the proof can be adapted, and similar results hold for any norm replacing the l2-norm, and any
non-singular weighted l1 regularisation. Moreover, result (i) in Theorem 2.2 holds regardless of the model of
computation, even if we allowed real number arithmetic (see Definition 8.3). For further details on the precise

8 THE BARRIERS OF DEEP LEARNING AND SMALE’S 18TH PROBLEM

dist(ΨAn(yn),Ξ3(A, y)) dist(ΦAn(yn),Ξ3(A, y))
‖An −A‖ ≤ 2−n

‖yn − y‖l2 ≤ 2−n
10−K ΩK

0.2999690 0.2597827 n = 10 10−1 K = 1
0.3000000 0.2598050 n = 20 10−1 K = 1
0.3000000 0.2598052 n = 30 10−1 K = 1
0.0030000 0.0025980 n = 10 10−3 K = 3
0.0030000 0.0025980 n = 20 10−3 K = 3
0.0030000 0.0025980 n = 30 10−3 K = 3
0.0000030 0.0000015 n = 10 10−6 K = 6
0.0000030 0.0000015 n = 20 10−6 K = 6
0.0000030 0.0000015 n = 30 10−6 K = 6

TABLE 1. (Impossibility of computing approximations of the existing neural network to arbitrary
accuracy). We demonstrate the impossibility statement (i) from Theorem 2.2 on FIRENETs ΦAn , and
trained LISTA networks ΨAn . The table shows the shortest l2 distance between the output from the
networks, and the true solution of the problem (P3), with wl = 1 and λ = 1, for different values of n and
K. Note that none of the trained networks can compute the existing correct NN (that exists by Theorem
2.1 and coincides with Ξ3) to 10−K digits accuracy, while all of them are able to compute approximations
that are accurate to 10−K+1 digits (for the input class ΩK). This agrees exactly with Theorem 2.2.

setup, including the definition of condition numbers, which are standard in the literature, see §8.1. Finally,
the theorem remains true if we restrict ourselves to real-valued matrices and vectors. �

2.1.1. The neural network exists, but no algorithm can compute it – Numerical example. To highlight
the impossibility (Theorem 2.2) of computing neural networks – despite their existence by Theorem 2.1 – we
consider the following numerical example. Consider the problem (P3), with wl = 1 and λ = 1. Theorem
2.2 is stated for a specific input class Ω, and in this example we will consider three different such classes ΩK ,
depending on the accuracy parameter K. In Theorem 2.2, we required that K > 2, to ensure that K − 2 > 0

but this is not necessary to show the impossibility statement (i), so we consider K = 1, 3, 6.
To show that it is impossible to compute neural networks which can solve (P3) to arbitrary accuracy

we consider (untrained) FIRENETs ΦAn and (trained) learned ISTA (LISTA) networks ΨAn based on the
architecture choice from [39]. That is, networks of the form

ΨAn(y) = xT , where xi+1 = Sθi
(
xi +W>i (xi −A>n y)

)
, for i = 0, . . . , T − 1, and x0 = 0,

(2.13)
for real-valued inputs y and matrices An. Here Sθ is the soft thresholding operator with threshold θ ≥ 0 and
the weights (θi,Wi)

T−1
i=0 ⊂ R≥0 × Rm×N are learned from the data using a squared l2 norm loss function

(T = 10). The LISTA networks are trained to high accuracy on training data on the form (2.8) withR = 8000

training samples and n given as in Table 1. In all cases N = 20, m = N − 1 and the xk,n’s minimising (P3)

with input data (yk,n, An), are all 6-sparse. We highlight that the choice of N , m and sparsity in this example
is chosen to allow for fast training. Other choices are certainly possible.

In Table 1, we show the distance dist(ΨAn(yn),Ξ3(A, y)) and dist(ΦAn(yn),Ξ3(A, y)) for both the
trained LISTA networks Ψ and the FIRENETs Φ. Both network types are given input data (yn, An), ap-
proximating the true data (y,A). As is clear from the table, none of the networks are able to compute an
approximation to the true minimiser in Ξ3(A, y) to K digits accuracy. However, both networks are able to
compute an approximation with K − 1 digits accuracy. These observations agree with Theorem 2.2. Further
details on how the input data and neural networks in this experiment are constructed can be found in §8.4.

THE BARRIERS OF DEEP LEARNING AND SMALE’S 18TH PROBLEM 9

3. MAIN RESULTS II: ALGORITHMS COMPUTE STABLE AND ACCURATE NNS IN SPECIFIC CASES

Theorem 2.2 shows that the optimisation problems (P1), (P2), and (P3) (defined in (2.2), (2.3), and (2.4))
cannot, in general, be solved by an algorithm. Hence any attempt at solving the general inverse problem (2.1)
by such methods, without additional assumptions, is doomed to fail. This is not just the case for reconstruction
using sparse regularisation. In fact, any stable and accurate reconstruction procedure must be “kernel aware”
(see, for example, [59]) - a reconstruction method lacks kernel awareness (and thus has a large local Lipschitz
constant) if it approximately recovers two vectors x and x′ whose difference lies close to the null space of A.

3.1. The subtlety and difficulty of removing instabilities and the need for additional assumptions. As
discussed in §1 (see also §7 on previous work), the instability problem is the current Achilles’ heel of modern
AI and DL. For example, adversarial training has become a standard attempt to remedy instabilities (see,
for example, [95]). However, such a strategy may yield poor performance. Indeed, consider the following
optimisation problem which seeks to generate a reconstruction in the form of a NN, given samples Θ =

{(ys, xs) : s = 1, ..., R,Axs = ys} and ε, λ > 0:

min
φ∈Nm,N

1

R

R∑
s=1

max
‖z‖l2≤ε

{
‖xs − φ(ys)‖2l2 + λ‖xs − φ(ys + z)‖2l2

}
. (3.1)

In other words, for each training point (y, x) ∈ Θ we find the worst-case perturbation z in the ε-ball around
y (measured by the l2-norm). This is a simplified model of what one might do using Generative Adversarial
Networks (GANs) to approximate adversarial perturbations [10, 58]. For simplicity, assume that A has full
row rank m and that we have access to exact measurements ys = Axs. Suppose that our sample is such
that mini 6=j ‖yi − yj‖l2 > 2ε. Any φ that minimises (3.1) must be such that φ(ys + z) = xs for all z with
‖z‖l2 ≤ ε. Such networks can easily be constructed using, say, ReLU activation functions. Now suppose that
x2 is altered so that x1 − x2 lies in the kernel of A. Then for any minimiser φ, we must have

φ(y1 + z) = φ(y2 + z) =
x1 + x2

2
, ∀z with ‖z‖l2 ≤ ε,

and hence we can never be more than ‖x1 + x2‖l2/2 accurate over the whole test sample. Given these types
of examples and Theorem 2.2, we arrive at the following question:

Are there sufficient conditions on the matrix A that imply the existence of an algorithm that
can compute a neural network that is both accurate and stable for the problem (2.1)?

3.2. A sufficient condition yielding an algorithm computing accurate and stable neural networks. Pre-
cise theorems can be found in §5, and for ease of exposition, we present simplified versions here. To state
these, we need the concept of sparsity in levels from compressed sensing. This local sparsity structure was
introduced in [5], and was demonstrated empirically to play a key role in the quality of the image recovery via
the “flip test” in [5, 14, 97]. The sparsity in levels model is crucial in demonstrating that compressed sensing
and sparse regularisation is near-optimal for image recovery [3]. The key issue is that natural images are
not sparse in X-lets (wavelets, curvelets, shearlets etc.): they are sparse in levels. Thus, sparsity in levels is
needed since the classical theoretical model in compressed sensing, sparsity in one level, does not account for
the recovery often found in practice for problems such as the Fourier-wavelet problem. (The main problem
for sparsity in one level in this example is that the Fourier-wavelet matrix is coherent [5].) For example, the
seminal work of Lustig, Donoho & Pauly on compressed sensing for MRI [81] observed both poor recovery
from uniform random sampling and the improvement offered by variable density sampling.

Definition 3.1 (Sparsity in levels). Let M = (M1, ...,Mr) ∈ Nr, 1 ≤ M1 < ... < Mr = N , and s =

(s1, ..., sr) ∈ Nr0, where sk ≤Mk −Mk−1 for k = 1, ..., r (M0 = 0). x ∈ CN is (s,M)-sparse in levels if

|supp(x) ∩ {Mk−1 + 1, ...,Mk}| ≤ sk, k = 1, ..., r.

10 THE BARRIERS OF DEEP LEARNING AND SMALE’S 18TH PROBLEM

The total sparsity is s = s1 + ...+ sr. We denote the set of (s,M)-sparse vectors by Σs,M. We also define the
following measure of distance of a vector x to Σs,M by

σs,M(x)l1w = inf{‖x− z‖l1w : z ∈ Σs,M}.

Since its introduction, this model has been used to explain the effectiveness of compressed sensing in real
life applications [14, 72, 110]. For simplicity, we will assume throughout that each sk > 0 and that

wi = w(j), if Mj−1 + 1 ≤ i ≤Mj . (3.2)

In other words, the weights in the l1w norm are constant in each level. For an image c which is compressible
in the wavelet basis, σs,M(x)l1w is expected to be small if x is the vector of wavelet coefficients and the levels
correspond to wavelet levels, see [46] and [83, Ch. 9]. In general, the weights are a prior on anticipated
support of the vector [54] and we discuss some specific choices in §5.3 (these can be chosen optimally).

The key “kernel aware” property that guarantees algorithms that compute stable and accurate NNs (with
uniform recovery guarantees) for the inverse problem (2.1), is Definition 3.2, first used in the context of
compressed sensing in [14] for the unweighted l1 norm, and extended to l1w in [1]. In §5.3, we give examples
common in applications where this condition holds.

Definition 3.2 (weighted rNSP in levels). Let (s,M) be local sparsities and sparsity levels respectively. For
weights {wi}Ni=1 (wi > 0), we say that A ∈ Cm×N satisfies the weighted robust null space property in levels
(weighted rNSPL) of order (s,M) with constants 0 < ρ < 1 and γ > 0 if for any (s,M) support set ∆,

‖x∆‖l2 ≤ ρ‖x∆c‖l1w/
√
ξ + γ‖Ax‖l2 , for all x ∈ CN .

A simplified version of Theorem 5.5 is (constants are independent of n and given in Theorem 5.5):

Simplified version of Theorem 5.5 (Computing stable and accurate NNs with exponential convergence).
There exists an algorithm such that for any input sparsity parameters (s,M), weights {wi}Ni=1, A ∈ Cm×N

(with the input A given by {Al}) satisfying the rNSPL with constants 0 < ρ < 1 and γ > 0 (also input), and
input parameters n ∈ N and {δ, b1, b2} ⊂ Q>0, the algorithm outputs a neural network φn with O(n) layers
and the following property. For any x ∈ CN and y ∈ Cm with

σs,M(x)l1w + ‖Ax− y‖l2 . δ, ‖x‖l2 . b1, ‖y‖l2 . b2, we have

‖φn(y)− x‖l2 . δ + e−n (exponential convergence in n).

(This is also often called “linear convergence” or “geometric convergence”.)
Hence, up to the small error term σs,M(x)l1w , and in the limit n → ∞ (with exponential convergence),

we recover x stably with an error proportional to the measurement error ‖Ax − y‖l2 . Further interpretations
of the terms in this bound can be found in Remark 5.3. Theorem 5.5 also bounds the error when we only
approximately apply the nonlinear maps of the NNs: in other words, we also gain a form of stability of the
forward pass of the NN. In addition to providing stability, it is precisely the rNSPL that allows us to prove
exponential convergence through a careful restarting and reweighting scheme. We therefore call our NNs
Fast Iterative REstarted NETworks (FIRENETs). Note that, even when ignoring issues such as stability and
inexact arithmetic, a naive unrolling of iterative methods commonly used in compressed sensing gives a slow
first-order convergence rate with error boundsO(δ+n−1) (and in certain regimes second-orderO(δ+n−2)):
see Remark 5.7. In contrast to naive unrolling and previous approaches, we use novel restarting tools and
analysis of the square-root LASSO problem (P3) to gain good theoretical bounds (accuracy and stability).

Remark 3.3 (Logarithmic grid search when parameters are unknown). In the case that we do not know ρ or
γ (the constants in the definition of rNSPL), we can perform a log-scale grid search for suitable parameters.
Given a total budget of O(n log(n)) layers, we can still gain exponential convergence in n by choosing the
parameters in the grid search that lead to the vector with minimal FA3 (the objective function of (P3)). In
some cases, such as Theorem 5.10, it is possible to prove probabilistic results where ρ and γ are known. �

THE BARRIERS OF DEEP LEARNING AND SMALE’S 18TH PROBLEM 11

In §5.3, we apply Theorem 5.5 to examples in compressive imaging (see §6 for computational exam-
ples), with A arising from multilevel random subsampling (Definition 5.8) of Fourier and Walsh (or binary)
measurements, and sparsity in levels measured in terms of wavelet coefficients. Theorem 5.10 gives precise
bounds on the number of samples needed, m, and the number of layers of a NN needed to achieve a specified
accuracy:

Simplified version of Theorem 5.10. We show that stable and accurate (with exponential convergence in
the number of layers) neural networks for image reconstruction can be constructed via an algorithm, with the
number of samples needed the same, up to logarithmic terms, as the current best-known oracle estimators.

4. FIRENET: BALANCING THE TRADE-OFF BETWEEN STABILITY AND ACCURACY

As demonstrated in [9], current DL methods for image reconstruction can be unstable in the sense that (1)
a tiny perturbation, in either the image or sampling domain, can cause severe artefacts in the reconstructed
image (instability - see Figure 1), and/or (2) a tiny detail in the image domain might be washed out in the
reconstructed image (lack of accuracy), resulting in potential false negatives. Inevitably, there is a stability-
accuracy trade-off, for this type of linear inverse problem, making it impossible for any reconstruction method
to become arbitrarily stable without sacrificing accuracy or visa versa (see §3). In this section, we show that
the NNs computed by our algorithm (FIRENETs) are stable with respect to adversarial perturbations and
accurate for images which are sparse in wavelets. As most images are sparse in wavelets, these networks also
show great generalisation properties to unseen images.

Computing worst-case (adversarial) perturbations – First we describe the algorithm developed in [9] for
computing perturbations meant to simulate worst-case effect in terms of reconstruction artefacts. It is this
algorithm which has been used to compute the perturbed images, seen in Figures 1, 2, 4, and 5. The algorithm
does the following. Given an image x ∈ CN and a NN φ ∈ Nm,N , designed for image reconstruction from
samples y provided by a specific sampling modality described by the matrix A, the algorithm searches for a
perturbation of the image that makes the most severe change in the output of the network while still keeping
the perturbation small. The algorithm seeks a vector r ∈ CN such that ‖φ(y+Ar)−φ(Ax)‖l2 is large, while
‖r‖l2 is small. Specifically, consider the optimisation problem

Qφy (r) =
1

2
‖φ(y +Ar)− x‖2l2 −

λ

2
‖r‖2l2 , r∗(y) ∈ argmax

r
Qφy (r). (4.1)

The problem (4.1) seeks perturbations in the image domain since this provides an easy way to compare the
original image and deduce whether the reconstruction of the perturbed image is acceptable/unacceptable. Of
course, we could have just as easily considered perturbations in the sampling domain instead.

The non-concavity ofQφy means that finding a global maximiser of (4.1) is very difficult (if not impossible),
even for small m and N . The test aims to locate local maxima of (4.1) by using a gradient search. A natural
method to find local maxima is gradient ascent with momentum. This uses the gradient of Qφy (which can
easily be written down) along with two parameters γ > 0 (the momentum) and η > 0 (the learning rate) in
each step towards a local maximum. Namely, r(0) is initialised randomly and then we update the perturbation
at the jth step via v(j + 1) = γv(j) + η∇rQφy (r(j)) and r(j + 1) = r(j) + v(j + 1). The final perturbation
is taken after M steps, where typically we run 10-100 steps, seeking the perturbation which causes the worst
reconstructed image. Just as in the case when training NNs using stochastic gradient descent, choosing the
parameters γ and η is an art of engineering, and the optimal choices of γ, η are based on empirical testing.

Worst-case (adversarial) perturbations for AUTOMAP and FIRENETs – Figure 1 in the introduction
shows the algorithm applied to the AUTOMAP [113] network used for MRI reconstruction with 60% sub-
sampling. The network weights are provided by the authors of [113] and had been trained on de-identified
brain images from the MGH–USC HCP dataset [49], where the image measurements y = Ax+ e were con-
taminated with small Gaussian noise e. The image x seen in Figure 1 is taken from the mentioned dataset, the
algorithm is run on the AUTOMAP network to find a sequence of perturbations |r1| < |r2| < |r3|. In order
to illustrate the smallness of the perturbations, we have visualised |x+ rj | in the first row of Figure 1. As can

12 THE BARRIERS OF DEEP LEARNING AND SMALE’S 18TH PROBLEM

|x+ r3| Ψ(ỹ), ỹ = A(x+ r3) Φ (ỹ,Ψ(ỹ))

FIGURE 3. (Adding a few FIRENET layers at the end of AUTOMAP makes it stable). The FIRENET
Φ: Cm × CN → CN takes as input measurements y ∈ Cm and an initial guess for x, which we call
x0 ∈ CN . We now concatenate a 25-layer (p = 5, n = 5) FIRENET Φ and the AUTOMAP network
Ψ: Cm → CN , by using the output from AUTOMAP as initial guess x0, i.e., we consider the neural
network mapping y 7→ Φ(y,Ψ(y)). In this experiment we consider the perturbed image x + r3 from
Figure 1 and the perturbed measurements ỹ = A(x+ r3) (here A is as in Figure 1). As can be seen from
the figure, the new network is stable with respect to AUTOMAP’s worst-case perturbation r3. Note that
in all other experiments we use the initial guess x0 = 0, and consider Φ as a mapping Φ: Cm → CN .

be seen from the second row in the figure, the network reconstruction completely deforms the image and the
reconstruction is severely unstable (similar results for other networks are demonstrated in [9]).

In contrast, we have applied the same algorithm, but now for the new NNs (FIRENETs) reported in this
paper. Figure 2 shows the algorithm applied to the constructed FIRENETs described by Theorems 5.5 and
5.10 (we have renamed the perturbations vj to emphasise the fact that these perturbations are sought for the
new NNs and have nothing to do with the adversarial perturbations in Figure 1). We now see that despite the
search for adversarial perturbations, the reconstruction remains stable. The error in the reconstruction was
also found to be at most of the same order of the perturbation (as expected from the stability in Theorems 5.5
and 5.10). In applying the test to FIRENETs, we tested/tuned the parameters in the gradient ascent algorithm
considerably (much more so than was needed for applying the test to AUTOMAP, where finding instabilities
was straightforward) in order to find the worst reconstruction results, yet the reconstruction remained stable.
Finally, it should be mentioned that this search algorithm is just one form of test and it is likely that there
are many other tests for creating instabilities for NNs for inverse problems. This highlights the importance of
results such as Theorems 5.5 and 5.10, which guarantee stability regardless of the perturbation.

Stabilising unstable NNs with FIRENETs – Our NNs also act as a stabiliser. For example, Figure 3 shows
the adversarial example for AUTOMAP (taken from Figure 1), but now shows what happens when we take
the reconstruction from AUTOMAP as an input to our FIRENETs. Here we are using the fact that we can
view our networks as approximations of unrolled (or unfolded) and restarted iterative methods, allowing us to
use the output of AUTOMAP as the initial image for the reconstruction. We see that FIRENETs fix the output
of AUTOMAP and stabilise the reconstruction.

Generalisation – To demonstrate the generalisation properties of our NNs, Figure 4 shows the stability
test applied to FIRENETs for a range of images. This shows stability across different types of images and
highlights an important fact. Namely, methods based on the conditions in §3 allow great generalisation
properties and avoid time-consuming and expensive retraining of NNs for different classes of images.

The accuracy/stability trade-off and false negatives – It is easy to produce a perfectly stable network: the
zero network is the obvious candidate! However, this network would obviously have poor performance and
produce many false negatives. The challenge is to simultaneously ensure performance and stability. Figure 5
highlights this issue. Here we have trained two NNs to recover a set of ellipses images from noise-free and

THE BARRIERS OF DEEP LEARNING AND SMALE’S 18TH PROBLEM 13

|x1 + v1| |x2 + v2| |x3 + v3|

Φ(A(x1 + v1)) Φ(A(x2 + v2)) Φ(A(x3 + v3))

FIGURE 4. (FIRENET withstand worst-case perturbations and generalises well). To show that
FIRENET generalises well and is stable, we consider three different images xj , j = 1, 2, 3. For each
image xj we compute a perturbation vj meant to simulate worst-case effect for a FIRENET Φ with n = 5

and p = 5. The first row shows the perturbed images xj+vj , whereas the second row shows the FIRENET
reconstructions from data A(xj + vj). Here A ∈ Cm×N is a subsampled discrete Fourier transform with
m/N = 0.25 and N = 2562. The perturbations vj have magnitude ‖Avj‖l2/‖Axj‖l2 ≥ 0.05 in the
measurement domain.

noisy Fourier measurements. The noise-free measurements are generated as y = Ax, where A ∈ Cm×N is
a subsampled discrete Fourier transform, with m/N = 0.15 and N = 10242. The noisy measurements are
generated as y = Ax + ce, where A is as before, and the real and imaginary components of e ∈ Cm are
drawn from a zero mean and unit variance normal distribution N (0, 1), and c ∈ R is drawn from the uniform
distribution Unif([0, 100]). The noise ce ∈ Cm, is generated on the fly during the training process.

The trained networks are using a standard benchmarking architecture for image reconstruction, and maps
y 7→ φ(A∗y), where φ : CN → RN is a trainable U-net NN [71, 80]. Training networks with noisy mea-
surements, using for example this architecture, have previously been used as an example of how to create
NNs which are robust towards adversarial attacks [55]. As we can see from Figure 5 (bottom row) this is
the case, as it does indeed create a NN which is stable with respect to worst-case perturbations. However,
a key issue is that it is also producing false negatives due to its inability to reconstruct details. Similarly,
as reported in the 2019 FastMRI challenge, trained NNs that performed well in terms of standard image
quality metrics were prone to false negatives: they failed to reconstruct small, but physically-relevant image
abnormalities [74]. Pathologies, generalisation and AI-generated hallucinations were subsequently a focus
of the 2020 challenge [91]. FIRENET, on the other hand, has a guaranteed performance (on images being
sparse in wavelet bases) and stability, given specific conditions on the sampling procedure. The challenge

14 THE BARRIERS OF DEEP LEARNING AND SMALE’S 18TH PROBLEM

Original x Original Original + detail (x+ h1)
(full size) (cropped, red frame) (cropped, blue frame)

Orig. + worst-case noise Rec. from worst-case noise Rec. of detail

FI
R

E
N

E
T

(Φ
1
)(
n

=
5,
p

=
5)

Orig. + worst-case noise Rec. from worst-case noise Rec. of detail

N
et

w
or

k
Φ

2
tr

ai
ne

d
w

ith
ou

tn
oi

se

N
et

w
or

k
Φ

3
tr

ai
ne

d
w

ith
m

ea
su

re
m

en
ts

co
nt

am
in

at
ed

w
ith

ra
nd

om
no

is
e.

In
cr

ea
se

d
st

ab
ili

ty
,b

ut
D

ec
re

as
ed

ac
cu

ra
cy

FIGURE 5. (Trained neural networks with limited performance can be stable). We examine the
accuracy/stability trade-off for linear inverse problems by considering three reconstruction networks
Φj : Cm → CN , j = 1, 2, 3. Here Φ1 is a FIRENET, whereas Φ2 and Φ3 are trained NNs, trained
without and with noisy measurements, respectively (see §4 for details). For each network, we compute
a perturbation wj ∈ CN meant to simulate the worst-case effect, and we show a cropped version of the
perturbed images x + wj in the first column (row 2-4). In the middle column (row 2-4), we show the
reconstructed images Φj(A(x + wj)) from each of the networks. In the last column (row 2-4) we test
the networks ability to reconstruct a tiny detail h1, in the form of the text “can u see it?”. As we see
from the figure, the network trained on noisy measurements is stable to worst-case perturbations, but it is
not accurate. Conversely, the network trained without noise is accurate but not stable. The FIRENET is
balancing this trade-off and is accurate for images which are sparse in wavelets, and stable to worst-case
perturbations.

THE BARRIERS OF DEEP LEARNING AND SMALE’S 18TH PROBLEM 15

is to determine the optimal balance between accuracy/stability, a problem that is well known in numerical
analysis.

5. MAIN RESULTS III: PRECISE FORMULATIONS OF THEOREM 5.5 AND THEOREM 5.10

5.1. Neural networks and notational conventions. To state our theorems, we need to be precise about
the definition of a NN. For introductions to the field of DL and NNs, we refer the reader to [68, 78] and
[92], respectively, and the references therein. To capture standard architectures used in practice such as
skip connections, we consider the following definition of a NN. Without loss of generality and for ease of
exposition, we also work with complex-valued NNs. Such networks can be realised by real-valued NNs by
splitting into real and imaginary parts. A NN is a mapping φ : Cm → CN that can be written as a composition

φ(y) = VT (ρT−1(...ρ1(V1(y)))), where:

• Each Vj is an affine map CNj−1 → CNj given by Vj(x) = Wjx+ bj(y) where Wj ∈ CNj×Nj−1 and the
bj(y) = Rjy + cj ∈ CNj are affine functions of the input y.

• Each ρj : CNj → CNj is one of two forms:
(i) There exists an index set Ij ⊂ {1, ..., Nj} (possibly a strict subset) such that ρj applies a possibly

non-linear function fj : C→ C element-wise on the input vector’s components with indices in Ij :

ρj(x)k =

{
fj(xk), if k ∈ Ij
xk, otherwise.

(ii) There exists a possibly non-linear function fj : C→ C such that, after decomposing the input vector x
as (x0, X

>, Y >)> (> denotes transpose) for scalar x0 and X ∈ Cmj (Y ∈ CNj−1−mj), we have

ρj :

x0

X

Y

→
 0

fj(x0)X

Y

 . (5.1)

The affine dependence of bj(y) on y allows skip connections from the input to the current level as in standard
definitions of feed-forward NNs [99, p. 269], and the above architecture has become standard [45, 63, 71].

Remark 5.1 (On the use of multiplication). The use of non-linear functions of the form (ii) may be re-
expressed using the following element-wise squaring trick:x0

X

Y

→
fj(x0)

X

Y

→


fj(x0)1
X

fj(x0)1 +X

Y

→


fj(x0)21
X2

[fj(x0)1 +X]2

Y

→
 0

1
2

[
[fj(x0)1 +X]2 − fj(x0)21−X2

]
Y

,
where 1 denotes a vector of ones of the same size as X (so that fj(x0)→ fj(x0)1 is a linear map). However,
this is not done in practice since (5.1) is directly trainable via backpropagation. �

Note that we do not allow the matricesWj to depend on y. We denote the collection of all NNs of the above
form by ND,T,q , where the vector D = (N0 = m,N1, ..., NT = N) denotes the dimensions in each layer, T
denotes the number of layers and q denotes the number of different non-linear functions applied (including
the count of different Ij and mj). In general, we will require that the layer sizes Nj do not grow with j so
that the size of each layer is of the same order as the sampling matrix A.

We consider stable reconstruction from noisy undersampled measurements, as in (2.1), and NNs that can
be constructed via algorithms. To make this precise, we assume that we have access to a sequence of matrices
Al ∈ Q[i] such that ‖A − Al‖ ≤ ql for some known null sequence {ql}. This is consistent with the training
set given by (2.8). To construct NNs via an algorithm, care must be taken with the non-linear activation
functions. We assume that for θ ∈ Q>0 we have access to a routine “sqrtθ” such that |sqrtθ(x) −

√
x| ≤ θ

for all x ∈ R≥0. In what follows, the non-linear maps fj used in the NNs are either arithmetic or constructed

16 THE BARRIERS OF DEEP LEARNING AND SMALE’S 18TH PROBLEM

using arithmetic operations and sqrtθ. We always ensure that sqrtθ acts on non-negative real numbers and on
rational inputs if the input to the NN is rational. We refer to the pair (φ, θ) as a NN.

Remark 5.2 (Approximating
√
· with neural networks). On any bounded set (for bounded input our con-

structed NNs only require the routine sqrtθ on a bounded set), we can construct an approximation to
√
· using

standard non-linear activation functions such as ReLU (more efficient approximations may be achieved by us-
ing other activation functions such as rational maps [29]). The choice of the square root function is somewhat
arbitrary, but simplifies our proof of Theorem 5.5. Similar results hold for other activation functions. �

Remark 5.3 (An interpretation of θ). As well as being necessary from a foundations point of view, an impor-
tant interpretation of θ is numerical stability, or accumulation of errors, of the forward pass of the NN. Larger
values of θ show greater stability when applying the NN in finite precision. We prove results of the form

‖φn(y)− x‖l2 ≤ ε+ c1(A, x)‖Ax− y‖l2 + c2(A, x)υn, ∀x ∈ S ⊂ CN , y ∈ Cm, (5.2)

where (φn, θn) is a (sequence of) NN(s) with O(n) layers that is computed by an algorithm, υ ∈ (0, 1)

describes the exponential rate of convergence in the number of layers, ε > 0 (in our results ε will be related
to the distance to vectors that are sparse in levels: σs,M(x)l1w in Definition 3.1), and θ−1

n = θ−1 is bounded
independent of n. Up to the error tolerance ε, the constant c1(A, x) can be thought of as an asymptotic
local Lipschitz constant for the NNs as n → ∞, and thus measures stability of inexact input y. In practice
one would use floating point arithmetic to approximate square roots. Hence, the boundedness of θ−1

n is a
numerical notion of stability - the accuracy needed for approximating square roots (and the non-linear maps)
does not become too great and errors do not accumulate as n increases. Moreover, in practice the value of
θ−1 needed is well below what is achieved using standard floating-point formats. �

5.2. The construction of stable and accurate neural networks. The main result of this section, Theorem
5.5, uses the concept of sparsity in levels and weighted robust null space property in levels defined in §3. We
also define the following quantities:

ξ = ξ(s,M, w) :=

r∑
k=1

w2
(k)sk, ζ = ζ(s,M, w) := min

k=1,...,r
w2

(k)sk, κ = κ(s,M, w) := ξ/ζ.

Unless there is ambiguity, we will drop the (s,M, w) from the notation of these parameters. Recall the setup
throughout this paper of a matrix A ∈ Cm×N (m < N), where we have access to an approximation sequence
Al such that ‖A− Al‖ ≤ ql with known ql → 0 as l →∞. In this regard, the following simple perturbation
lemma is useful (whose proof is given in §9).

Lemma 5.4 (The weighted rNSP in levels is preserved under perturbations or approximations). Assume
that (3.2) holds and that A satisfies the weighted rNSPL of order (s,M) with constants 0 < ρ < 1 and γ > 0.

Let Â be an approximation of A such that ‖Â−A‖ < (1− ρ)γ−1
(

1 +
√
ξ

mink=1,...,r w(k)

)−1

. Then Â satisfies

the weighted rNSPL of order (s,M) with new constants

ρ̂ =
ρ+ γ

√
ξ‖Â−A‖/mink=1,...,r w(k)

1− γ‖Â−A‖
, γ̂ =

γ

1− γ‖Â−A‖
.

Lemma 5.4 says that if A satisfied the weighted rNSPL of order (s,M), then so does Al for large enough l.
Moreover, given the sequence {ql}, we can compute how large l must be and the new constants. For ease of
exposition, we drop the notational hats from these constants. We can now state our main result, proven in §9.

Theorem 5.5 (Stable and accurate neural networks with uniform recovery guarantees can be con-
structed). There exists an algorithm such that for any input sparsity parameters (s,M), weights {wi}Ni=1,
A ∈ Cm×N (with the input A given by {Al}) satisfying the rNSPL with constants 0 < ρ < 1 and γ > 0 (also
input), and input parameters n ∈ N, {δ, b1, b2} ⊂ Q>0 and υ ∈ (0, 1)∩Q>0, the algorithm outputs a neural

THE BARRIERS OF DEEP LEARNING AND SMALE’S 18TH PROBLEM 17

network φn such that the following holds. For

C1 =

(
1 + ρ

2
+ (3 + ρ)

κ1/4

4

)(
3 + ρ

1− ρ

)
∼ κ1/4

1− ρ
, C2 = 2

(
3 + ρ

1− ρ
+

7 + ρ

1− ρ
κ1/4

2

)
γ ∼ κ1/4γ

1− ρ
,

(1) (Size) φn ∈ ND(n,p),3np+1,3 with D(n,p) = (m, 2N +m, 2(N +m), 2N +m+ 1︸ ︷︷ ︸
np times

, N), where p ∈ N

with the bound p ≤
⌈

3C2‖A‖
υ

⌉
. Moreover, θ−1 ∼ p2(1 + ‖w‖l2) max

{
1,
‖w‖l2
‖A‖γ

√
ξ

}
.

(2) (Exponentially Convergent, Uniform and Stable Recovery) For any pair (x, y) ∈ CN × Cm with

2C1

C2

√
ξ
· σs,M(x)l1w + 2‖Ax− y‖l2 ≤ δ, ‖x‖l2 ≤ b1, ‖y‖l2 ≤ b2,

we have the following exponentially convergent, uniform and stable recovery guarantees:

‖φn(y)− x‖l2≤
2C1√
ξ
· σs,M(x)l1w + 2C2 · ‖Ax− y‖l2 +

(
1 + υ

1− υ

)
C2 · δ + b2C2 · υn, (5.3)

‖φn(y)− x‖l1w≤
(

3 + ρ

1− ρ

)√
ξ

C1

(
2C1√
ξ
· σs,M(x)l1w+2C2 · ‖Ax− y‖l2 +

(
1 + υ

1− υ

)
C2 · δ + b2C2 · υn

)
.

(5.4)

Remark 5.6 (The optimal choice of υ). For a total budget of T = 3pn+ 1 layers,

υn = exp

(
(T − 1)

3

⌈
3C2‖A‖

υ

⌉−1

log(υ)

)
If we ignore the ceiling function, the optimal choice is υ = e−1 (strictly speaking Theorem 5.5 is only stated
for rational υ, but we can easily approximate e−1). This yields the error term υn = exp

(
− (T−1)

3 d3C2e‖A‖e−1
)

and exponential convergence in the number of layers T . This is not optimal. For example, a study of the proof
of Theorem 5.5 shows that we can replace 3C2 in the exponential by

2

(
1 + ρ

1− ρ
+

3 + ρ

1− ρ
κ1/4

2

)
γ + ε

for arbitrary ε > 0. Suppose that we want b2C2 · rn ∼ δ, then the number of layers required is proportional to
C2‖A‖ log(b2δ

−1), and only grows logarithmically with the precision δ−1. This is made precise in Theorem
5.10, where we apply Theorem 5.5 to examples in compressive imaging. �

The proof of Theorem 5.5 uses the optimisation problem (P3) (defined in (2.2)), in the construction of φn.
It is also possible to prove similar results using (P1) and (P2), but we do not provide the details. The NNs
constructed are approximations of unrolled primal-dual iterations for (P3), with a careful restart scheme to
ensure exponential convergence in the number of layers. Pseudocode is provided in 6, as well as computational
experiments. The bounds in (5.3) and (5.4) are not quite optimal. If we were able to work in exact arithmetic
(taking θ → 0 and Al → A), we obtain slightly smaller constants, though these do not affect the asymptotic
rates. The pseudocode is written with θ → 0 and Al → A, and slightly different parameters accordingly. The
approach of unrolling iterative methods as NNs has a rich history in DL, as discussed in §7.

Remark 5.7 (What happens without restart or with unknown δ?). Without the restart scheme, the convergence
in the number of layers scales asO(n−1). However, one can get rid of the assumption 2C1/(C2

√
ξ)σs,M(x)l1w+

2‖Ax − y‖l2 ≤ δ. (The assumption is to ensure that the reweighting of the restarts do not become too small
- in practice, we found that this was not an issue and the assumption was not needed, with (up to small con-
stants) δ replaced by 2C1/(C2

√
ξ)σs,M(x)l1w + 2‖Ax − y‖l2 in (5.3). See also the discussion in §6.) More

precisely, the proof of Theorem 5.5 can be adapted to show the following. For an additional input β ∈ Q>0

(and without inputs b2, δ and υ), there exists an algorithm that computes φ̂n ∈ NDn,3n+1,3 with

Dn = (m+N, 2N +m, 2(N +m), 2N +m+ 1︸ ︷︷ ︸
n times

, N),

18 THE BARRIERS OF DEEP LEARNING AND SMALE’S 18TH PROBLEM

such that for any x, x0 ∈ CN with ‖x‖l2 ≤ b1 and all y ∈ Cm, the following reconstruction guarantees hold:

‖φ̂n(y, x0)− x‖l2≤
2C1√
ξ
σs,M(x)l1w + 2C2

[
‖Ax− y‖l2 +

‖A‖
n

(
‖x− x0‖2l2

β
+ β

)]
, (5.5)

‖φ̂n(y, x0)− x‖l1w≤
(

3 + ρ

1− ρ

)√
ξ

C1

(
2C1√
ξ
σs,M(x)l1w + 2C2

[
‖Ax− y‖l2 +

‖A‖
n

(
‖x− x0‖2l2

β
+β

)])
. (5.6)

Here, x0 should be interpreted as an initial guess (an arbitrary input to the NNs) and β should be interpreted
as a scaling parameter, with optimal scaling β ∼ ‖x − x0‖l2 . A good choice for β is ‖x‖l2 , or, when this is
unknown, ‖y‖l2/‖A‖. For completeness, we provide a proof sketch of (5.5) and (5.6) at the end of §9.3. �

Algorithm unrolling is particularly well-suited to scenarios where it is difficult to collect large training
samples. However, training a finite fixed number of layers typically incurs the same stability and generali-
sation issues mentioned above. Moreover, learning the weights and biases usually prevents the convergence
analysis of standard (unlearned) iterative methods carrying over. In particular, there is no guarantee of objec-
tive function minimisation (let alone convergence of the iterated arguments) or any form of convergence as
the number of layers increases. A subtle, yet fundamental, point regarding iterative methods, whether they are
unrolled as a NN and supplemented with learned parameters or not, is the following. Theorem 2.2 states that,
in general, the optimisation problems (P1), (P2), and (P3) are non-computable. This is despite the fact that
there are many results in the literature describing rates of convergence for iterative methods. The resolution of
this apparent puzzle is that convergence results regarding iterative methods are typically given in terms of the
objective function that is being minimised (see also Theorem 9.5, which we use to prove Theorem 5.5). As
the proof of Theorem 5.5 shows, it is crucial to have conditions such as the rNSPL to convert these objective
function bounds to the desired error bounds on the distance to the minimisers or vector x. Moreover, this
property has the key effect of allowing exponential convergence through restarting and reweighting.

5.3. Examples in compressive imaging. As an example application of Theorem 5.5, we consider the case
of Fourier and Walsh sampling, using the Haar wavelets as the sparsifying transform. Our results can be
generalised to the infinite-dimensional setting with the use of higher-order Daubechies wavelets (though the
results are more complicated to write down), and we refer the reader to [4] for compressed sensing in infinite
dimensions. We first define the concept of multilevel random subsampling [5].

Definition 5.8 (Multilevel random subsampling). Let N = (N1, . . . , Nl) ∈ Nl, where 1 ≤ N1 < · · · < Nl =

N and m = (m1, . . . ,ml) ∈ Nl withmk ≤ Nk−Nk−1 for k = 1, . . . , l, andN0 = 0. For each k = 1, . . . , l,
let Ik = {Nk−1 + 1, . . . , Nk} if mk = Nk − Nk−1 and if not, let tk,1, . . . , tk,mk be chosen uniformly and
independently from the set {Nk−1 + 1, . . . , Nk} (with possible repeats), and set Ik = {tk,1, . . . , tk,mk}. If
I = IN,m = I1 ∪ · · · ∪ Il we refer to I as an (N,m)-multilevel subsampling scheme.

Definition 5.9 (Multilevel subsampled unitary matrix). A matrix A ∈ Cm×N is an (N,m)-multilevel sub-
sampled unitary matrix if A = PIDU for a unitary matrix U ∈ CN×N and (N,m)-multilevel subsampling
scheme I. Here D is a diagonal scaling matrix with diagonal entries

Dii =

√
Nk −Nk−1

mk
, i = Nk−1 + 1, ..., Nk, k = 1, ..., l

and PI denotes the projection onto the linear span of the subset of the canonical basis indexed by I.

Throughout this subsection, we letK = 2r for r ∈ N, and consider vectors on CK or d-dimensional tensors
on CK×···×K . To keep consistent notation with previous sections, we set N = Kd so that the objective is
to recover a vectorised x ∈ CN . The following can also be generalised to rectangles (i.e. C2r1×···×2rd with
possibly different r1, ..., rd) or dimensions that are not powers of two.

Let V ∈ CN×N be either the matrix F (d) orW (d), corresponding to the d−dimensional discrete Fourier or
Walsh transform (see §10.1). In the Fourier case, we divide the different frequencies {−K/2 + 1, . . . ,K/2}d

into dyadic bands. For d = 1, we letB1 = {0, 1} andBk = {−2k−1+1, . . . ,−2k−2}∪{2k−2+1, . . . , 2k−1}
for k = 2, . . . , r. In the Walsh case, we define the frequency bands B1 = {0, 1} and Bk = {2k−1, . . . , 2k −

THE BARRIERS OF DEEP LEARNING AND SMALE’S 18TH PROBLEM 19

Fourier sampling regions Walsh sampling regions

−3 −2 −1 0 1 2 3 4

−3

−2

−1

0

1

2

3

4

B
(2)
1,1B

(2)
1,1

B
(2)
1,1B

(2)
1,1

B
(2)
1,2 B

(2)
1,2

B
(2)
1,2 B

(2)
1,2

B
(2)
1,3 B

(2)
1,3

B
(2)
1,3 B

(2)
1,3

B
(2)
2,1

B
(2)
2,1

B
(2)
2,1

B
(2)
2,1

B
(2)
2,2 B

(2)
2,2

B
(2)
2,2 B

(2)
2,2

B
(2)
3,3B

(2)
3,3

B
(2)
3,3B

(2)
3,3

B
(2)
3,2B

(2)
3,2

B
(2)
3,2B

(2)
3,2

B
(2)
3,1B

(2)
3,1

B
(2)
3,1B

(2)
3,1

B
(2)
2,3B

(2)
2,3

B
(2)
2,3B

(2)
2,3

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

B
(2)
1,1

B
(2)
1,2

B
(2)
1,3

B
(2)
1,4

B
(2)
2,1

B
(2)
2,2

B
(2)
2,3

B
(2)
2,4

B
(2)
3,1

B
(2)
3,2

B
(2)
3,3

B
(2)
3,4

B
(2)
4,1

B
(2)
4,2

B
(2)
4,3

B
(2)
4,4

FIGURE 6. The different sampling regions used for the sampling patterns for Fourier (left, r = 3) and
Walsh (right, r = 4). The axis labels correspond to the frequencies in each band and the annular regions
are shown as the shaded greyscale regions.

1} for k = 2, . . . , r in the one-dimensional case. In the general d-dimensional case for Fourier or Walsh
sampling, we set

B
(d)
k = Bk1 × . . .×Bkd , k = (k1, . . . , kd) ∈ Nd.

For a d-dimensional tensor c ∈ CK×···×K , we assume we can observe subsampled measurements of V vec(c),
where vec(c) ∈ CN is a vectorised version of c. To recover a sparse representation, we consider the Haar
wavelet coefficients. We denote the discrete Haar Wavelet transform by Φ∈ CN×N , and note that Ψ∗ =

Ψ−1 since Ψ is unitary. In other words, we consider a multilevel subsampled unitary matrix (Definition
5.9), with U = VΨ∗. Given {mk=(k1,...,kd)}rk1,...,kd=1, we use a multilevel random sampling such that mk

measurements are chosen from B
(d)
k according to Definition 5.8. This corresponds to l = rd and the Ni’s can

be chosen given a suitable ordering of the Fourier/Walsh basis. The sparsity in levels structure (Definition
3.1) is chosen to correspond to the r wavelet levels. A pictorial representation is given in Figure 6. Finally,
we define

MF (s,k) :=

‖k‖l∞∑
j=1

sj

d∏
i=1

2−|ki−j| +

r∑
j=‖k‖l∞+1

sj2
−2(j−‖k‖l∞)

d∏
i=1

2−|ki−j| (5.7)

MW(s,k) := s‖k‖l∞

d∏
i=1

2−|ki−‖k‖l∞ |. (5.8)

For notational convenience, we also define Z = max

{
1,

maxj=1,...,r w(j)

√
(Mj−Mj−1)√

ξ(s,M,w)

}
.

We now state the main theorem of this section (proven in §10), which states how many samples are needed
and the number of layers of the NN needed, which only depends logarithmically on the error δ, a consequence
of the exponential convergence in Theorem 5.5. We discuss the sampling conditions below.

Theorem 5.10. Consider the above setup of recovering a d-dimensional tensor c ∈ CKd

(N = Kd) from
subsampled Fourier or Walsh measurements V c, such that A is a multilevel subsampled unitary matrix with
respect to U = VΨ∗. Let εP ∈ (0, 1) and L = d · r2 · log(2m) · log2 (s · κ(s,M, w)) + log(ε−1

P). Suppose
that:

20 THE BARRIERS OF DEEP LEARNING AND SMALE’S 18TH PROBLEM

• (a) In the Fourier case
mk & κ(s,M, w) · MF (s,k) · L. (5.9)

• (b) In the Walsh case
mk & κ(s,M, w) · MW(s,k) · L. (5.10)

Then with probability at least 1− εP, A satisfies the weighted rNSPL of order (s,M) with constants ρ = 1/2

and γ =
√

2. The conclusion of Theorem 5.5 then holds for the uniform recovery of the Haar wavelet
coefficients

x = Ψc ∈ CN . (5.11)

Moreover, for any δ ∈ (0, 1), let J (δ, s,M, w) be the collection of all y ∈ Cm with y = PIDV c+ e where

‖c‖l2 ≤ 1, max

{
σs,M(Ψc)l1w√

ξ
, ‖e‖l2

}
≤ δ. (5.12)

Then we construct via an algorithm, a neural network φ ∈ ND,3n+1,3 such that with probability at least 1−εP,

‖φ(y)− c‖l2 . κ
1/4δ, ∀y = PIDV c+ e ∈ J (δ, s,M, w). (5.13)

The network parameters are

D = (m, 2N +m, 2(N +m), 2N +m+ 1︸ ︷︷ ︸
n times

, N), n ≤
⌈
log
(
δ−1Z

)
κ1/4Z

⌉
. (5.14)

The sampling conditions (5.9) and (5.10) are optimised by minimising κ(s,M, w). Up to a constant scale,
this corresponds to the choice w(j) =

√
s/sj and

n =

⌈
log

(
δ−1 max

j=1,...,r

√
max

{
1,
Mj −Mj−1

rsj

})
r1/4 max

j=1,...,r

√
max

{
1,
Mj −Mj−1

rsj

}⌉
.

Up to log-factors, the measurement condition then becomes equivalent to the currently best-known oracle
estimator (where one assumes apriori knowledge of the support of the vector) [2, Prop. 3.1]. For Fourier
measurements, we can interpret the condition as follows. For d = 1, this estimate yields the sampling
estimates

mk &

 k∑
j=1

sj2
−|k−j| +

r∑
j=k+1

sj2
−3|k−j|

 · r · L.
In other words, up to logarithmic factors and exponentially small terms, sj measurements are needed in each
level. Furthermore, if s1 = . . . = sr = s∗ and d = 2 then (5.9) holds if

m(k1,k2) & s∗2
−|k1−k2| · r · L. (5.15)

Another interpretation is gained by considering

mk =
∑

‖k‖l∞=k

mk, k = 1, . . . , r,

the number of samples per annular region. We then have

mk & 3dd

(
sk +

k−1∑
l=1

sl2
−(k−l) +

r∑
l=k+1

sl2
−3(l−k)

)
· r · L, (5.16)

which is the same estimate as the one-dimensional case for bounded d. Note that the number of samples
required in each annular region is (up logarithmic factors) proportional to the corresponding sparsity sk with
additional exponentially decaying terms dependent on sl, l 6= k. In the case of Walsh sampling, (5.15) remains
the same whereas (5.16) becomes mk & 2d · d · r · L · sk, with no terms from the sparsity levels sl, l 6= k.

THE BARRIERS OF DEEP LEARNING AND SMALE’S 18TH PROBLEM 21

Image Fourier Sampling Walsh Sampling

FIGURE 7. Left: The true image. Middle: Reconstruction from noisy Fourier measurements. Right:
Reconstruction from noisy Walsh measurements. Both images were reconstructed using only a 15%

sampling rate according to the sampling patterns in Figure 6 and n = p = 5. The top row shows the full
image and the bottom row shows a zoomed in section (corresponding to the red boxes in the top row).

6. FIRENET: EXAMPLE OF THE EXPONENTIAL CONVERGENCE AND PSEUDOCODE

We now provide a computational experiment to demonstrate Theorem 5.10 (and Theorem 5.5). Note that
the matrix A and its adjoint can be implemented rapidly using the fast Fourier transform (or fast Walsh–
Hadamard transform). We take the image shown in Figure 7, a subsampling rate of only 15%, and corrupt
the measurements by adding 2% Gaussian noise. Figure 7 shows the reconstructions using Fourier and Walsh
sampling and Haar wavelets. Similar results hold for other wavelets, such as Daubechies wavelets with a
larger number of vanishing moments. In fact, the reconstruction results are better than those shown for the
Haar wavelet system. We have chosen to show the Haar wavelet results because this is the system for which
Theorem 5.10 is stated. Pseudocode for the reconstruction is shown in Algorithm 1. For the reconstruction,
we take λ = 0.00025, τ = σ = 1, p = 5 and the weights as discussed in §5.3. In the spirit of no parameter
tuning, the weights were selected based on a standard phantom image, and not the image we use to test the
algorithm. These parameters are certainly not optimal, and instead were chosen simply to emphasise that we
have deliberately avoided parameter tuning. Moreover, we found that the choice of δ in the algorithm was of
little consequence, so have taken δ = 10−9.

Figure 8 shows the convergence in the number of inner iterations (or, equivalently, n - the total number
of inner iterations is np, and hence we have not specified n, which is typically chosen to be 5). We show
the error between the constructed image after j iterations (denoted by cj) and the true image (denoted by
c), as well as the convergence of the objective function which we denote by F in the figure caption. To
compute the minimum of F , denoted F ∗, we ran several thousand iterates of the non-restarted version of
the algorithm so that the error in the value of F ∗ is at least an order of magnitude smaller than the shown
values of F (cj) − F ∗. Whilst the objective function is guaranteed to converge to the minimum value when
computing F ∗ this way, there is no guarantee that the vectors computed by the non-restarted version converge

22 THE BARRIERS OF DEEP LEARNING AND SMALE’S 18TH PROBLEM

0 10 20 30 40 50 60

10
-4

10
-3

10
-2

10
-1

10
0

Convergence, Fourier Sampling

0 10 20 30 40 50 60

10
-4

10
-3

10
-2

10
-1

10
0

Convergence, Walsh Sampling

FIGURE 8. The convergence of the algorithm in the number of inner iterations. The dashed line shows
‖c − c∗‖l2/‖c‖l2 . In both cases, the error between the reconstruction and the image decreases exponen-
tially until this bound is reached. The objective function gap decreases exponentially slightly beyond
this point, demonstrating that the robust null space property (in levels) controls the l2-norm difference
between vectors (locally around c∗) down to the error ‖c− c∗‖l2 (see the bound (9.18) in our proof).

Algorithm 1: FIRENETcomp constructs a FIRENET which corresponds to n iterations of InnerIt
with a rescaling scheme. We write the output as the map φn to emphasise that FIRENETcomp defines
a NN. InnerIt performs p iterations of Chambolle and Pock’s primal-dual algorithm for square-root
LASSO (the order of updates is swapped compared to [37]). The functions ϕs and ψ1 are proximal maps:

[ϕs(x)]j = max

{
0, 1− s

|xj |

}
xj , ψ1(y) = min

{
1,

1

‖y‖l2

}
y.

Both of these are approximated by NNs in our proof.

Function FIRENETcomp(A, p, τ, σ, λ, {wj}Nj=1, ε0, δ, n)

Initiate with φ0 ≡ 0 (other initial vectors can also be chosen).
(NB: ε0 should be of the same order as ‖y‖l2 for inputs y ∈ Cm.)
for k = 1, ..., n do

εk = e−1(δ + εk−1),
βk = εk

2‖A‖

φk(·) = pβk · InnerIt
(
·

pβk
, φk−1(·)

pβk
, A, p, σ, τ, λ, {wj}Nj=1

)
end
return: FIRENET φn : Cm → CN

end

Function InnerIt(y, x0, A, p, τ, σ, λ, {wj}Nj=1)

Set B = diag(w1, ..., wN) ∈ CN×N .
Initiate with x0 = x0, y0 = 0 ∈ Cm (the superscripts denote indices not powers).
for k = 0, ..., p− 1 do

xk+1 = Bϕτλ(B−1(xk − τA∗yk))
yk+1 = ψ1(yk + σA(2xk+1 − xk)− σy)

end
X =

∑p
k=1

xk

p

return: X ∈ CN (ergodic average of p iterates)
end

THE BARRIERS OF DEEP LEARNING AND SMALE’S 18TH PROBLEM 23

to a minimiser, as demonstrated by the non-computability results in Theorem 2.2. However, in this case, the
non-restarted version converged to a vector c∗ up to an error much smaller than ‖c− c∗‖l2 . Hence ‖c− c∗‖l2
indicates the minimum error we can expect from using (P3) to recover the image.

The figure shows the expected exponential convergence, as the number of inner iterations increases, of the
objective function values as well as cj to c until the error is of the order ‖c − c∗‖l2 . This corresponds to an
initial phase of exponential convergence, where the υ−n term (with υ = e−1) is dominant in Theorem 5.5,
followed by a plateau to the minimal error ‖c − c∗‖l2 (shown as the dotted line). This plateau occurs due to
inexact measurements (the noise) and the fact that the image does not have exactly sparse wavelet coefficients.
This corresponds to the robust null space property (in levels) only being able to bound the distance ‖c− cj‖l2
up to the same order as ‖c− c∗‖l2 . In other words, we can only accelerate convergence up to this error bound.
The error plateau disappears in the limit of exactly sparse vectors and zero noise (in the limit δ ↓ 0 in Theorem
5.5), and one gains exponential convergence down to essentially machine precision. Finally, the acceleration is
of great practical interest. Rather than the several hundreds (or even thousands) of iterations that are typically
needed for solving compressed sensing optimisation problems with first-order iterative methods, we obtain
optimal accuracy in under 20 iterations. This was found for a range of different images, subsampling rates
etc. The fact that so few layers are needed, coupled with the fast transforms for implementing the affine maps
in the NNs, makes the NNs very computationally efficient and competitive speed-wise with state-of-the-art
DL.

7. CONNECTIONS WITH PREVIOUS WORK

The paper touches many different areas of mathematics and AI; thus we have divided the areas into the
following subsections: (i) Computational barriers in DL, foundations and the SCI hierarchy; (ii) Instabilities
in DL; (iii) DL in inverse problems; and (iv) Compressed sensing, optimisation and unrolling of algorithms.

(i) Computational barriers in DL, foundations and the SCI hierarchy: The SCI hierarchy and its foundations
framework provide the basis for the techniques for the computational barriers and foundations (what is and
what is not computationally possible) results in DL proved in this paper. The SCI hierarchy has recently been
used to solve longstanding questions on the existence of algorithms [15,18–20,40,41,65]. It was introduced in
[65] and is an effective tool to establish the boundaries of what computers can achieve in scientific computing
and also in computer-assisted proofs, see for example the work by C. Fefferman & L. Seco (Dirac-Schwinger
conjecture) [50, 51] and T. Hales et. al (Kepler’s conjecture/Hilbert’s 18th problem) [61, 62] that implicitly
prove results in the SCI hierarchy (see [18] for details). The SCI hierarchy generalises S. Smale’s seminal
work [100, 102] with L. Blum, F. Cucker, M. Shub [24, 25] and his program on the foundations of scientific
computing and existence of algorithms pioneered by C. McMullen [86,87] and P. Doyle & C. McMullen [48].
In particular, the work by F. Cucker [42] can be viewed as an early version of the SCI hierarchy.

In [18] J. Ben-Artzi, O. Nevanlinna, M. Seidel and two of the authors established a collection of techniques
for proving sharp results on the existence of algorithms that form a basis for techniques in the SCI hierarchy
framework. These ideas were extended to randomised algorithms in [15]. The SCI hierarchy has also been
used in signal processing and sampling theory by H. Boche & V. Pohl in [26]. Recent results using the
SCI hierarchy include the work by S. Olver & M. Webb [111] on computing spectral measures and the
work by J. Ben-Artzi, M. Marletta & F. Rösler [19, 20] on computing resonances. There is a vast literature
on impossibility results regarding the existence of algorithms for different problems in mathematics. The
seminal work of S. Weinberger [112] is a great example. These results can also be interpreted as classification
results in the SCI hierarchy, as the framework is flexible and can encompass any model of computation.

Our results connect with the vast literature in approximation theory starting with the universal approxi-
mation theorem and many follow-up papers establishing the great approximation qualities of NNs, see, for
example, the work by H. Bölcskei, P. Grohs, G. Kutyniok & P. Petersen [27] and the results by I. Daubechies,
R. DeVore, S. Foucart, B. Hanin & G. Petrova [44] (the recent article [45] of R. DeVore, B. Hanin & G.
Petrova surveys current challenges of NN approximation). What all these results have in common is that

24 THE BARRIERS OF DEEP LEARNING AND SMALE’S 18TH PROBLEM

there is no given algorithm constructing the approximating NNs that are proven to exist. The literature is full
of existence results that will typically not imply the existence of algorithms computing the NNs.

(ii) Instabilities in DL: Initiated by the work of C. Szegedy et. al. [105], there is now a vast literature on
the instability phenomenon in DL in a wide variety of applications [7, 9, 36, 52, 70, 90, 105] ranging from
image recognition and classification, via audio and speech recognition to automatic diagnosis in medicine,
image reconstruction and inverse problems. Thus we can only highlight a small subset here. A significant
development was the DeepFool research programme and software package of S. Moosavi–Dezfooli, A. Fawzi
& P. Frossard [90], which was followed by the construction of so-called universal adversarial perturbations
[89]. The construction of and mitigation against adversarial attacks is now an active area of research. To
the best of our knowledge, [9] and [70] were the first works to demonstrate the instability phenomenon
for inverse problems in imaging. There is also an increasing amount of work dedicated to the important
problem of numerical instability in ML, see, for example, the recent work of P. Blanchard, D. Higham & N.
Higham [23].

(iii) DL in inverse problems: The work of K. Jin, M. McCann, E. Froustey & M. Unser [71] was influential
in highlighting the promise of DL for inverse problems in imaging. This is now a rapidly evolving area of
research, which we will not attempt to summarise. See [12] for an overview of current techniques. Note that
sparse regularisation has been used as the basis for some DL technique, e.g. by using DL to recover the parts
of an image that sparse regularisation cannot such as in [31], or by designing NN architectures through the
process of unrolling an optimisation algorithm (see, e.g., [12]) discussed below. Another approach is to learn
variational regularisers, see, for example, [75].

(iv) Compressed sensing, optimisation and unrolling of algorithms: Our positive results rely on theory from
the compressed sensing literature initiated by E. Candes, J. Romberg & T. Tao [34] and D. Donoho [47].
In particular, our results rely on the many results on structured sampling in structured compressed sensing,
see the work by B. Adcock et. al. [2, 5, 6], A. Bastounis et. al. [14], J. Bigot, C. Boyer & P. Weiss [22, 30]
and G. Kutyniok & W. Lim [77]. Moreover, our results are closely related to the work of A. Ben-Tal & A.
Nemirovski [21], who were one of the first to realise how key assumptions in compressed sensing – such
as the robust nullspace property – help bound the error of the approximation to a minimiser (produced by
an optimisation algorithm) in terms of error bounds on the approximation to the objective function. Our
construction of stable and accurate NNs uses the optimisation problem (P3) and approximations of unrolled
(or unfolded) primal-dual iterations with a restart scheme: see the discussion at the start of §9. Unrolling
iterative methods as NNs was first developed by Gregor & LeCun in [60] who considered LISTA, a learned
version of ISTA, for the recovery of sparse vectors. This work has been followed by theoretical grantees
[39, 79], ensuring the existence of NN with linear convergence towards the minimiser. Yet, neither [39]
nor [79], use the theoretically correct weights, as these can only be computed as solutions of intractably large
optimisation problems. Moreover, it is not clear whether the needed assumptions on A ever hold in practice.
Many other algorithms have been unrolled as NNs. Typically, such approaches train the weights and biases,
and even the activation functions of the NNs (see also the comments after Remark 5.7). We shall not attempt
a broad survey, and instead point the reader to the papers of M. McCann, K. Jin & M. Unser [85] and V.
Monga, Y. Li & Y. Eldar [88] for up to date reviews.

To prove convergence of vectors (as opposed to objective functions), it is crucial to have conditions such
as the robust null space property (in levels) of Definition 3.2. Moreover, this property enables a restart
scheme to achieve exponential convergence in the number of layers. Typically, exponential convergence for
restart schemes requires a Łojasiewicz-type inequality of the form γd(x,X∗)ν ≤ f(x) − f∗, where f is
the objective function and d(x,X∗) denotes the distance to the set of minimisers [28, 73]. For example,
V. Roulet, N. Boumal & A. d’Aspremont [98] achieve exponential convergence, using the restarted NESTA
algorithm [16], for exact recovery (noiseless) of sparse vectors ifA satisfies the null space property. By taking
into account computability and construction of NNs, and allowing noise, approximate sparsity, sparsity in
levels and complex-valued vectors and matrices, our techniques are more general than [98].

THE BARRIERS OF DEEP LEARNING AND SMALE’S 18TH PROBLEM 25

8. PROOF OF THEOREM 2.2 AND TOOLS FROM THE SCI HIERARCHY

In this section, we prove Theorem 2.2. To do this, we need some analytical results regarding phase tran-
sitions of solutions of (P1), (P2) and (P3) which are given in §8.2. However, before analysing these phase
transitions, we need some preliminary definitions regarding algorithms, inexact inputs, and condition num-
bers. There are two main reasons for this framework. First, because our definitions are general, they lead to
stronger impossibility results than when restricted to specific models of computation. Second, our framework
greatly simplifies the proofs and makes it clear what the key mechanisms behind the proofs are (§8.2 describes
this in terms of phase transitions of minimisers). The following discussions are self-contained.

8.1. Algorithmic preliminaries: a user-friendly guide. We begin with a definition of a computational prob-
lem, which is deliberately general in order to capture any computational problem.

Definition 8.1 (Computational problem). Let Ω be some set, which we call the domain, and Λ be a set of
complex valued functions on Ω such that for ι1, ι2 ∈ Ω, then ι1 = ι2 if and only if f(ι1) = f(ι2) for all
f ∈ Λ, called an evaluation set. Let (M, d) be a metric space, and finally let Ξ : Ω → M be a function
which we call the problem function. We call the collection {Ξ,Ω,M,Λ} a computational problem. When it
is clear whatM and Λ are, we write {Ξ,Ω} for brevity.

Remark 8.2 (Multivalued problems). In some cases, such as when considering the optimisation problems
(Pj) that may have more than one solution, we consider Ξ(ι) ⊂ M. With an abuse of notation, we then set
d(x,Ξ(ι)) = dist(x,Ξ(ι)) = infy∈Ξ(ι) d(x, y) and this distinction will be made clear from context. �

The set Ω is the set of objects that give rise to our computational problems. The problem function Ξ : Ω→
M is what we are interested in computing. Finally, the set Λ is the collection of functions that provide us with
the information we are allowed to read as input to an algorithm. For example, Ω could consist of a collection
of matrices A and data y in (2.1), Λ could consist of the pointwise entries of the vectors and matrices in Ω, Ξ

could represent the solution set (with the possibility of more than one solution as in Remark 8.2) of any of the
problems (Pj) and (M, d) could be CN with the usual Euclidean metric (or any other suitable metric).

Given the definition of a computational problem, we need the definition of a general algorithm, whose
conditions hold for any reasonable notion of a deterministic algorithm. Throughout this paper, we deal with
the case that Λ = {fj}j∈β , where β is some (at most) countable index set.

Definition 8.3 (General Algorithm). Given a computational problem {Ξ,Ω,M,Λ}, a general algorithm is a
mapping Γ : Ω→M such that for each ι ∈ Ω

(i) There exists a non-empty finite subset of evaluations ΛΓ(ι) ⊂ Λ,
(ii) The action of Γ on ι only depends on {ιf}f∈ΛΓ(ι) where ιf := f(ι),

(iii) For every κ ∈ Ω such that κf = ιf for every f ∈ ΛΓ(ι), it holds that ΛΓ(κ) = ΛΓ(ι).

If, in addition, there exists a canonical ordering ΛΓ(ι) = {fΓ
ι,1 = fk1

, ..., fΓ
ι,SΓ(ι) = fkSΓ(ι)

}, where SΓ(ι) =

|ΛΓ(ι)|, such that if κ ∈ Ω and fΓ
ι,j(ι) = fΓ

ι,j(κ) for all j ≤ r < SΓ(ι), then fΓ
ι,j = fΓ

κ,j for all j ≤ r+1, then
we call Γ a Sequential General Algorithm. In this case, we use the notation kj(Γ, ι) to denote the ordered
indices corresponding to the evaluation functions that the algorithm reads.

The three properties of a general algorithm are the most basic natural properties we would expect any
deterministic computational device to obey. The first condition says that the algorithm can only take a finite
amount of information, though it is allowed adaptively to choose, depending on the input, the finite amount
of information that it reads. The second condition ensures that the algorithm’s output only depends on its
input, or rather the information that it has accessed (or “read”). The final condition is very important and
ensures that the algorithm produces outputs and accesses information consistently. In other words, if it sees
the same information for two different inputs, then it cannot behave differently for those inputs. Note that
the definition of a general algorithm is more general than the definition of a Turing machine [106] or a
Blum–Shub–Smale (BSS) machine [24], which can be thought of as digital and analog computational devices
respectively. In particular, a general algorithm has no restrictions on the operations allowed. The extra

26 THE BARRIERS OF DEEP LEARNING AND SMALE’S 18TH PROBLEM

condition for a sequential general algorithm is satisfied by any algorithm defined by a computational machine
with input of readable information (one should think of the ordered indices of the evaluation functions as
corresponding to sequentially reading the tape which encodes the input information). Hence, a sequential
general algorithm is still more general than a Turing or a BSS machine. Complete generality in Definition 8.3
is used for two primary reasons:

(i) Strongest possible bounds: Since Definition 8.3 is completely general, the lower bounds hold in
any model of computation, such as a Turing machine or a BSS machine. On the other hand, the
algorithms we construct in this paper are made to work using only arithmetic operations over the
rationals. Hence, we obtain the strongest possible lower bounds and the strongest possible upper
bounds.

(ii) Simplified exposition: Using the concept of a general algorithm considerably simplifies the proofs of
lower bounds and allows us to see precisely the mechanisms behind the proofs.

Next, we consider the definition of a randomised general algorithm, which again is more general than
a probabilistic Turing or probabilistic BSS machine. Randomised algorithms are widely used in practice
in areas such as optimisation, algebraic computation, machine learning, and network routing. In the case
of Turing machines, it is currently unknown, in the sense of polynomial runtime, whether randomisation is
beneficial from a complexity class viewpoint [11, Ch. 7], however, rather intriguingly this is not the case for
BSS machines [24, Ch. 17] (some of the proofs in this reference are non-constructive - it is an open problem
whether any probabilistic BSS machine can be simulated by a deterministic machine having the same machine
constants and with only a polynomial slowdown). Nevertheless, randomisation is an extremely useful tool in
practice. From a machine learning point of view, we also want to consider randomised algorithms to capture
procedures such as stochastic gradient descent which are commonly used to train NNs. As developed in [15],
the concept of a general algorithm can be extended to a randomised general algorithm. This concept allows
for universal impossibility results regardless of the computational model.

Definition 8.4 (Randomised General Algorithm). Given a computational problem {Ξ,Ω,M,Λ}, a Ran-
domised General Algorithm (RGA) Γran is a collectionX of general algorithms Γ : Ω→M, a sigma-algebra
F on X and a family of probability measures {Pι}ι∈Ω on F such that the following conditions hold:

(1) For each ι ∈ Ω, the mapping Γran
ι : (X,F) → (M,B) defined by Γran

ι (Γ) = Γ(ι) is a random
variable, where B is the Borel sigma-algebra onM.

(2) For each n ∈ N and ι ∈ Ω, the set {Γ ∈ X : sup{m ∈ N : fm ∈ ΛΓ(ι)} ≤ n} ∈ F .
(3) For each ι1, ι2 ∈ Ω and E ∈ F , such that for every Γ ∈ E we have f(ι1) = f(ι2) for every

f ∈ ΛΓ(ι1), then Pι1(E) = Pι2(E).

With slight abuse of notation, we denote the family of randomised general algorithms by RGA.

The first two conditions are measure theoretic to avoid pathological cases and ensure that “natural sets”
one might define for a random algorithm (such as notions of stopping times) are measurable. These conditions
hold for all standard probabilistic machines (such as a Turing or BSS machine). The third condition ensures
consistency, namely, that in the case of identical evaluations, the laws of the output cannot change. Finally, we
will use the standard definition of a probabilistic Turing machine (which is a particular case of Definition 8.4).
However, to make sense of probabilistic Turing machines in our context (in particular, to restrict operations
to the rationals which can be encoded by the natural numbers), we must define the notion of inexact input.

Suppose we are given a computational problem {Ξ,Ω,M,Λ}, and that Λ = {fj}j∈β , where we remind
the reader that β is some index set that can be finite or countably infinite. However, obtaining fj may be a
computational task on its own, which is exactly the problem in most areas of computational mathematics. In
particular, for ι ∈ Ω, fj(ι) could be the number e

π
j i for example. Hence, we cannot access or store fj(ι) on a

computer, but rather fj,n(ι) where fj,n(ι)→ fj(ι) as n→∞. This idea is formalised in the definition below,
however, to put this in perspective it is worth mentioning the Solvability Complexity Index (SCI) hierarchy.

THE BARRIERS OF DEEP LEARNING AND SMALE’S 18TH PROBLEM 27

Remark 8.5 (The Solvability Complexity Index (SCI) hierarchy). The SCI of a computational problem is the
smallest number of limits needed in order to compute the solution. The full hierarchy is described in [18],
and the mainstay of the hierarchy are the ∆α

k classes. The α denotes the model of computation. Informally,
we have the following description. Given a collection C of computational problems, then

(i) ∆α
0 is the set of problems that can be computed in finite time, the SCI = 0.

(ii) ∆α
1 is the set of problems that can be computed using one limit (the SCI = 1) with control of the

error, i.e. ∃ a sequence of algorithms {Γn} such that d(Γn(ι),Ξ(ι)) ≤ 2−n, ∀ι ∈ Ω.
(iii) ∆α

2 is the set of problems that can be computed using one limit (the SCI = 1) without error control,
i.e. ∃ a sequence of algorithms {Γn} such that limn→∞ Γn(ι) = Ξ(ι), ∀ι ∈ Ω.

(iv) ∆α
m+1, for m ∈ N, is the set of problems that can be computed by using m limits, (the SCI≤ m), i.e.
∃ a family of algorithms {Γnm,...,n1

} with limnm→∞ . . . limn1→∞ Γnm,...,n1
(ι) = Ξ(ι), ∀ι ∈ Ω. �

The above hierarchy gives rise to the concept of ‘∆1-information.’ That is, in informal terms, the problem
of obtaining the inexact input to the computational problem is a ∆1 problem. One may think of an algorithm
taking the number exp(1) or

√
2 as input. Indeed, one can never produce an exact version of these numbers

to the algorithm, however, one can produce an approximation to an arbitrarily small error.

Definition 8.6 (∆1-information). Let {Ξ,Ω,M,Λ} be a computational problem. We say that Λ has ∆1-
information if each fj ∈ Λ is not available, however, there are mappings fj,n : Ω → Q + iQ such that
|fj,n(ι)− fj(ι)| ≤ 2−n for all ι ∈ Ω. Finally, if Λ̂ is a collection of such functions described above such that
Λ has ∆1-information, we say that Λ̂ provides ∆1-information for Λ. Moreover, we denote the family of all
such Λ̂ by L1(Λ).

We want to have algorithms that can handle all computational problems {Ξ,Ω,M, Λ̂} whenever Λ̂ ∈
L1(Λ). In order to formalise this, we define what we mean by a computational problem with ∆1-information.

Definition 8.7 (Computational problem with ∆1-information). A computational problem where Λ has ∆1-
information is denoted by {Ξ,Ω,M,Λ}∆1 := {Ξ̃, Ω̃,M, Λ̃}, where

Ω̃ =
{
ι̃ = {fj,n(ι)}j,n∈β×N : ι ∈ Ω, {fj}j∈β = Λ, |fj,n(ι)− fj(ι)| ≤ 2−n

}
,

Moreover, if ι̃ = {fj,n(ι)}j,n∈β×N ∈ Ω̃ then we define Ξ̃(ι̃) = Ξ(ι) and f̃j,n(ι̃) = fj,n(ι). We also set
Λ̃ = {f̃j,n}j,n∈β×N. Note that Ξ̃ is well-defined by Definition 8.1 of a computational problem and the
definition of Ω̃ includes all possible instances of ∆1-information Λ̂ ∈ L1(Λ).

We can now define a probabilistic Turing machine for {Ξ,Ω,M,Λ}, where the algorithm Γ is executed by
a Turing machine [106], that has an oracle tape consisting of {ι̃f}f∈Λ̃. In what follows, we have deliberately
not written down the (lengthy) definition of a Turing machine (found in any standard text [11]), which one
should think of as an effective algorithm or computer programme (the famous Church–Turing thesis).

Definition 8.8. Given the definition of a Turing machine, a probabilistic Turing machine for {Ξ,Ω,M,Λ}
is a Turing machine that has an oracle tape consisting of {ι̃f}f∈Λ̃ (for ι̃ ∈ Ω̃), with an additional read-only
tape containing independent binary random numbers (0 or 1 with equal probability), and which halts with
probability one and outputs a single element ofM. The law of such a machine will be denoted by P. With an
abuse of notation, we sometimes denote the probabilistic Turing machine by (Γ,P).

Remark 8.9 (Where does the output live?). Strictly speaking, when we say that the output of a probabilistic
Turing machine lies inM, we mean that the output corresponds, via an encoding, to an element of a subset
ofM such as (Q+ iQ)N ⊂ CN . However, we follow the usual convention of suppressing such encodings.�

One should think of Definition 8.8 as an algorithm for the computational problem with inexact input,
but with the additional ability to generate random numbers (corresponding to the binary input tape) and
execute commands based on the sequence of random numbers that are generated. The reader should intuitively
think of this as a computer program with a random number generator. For equivalent definitions and the

28 THE BARRIERS OF DEEP LEARNING AND SMALE’S 18TH PROBLEM

basic properties of such machines, see [11]. For simplicity, we have only considered probabilistic Turing
machines that halt with probability one, though extensions can be made to non-halting machines. Note that
Definition 8.8 is a special case of Definition 8.4, where Pι = P is fixed across different ι. In particular, given a
probabilistic Turing machine, the sigma-algebra and probability distribution generated by the standard product
topology on {0, 1}N induce the relevant collection X of Turing machines and sigma-algebra F , as well as P.

Finally, we recall standard definitions of condition used in optimisation [24, 32]. The classical condition
number of an invertible matrix A is given by Cond(A) = ‖A‖‖A−1‖. For different types of condition num-
bers related to a possibly multivalued (signified by the double arrow) mapping Ξ : Ω ⊂ Cn ⇒ CN we need
to establish what types of perturbations we are interested in. For example, if Ω denotes the set of diagonal
matrices (which we treat as elements of Cn for some n), we may not be interested in perturbations in the
off-diagonal elements as they will always be zero. In particular, we may only be interested in perturbations
in the coordinates that are varying in the set Ω. Thus, given Ω ⊂ Cn we define the active coordinates of Ω to
be Act = Act (Ω) = {j : ∃x, y ∈ Ω, xj 6= yj}. Moreover, for ν > 0 (including the obvious extension to
ν =∞),

Ων = {x : ∃ y ∈ Ω such that ‖x− y‖l∞ ≤ ν, xActc = yActc} .
In other words, Ων is the set of ν-perturbations along the non-constant coordinates of elements in Ω. We can
now recall some of the classical condition numbers from the literature [24, 32].

(1) Condition of a mapping: Let Ξ : Ω ⊂ Cn ⇒ Cm be a linear or non-linear mapping, and suppose that Ξ

is also defined on Ων for some ν > 0. Then,

Cond (Ξ,Ω) = sup
x∈Ω

lim
ε→0+

sup
x+z∈Ων

0<‖z‖l2≤ε

{
dist(Ξ(x+ z),Ξ(x))

‖z‖l2

}
,

where we allow for multivalued functions by defining dist(Ξ(x+ z),Ξ(z)) = infw1∈Ξ(x+z),w2∈Ξ(z) ‖w1−
w2‖l2 (see Remark 8.2). We will use this notion of condition number for (P1), (P2) and (P3).

(2) Distance to infeasibility - the Feasibility Primal condition number: For the problem (P1) of basis pur-
suit (for (P2) and (P3) the following condition number is always zero) we set

ν(A, y) = sup
{
ε ≥ 0 : ‖ŷ‖l2 , ‖Â‖ ≤ ε, (A+Â, y+ ŷ) ∈ Ω∞ ⇒ (A+Â, y+ ŷ) are feasible inputs to ΞP1

}
,

and define the Feasibility Primal (FP) local condition number CFP(A, y) :=
max{‖y‖l2 ,‖A‖}

ν(A,y) . We then
define the FP global condition number via CFP (ΞP1

,Ω) := sup(A,y)∈Ω CFP(A, y).

8.2. Phase transitions. To prove Theorem 2.2, we use the following lemmas which describe phase tran-
sitions of the minimisers of the respective optimisation problems (ej correspond to the canonical basis of
CN).

Lemma 8.10 (Phase transition for basis pursuit). Let N ≥ 2 and consider the problem (P1) for

A =
(
w1

ρ1

w2

ρ2
· · · wN

ρN

)
∈ C1×N , y = 1, ε ∈ [0, 1),

where ρj > 0 for j = 1, ..., N . Then the set of solutions is given by

N∑
j=1

[
tj(1− ε)

ρj
wj

]
ej , s.t. tj ∈ [0, 1],

N∑
j=1

tj = 1 and tj = 0 if ρj > min
k
ρk. (8.1)

Proof. Let x̂j = xjwjρ
−1
j , then the optimisation problem becomes

argminx̂∈CN f(x̂) :=

N∑
j=1

ρj |x̂j | such that

∣∣∣∣∣∣1−
N∑
j=1

x̂j

∣∣∣∣∣∣ ≤ ε. (8.2)

Since ε < 1 and the (ρ1, ρ2, ...ρN) weighted l1 norm is convex, it follows that the solution must lie on the
hypersurface segment x̂1 + x̂2 + ... + x̂j = 1 − ε for x̂j ∈ R≥0. We now claim that if x̂ is a solution of

THE BARRIERS OF DEEP LEARNING AND SMALE’S 18TH PROBLEM 29

(8.2), and ρj > mink ρk, then x̂j = 0. Suppose for a contradiction that there exists a solution x̂ of (8.2)
where x̂j > 0 and ρj > mink ρk. Pick any l such that ρl = mink ρk, then x̂ + x̂j(el − ej) is feasible with
f(x̂+ x̂j(el− ej)) < f(x̂), a contradiction. Similarly, if x is of the form (8.1), then f(x̂) = (1− ε) mink ρk.
In particular, the objective function is constant over the set of all such vectors and the result follows. �

Lemma 8.11 (Phase transition for LASSO). Let N ≥ 2 and consider the problem (P2) for

A = λ
(
w1

ρ1

w2

ρ2
· · · wN

ρN

)
∈ C1×N , y = 1,

where 0 < ρj < 2 for j = 1, ..., N . Then the set of solutions is given by(
1− mink ρk

2

) N∑
j=1

ρjtj
λwj

ej , s.t. tj ∈ [0, 1],

N∑
j=1

tj = 1 and tj = 0 if ρj > min
k
ρk. (8.3)

Proof. Let x̂j = xjλwjρ
−1
j , then the optimisation problem becomes argminx̂∈CN f(x̂) := |1−

∑N
j=1 x̂j |2 +∑N

j=1 ρj |x̂j |. It is clear that any optimal solution must be real and hence we restrict our argument to real x̂.
Define the 2N quadrant subdomains Dk1,...,kN = {x̂j · (−1)kj > 0} for kj ∈ {0, 1}, and notice that

∇f(x̂) =


−2(1−

∑N
j=1 x̂j) + (−1)k1ρ1

...
−2(1−

∑N
j=1 x̂j) + (−1)kNρN

 , for x̂ ∈ Dk1,...,kN .

We first look for stationary points of the objective function in the subdomains Dk1,...,kN . The condition for
a stationary point in the interior of such a domain leads to the constraint that k1 = k2 = ... = kN . If
k1 = k2 = ... = kN = 1, then ∇f = 0 leads to the contradiction ρj = 2(x̂1 + ...+ x̂N)− 2 < 0. Finally, in
the case (and only in the case) of ρ1 = ρ2 = ... = ρN , there is a hypersurface segment of stationary points in
D0,0,...,0 given by x̂1 + ...+ x̂N = 1− ρ1/2 (recall that we assumed ρ1 < 2 so this segment exists).

First, consider the case that ρ1 = ... = ρN . Then any optimal solution must either lie on the boundary of
some Dk1,...,kN or on the hypersurface segment x̂1 + ...+ x̂N = 1− ρ1/2 in D0,0,...,0. A simple case by case
analysis now yields that the solutions x̂ are given by convex combinations of (1 − ρj/2)ej for j = 1, ..., N .
Now consider the case that not all of the ρj are equal. Then any optimal solution must lie on the boundary
of some Dk1,...,kN . A simple case by case analysis now yields that the solutions x̂ are given by convex
combinations of (1− ρj/2)ej for j such that ρj = mink ρk. Rescaling back to x gives the result. �

Lemma 8.12 (Phase transition for square-root LASSO). Let N ≥ 2 and consider the problem (P3) for

A = λ
(
w1

ρ1

w2

ρ2
· · · wN

ρN

)
∈ C1×N , y = 1,

where 0 < ρj < 1 for j = 1, ..., N . Then the set of solutions is given by

N∑
j=1

ρjtj
λwj

ej , s.t. tj ∈ [0, 1],

N∑
j=1

tj = 1 and tj = 0 if ρj > min
k
ρk. (8.4)

Proof. Let x̂j = xjλwjρ
−1
j , then the optimisation problem becomes argminx̂∈CN f(x̂) := |1−

∑N
j=1 x̂j |+∑N

j=1 ρj |x̂j | . It is clear that any optimal solution must be real and hence we restrict our argument to real
x̂. The objective function is piecewise affine and since ρj < 1, the gradient of f is non-vanishing on the
interior of any of the domains Dk1,...,kN = {x̂j · (−1)kj > 0} for kj ∈ {0, 1}. It follows that the optimal
solutions must lie on the boundaries of the domains Dk1,...,kN . A simple case by case analysis shows that the
solutions x̂ are given by convex combinations of ej for j such that ρj = mink ρk. Rescaling back to x gives
the result. �

We will also need the following propositions, which give useful criteria for impossibility results.

Proposition 8.13. Let {Ξ,Ω,M,Λ} be a computational problem. Suppose that there are two sequences
{ι1n}n∈N, {ι2n}n∈N ⊂ Ω satisfying the following conditions:

30 THE BARRIERS OF DEEP LEARNING AND SMALE’S 18TH PROBLEM

(a) There are sets S1, S2⊂M and κ>0 such that infx1∈S1,x2∈S2 d(x1, x2)>κ and Ξ(ιjn)⊂Sj for j = 1, 2.

(b) For every f ∈ Λ there is a cf ∈ C such that |f(ιjn)− cf | ≤ 1/4n for all n ∈ N and j = 1, 2.

Then, if we consider {Ξ,Ω,M,Λ}∆1 , we have the following:

(i) For any sequential general algorithm Γ and M ∈ N, there exists ι ∈ Ω and Λ̂ ∈ L1(Λ) such that

dist(Γ(ι),Ξ(ι)) > κ/2 or SΓ(ι) > M.

(ii) If there is an ι0 ∈ Ω such that for every f ∈ Λ we have that (b) is satisfied with cf = f(ι0), then
for any RGA Γ and p ∈ [0, 1/2), there exists ι ∈ Ω and Λ̂ ∈ L1(Λ) such that Pι(dist(Γ(ι),Ξ(ι)) ≥
κ/2) > p.

Proof. Without loss of generality, we assume that Ω = {ι1n}n∈N∪{ι2n}n∈N. Part (ii) follows immediately from
a Proposition of [15], so we only prove part (i). Let Γ be a sequential general algorithm and M ∈ N. We will
construct the required Λ̂ ∈ L1(Λ) inductively. By Definition 8.3 and the setup of ∆1−information for Λ, there
exists some fk1

∈ Λ and n1 ∈ N such that for all ι ∈ Ω and for all Λ̂ ∈ L1(Λ), we have fΓ
ι,1 = fk1,n1

. We set
fk1,n1(ιjm) = cfk1

for all m ≥ n1 and choose fk1,n1(ιjm) consistently for m < n1. Again by Definition 8.3
and the setup of ∆1−information for Λ, it follows that there exists fk2

∈ Λ and n2 ∈ N (which without loss
of generality ≥ n1) such that for all m ≥ n1, either ΛΓ(ιjm) = {fk1,n1} or fΓ

ιjm,2
= fk2,n2 . In the latter case,

we set fk2,n2
(ιjm) = cfk2

for all m ≥ n2 and choose fk2,n2
(ιjm) consistently for m < n2. We continue this

process for a maximum of M steps up to fΓ
ιjm,min{M,|ΛΓ(ιjm)|} as follows. At the qth step after defining fkq,nq ,

by Definition 8.3 and the setup of ∆1−information for Λ, it follows that there exists fkq+1
∈ Λ and nq+1 ∈ N

(which without loss of generality ≥ nq) such that for all m ≥ nq , either ΛΓ(ιjm) ⊂ {fk1,n1 , ..., fkq,nq} or
fΓ
ιjm,q+1

= fkq+1,nq+1
. In the latter case, we set fkq+1,nq+1

(ιjm) = cfkq+1
for all m ≥ nq+1 and choose

fkq+1,nq+1
(ιjm) consistently for m < nq+1. We can then choose the rest of the function values to obtain Λ̂.

Given this Λ̂ ∈ L1(Λ), suppose for a contradiction that for any ι ∈ Ω, dist(Γ(ι),Ξ(ι)) ≤ κ/2 and SΓ(ι) ≤
M. Without loss of generality, we assume that the above construction is carried out for M steps. It follows
that we must have f(ι1nM) = f(ι2nM) for all f ∈ Λ̂Γ(ι1nM). By (ii) and (iii) of Definition 8.3, it follows that
Γ(ι1nM) = Γ(ι2nM). Let ε > 0 be arbitrary. Since dist(Γ(ι),Ξ(ι)) ≤ κ/2 for all ι ∈ Ω, there exists sj ∈ Sj

such that d(Γ(ιjnM), sj) < κ/2 + ε. It follows that

inf
x1∈S1,x2∈S2

d(x1, x2) ≤ d(s1, s2) ≤ d(Γ(ι1nM), s1) + d(Γ(ι2nM), s2) < κ+ 2ε.

Since ε > 0 was arbitrary, we have infx1∈S1,x2∈S2 d(x1, x2) ≤ κ, the required contradiction. �

Proposition 8.14. Let {Ξ,Ω,M,Λ} be a computational problem and u ≥ 2 be a positive integer. Suppose
that there are u sequences {ιjn}n∈N ⊂ Ω, for j = 1, ..., u, satisfying the following conditions:

(a) There are sets Sj ⊂M, for j = 1, ..., u, and κ > 0 such that infxj∈Sj ,xk∈Sk d(xj , xk) > κ for any
j 6= k and Ξ(ιjn) ⊂ Sj for j = 1, ..., u.

(b) For every f ∈ Λ, there is a cf ∈ C such that |f(ιjn)− cf | ≤ 1/4n for all n ∈ N and j = 1, ..., u.

Then, if we consider {Ξ,Ω,M,Λ}∆1 , for any halting probabilistic Turing machine (Γ,P), M ∈ N and p ∈
[0, u−1

u), there exists ι ∈ Ω and Λ̂ ∈ L1(Λ) such that P
(

dist(Γ(ι),Ξ(ι)) > κ/2 or SΓ(ι) > M
)
> p.

Proof. Without loss of generality, we can assume that Ω = ∪uj=1{ιjn}n∈N. Let (Γ,P) be a halting probabilistic
Turing machine and M ∈ N, p ∈ [0, (u − 1)/u). Suppose for a contradiction that for all ι ∈ Ω and all Λ̂ ∈
L1(Λ), we have P(dist(Γ(ι),Ξ(ι)) > κ/2 or SΓ(ι) > M) ≤ p. We will construct the required Λ̂ ∈ L1(Λ)

inductively. Let β ∈ (0, 1) be such that (1 − β)M − p > 1/u. Such a β exists since p ∈ [0, (u − 1)/u).
Since the Turing machine must halt with probability one, there exists finite sets K1, N1 ⊂ N such that with
probability (w.r.t. P) at least 1 − β, for all ι ∈ Ω and for all Λ̂ ∈ L1(Λ), it holds that fΓ

ι,1 = fk1,n1
for some

k1 ∈ K1 and n1 ∈ N1. We set fk1,n1
(ιjm) = cfk1

for all m ≥ max{n1 : n1 ∈ N1} and choose fk1,n1
(ιjm)

consistently otherwise.

THE BARRIERS OF DEEP LEARNING AND SMALE’S 18TH PROBLEM 31

We continue this process inductively for M steps up to fΓ
ιjm,min{M,|ΛΓ(ιjm)|} as follows. At the qth step

after defining fkq,nq for kq ∈ Kq and nq ∈ Nq , it follows (since the Turing machine halts with probability
one) that there exists finite sets Kq+1, Nq+1 ⊂ N with the following property. Let Eq+1 be the event that for
all ιjm ∈ Ω with m ≥ max{n : n ∈ N1 ∪ ... ∪Nq}, either fΓ

ιjm,q+1
= fkq+1,nq+1

, for some kq+1 ∈ Kq+1 and

nq+1 ∈ Nq+1, or |Λ(ιjm)| ≤ q. Then P(Eq+1| ∩k≤q Ek) ≥ 1− β. We then set fkq+1,nq+1(ιjm) = cfkq+1
for

all m ≥ max{n : n ∈ N1 ∪ ... ∪Nq+1} and choose fkq+1,nq+1
(ιjm) consistently otherwise. This ensures the

existence of Kq+2 and Nq+2. After the M th step, we can choose the rest of the function values to obtain Λ̂.
It follows that for m ≥ max{n : n ∈ N1 ∪ ... ∪ NM}, the outputs Γ(ιjm) conditional on the event

E1 ∩ ... ∩ EM ∩ {SΓ(·) ≤ M} are equal for j = 1, ..., u. Since infxj∈Sj ,xk∈Sk d(x1, x2) > κ for j 6= k, it
follows that the events Fj := {dist(Γ(ιjm),Ξ(ιjm)) ≤ κ/2} ∩ {SΓ(ιjm) ≤M} ∩E1 ∩ ... ∩EM , j = 1, ..., u,

are disjoint. Moreover, using the fact that P(A ∩B) = P(A) + P(B)− P(A ∪B),

P(Fj) ≥ P({dist(Γ(ιjm),Ξ(ιjm)) ≤ κ/2} ∩ {SΓ(ιjm) ≤M}) + P(E1 ∩ ... ∩ EM)− 1

≥ P({dist(Γ(ιjm),Ξ(ιjm)) ≤ κ/2} ∩ {SΓ(ιjm) ≤M}) + (1− β)M − 1 ≥ (1− β)M − p > 1/u.

But this contradicts the disjointness of the Fj’s. �

8.3. Proof of Theorem 2.2.

Proof of Theorem 2.2. We will argue for m = 1 and construct such an Ω for this case. The general case of
m > 1 follows by embedding our construction for A ∈ C1×(N+1−m) in the first row of matrices and vectors
of the form

Â =

(
A 0

0 αI

)
, ŷ = (y, 0)>, (A, y) ∈ Ω,

where I ∈ C(m−1)×(m−1) denotes the (m − 1) × (m − 1) identity matrix and α = α(A) is chosen such
that ÂÂ∗ is a multiple of the identity. In particular, such an embedding does not effect the relevant condition
numbers (it is straightforward to see that the matrix norm, distance to infeasibility for (P1) and condition
numbers of the mappings are all unchanged). For the classes we consider, the setup of Theorem 2.2 coincides
with the ∆1−information model discussed in §8.1. In particular, we can use Lemmas 8.10, 8.11 and 8.12 to
derive the relevant xs,n’s in (2.7). This means that we can apply Propositions 8.13 and 8.14 with the metric
corresponding to the l2-norm. Recall that for this theorem, we assume that w1 = w2 = ... = wN = 1.

Step 1: Proof for (P1). First, consider the class defined by

Ω1 =
{

(A(γ1; ρ), y) : A(γ1; ρ) := γ1

(
1
ρ1

1
ρ2
· · · 1

ρN

)
, y = 1, ρj ∈ [1− 2δ, 1− δ]

}
,

for fixed γ1 > 10 and δ ∈ (0, 1/4). We choose γ1 and δ such that

1− ε
γ1
· sup
ρj ,ρk∈[1−2δ,1−δ],j 6=k

‖ρjej − ρkek‖l2 = 3 · 10−K , (8.5)

1− ε
γ1
· inf
ρj ,ρk∈[1−2δ,1−δ],j 6=k

‖ρjej − ρkek‖l2 > 2 · 10−K , (8.6)

where the ej denote the canonical basis of CN . Note that we can ensure γ1 > 10 since ε ≤ 1/2 and K > 2.
If ρj ∈ [1− 2δ, 1− δ), for j = 1, 2, then by (a simple rescale of) Lemma 8.10,

ΞP1
(A(γ1; (ρ1, 1−δ, ..., 1− δ)), 1)=

(1− ε)ρ1

γ1
e1,ΞP1

(A(γ1; (1−δ, ρ2, 1− δ, ..., 1− δ)), 1)=
(1− ε)ρ2

γ1
e2.

Since (8.6) holds, it follows by selecting appropriate sequences ιjn for choices of ρj = ρnj ↑ 1 − δ that the
conditions of Proposition 8.13 hold for Ω1 with

Sj =

{
1− ε
γ1

ρej : ρ ∈ [1− 2δ, 1− δ]
}
, κ = 2 · 10−K . (8.7)

Moreover, the condition for part (ii) of Proposition 8.13 also holds with ι0 = (A(γ1; (1−δ, 1−δ, ..., 1−δ)), 1).

32 THE BARRIERS OF DEEP LEARNING AND SMALE’S 18TH PROBLEM

Now suppose for a contradiction that there exists a (halting) RGA (with input ιA,S) and p > 1/2 that
produces a NN φA such that miny∈SA infx∗∈ΞP1

(A,y) ‖φA(y)− x∗‖l2 ≤ 10−K holds with probability at
least p for all (A, y) ∈ Ω1. Then there exists a (halting) RGA, Γ, taking ιA,S as input that computes a
solution of (P1) to K correct digits with probability at least p on each input in Ω1. However, this contradicts
Proposition 8.13 (ii). Next, consider the class defined by

Ω2 =
{

(A(γ2; ρ), y) : A(γ2; ρ) = γ2

(
1
ρ1

1
ρ2
· · · 1

ρN

)
, y = 1, ρj ∈ [1− 2δ, 1− δ], ρj 6= ρk if j 6= k

}
,

where γ2 = γ1/10 > 1 so that

sup
ρj ,ρk∈[1−2δ,1−δ],j 6=k

‖ρjej − ρkek‖l2 = 3 · 10−K+1 · γ2

1− ε
, (8.8)

inf
ρj ,ρk∈[1−2δ,1−δ],j 6=k

‖ρjej − ρkek‖l2 > 2 · 10−K+1 · γ2

1− ε
. (8.9)

By extending the argument above to u = N + 1 − m = N (recall without loss of generality that m = 1)
sequences and sets Sj defined as in (8.7), the conditions of Proposition 8.14 hold with κ = 2 · 10−K+1. Now
suppose that there exists a (halting) probabilistic Turing machine (Γ,P), M ∈ N and p ∈

[
0, N−m

N+1−m

)
, such

that for any (A, 1) ∈ Ω2, Γ computes a NN φA with

P
(

inf
x∗∈ΞP1

(A,y)
‖φA(y)− x∗‖l2 > 101−K or the sample size needed to construct φA > M

)
≤ p.

Then there exists a (halting) probabilistic Turing machine that computes a solution of (P1) to K − 1 correct
digits on each input in Ω2 with sample size at mostM with probability at least 1−p. However, this contradicts
Proposition 8.14.

We now set Ω = Ω1 ∪ Ω2. Note that the negative statements of part (i) and (ii) follow from the above
arguments by considering restrictions to Ω1 and Ω2 respectively. Hence, we are left with proving the condition
number bounds, part (iii) and the positive part of part (ii). First, note that Cond(AA∗) = 1 for any (A, y) ∈ Ω.
For any (A, y) ∈ Ω, we have ν(A, y) = ‖A‖ ≥ 1 = ‖y‖l2 and hence CFP(ΞP1

,Ω) ≤ 1. To bound
the final condition number, first note that if ρj , ρ′j ≤ 1, then ‖ρ − ρ′‖l2 ≤ ‖

∑N
j=1(1

ρj
− 1

ρ′j
)ej‖l2 . Let

(A(γ1; ρ), 1) ∈ Ω1, then if (A(γ1; ρ′), 1) ∈ Ω1 with ∆(ρ, ρ′) := γ1‖
∑N
j=1(1

ρj
− 1

ρ′j
)ej‖l2 sufficiently small,

dist(ΞP1
(A(γ1; ρ′), 1),ΞP1

(A(γ1; ρ), 1)) ≤ 1− ε
γ1
‖ρ− ρ′‖l2 .

It follows that

lim
β↓0

sup
(A(γ1;ρ′),1)∈Ω1

∆(ρ,ρ′)≤β

dist(ΞP1(A(γ1; ρ′), 1),ΞP1(A(γ1; ρ), 1))

∆(ρ, ρ′)
≤ 1− ε

γ2
1

< 1.

A similar argument holds for (A(γ2; ρ), 1) ∈ Ω2, and hence Cond(ΞP1
,Ω) ≤ 1.

We now prove the positive parts of (ii) and (iii). We begin with (ii) and describe the algorithm informally,
noting that the output of the algorithm, Γ(A), yields a NN which maps y = 1 to Γ(A) ∈ CN . Given an
input (A, y) ∈ Ω, the algorithm first tests the size of A1,1 to determine whether (A, y) ∈ Ω1 or (A, y) ∈ Ω2.
Explicitly, we note that A1,1 is positive and bounded away from 0. Hence, with one sample from ιA,S we
can determine A1,1 to an accuracy of at least 0.01 · A1,1 and such that, simultaneously, the corresponding
approximation of A−1

1,1 is accurate to at least 10−K . If (A, y) ∈ Ω1, then A1,1 ∈ γ1 · [1, 2] whereas if
(A, y) ∈ Ω2, then A1,1 ∈ γ2 · [1, 2]. Since γ2 = γ1/10, this level of accuracy is enough to determine whether
(A, y) ∈ Ω1 or (A, y) ∈ Ω2. Next, if the algorithm determines (A, y) ∈ Ω1, it outputs the corresponding
approximation of (1− ε)A−1

1,1e1 = 1−ε
γ1
ρ1e1 correct to 10−K in the l2-norm from the sample. Since

sup
ρj ,ρk∈[1−2δ,1−δ],j 6=k

‖ρjej − ρkek‖l2 = 3 · 10−K · γ1

1− ε
,

THE BARRIERS OF DEEP LEARNING AND SMALE’S 18TH PROBLEM 33

it follows that infx∗∈ΞP1
(A,y) ‖Γ(A) − x∗‖l2 ≤ 4 · 10−K < 10−K+1. On the other hand, if the algorithm

determines (A, y) = (A(γ2; ρ), y) ∈ Ω2, then we know that all of the ρj are distinct. The algorithm continues
to sample ιA,S until we determine j such that ρj = mink ρk. It then outputs an approximation of (1 −
ε)A−1

1,jej = ΞP1(A, y) correct to 10−K in the l2-norm. Such as approximation can be computed using ιA,S .
It then follows that ‖Γ(A) − ΞP1

(A, y)‖l2 ≤ 10−K < 10−K+1 and this finishes the proof of (ii). Finally,
to prove (iii), note that the arguments above show that, given an input (A, y) ∈ Ω, we can use one sample
(L = 1) of ιA,S to compute an approximation of A−1

1,1 with error bounded by 10−K . We simply set Γ(A) to
be (1− ε)e1 multiplied by the approximation of A−1

1,1. Using (8.5) and (8.8), it follows that

inf
x∗∈ΞP1

(A,y)
‖Γ(A)− x∗‖l2 ≤ 3 · 10−K+1 + 10−K < 10−K+2.

Step 2: Proof for (P2). This is almost identical step 1 with replacing Lemma 8.10 with Lemma 8.11. The
other changes are replacing ε with the suitable ρi/2 in the solution of each LASSO problem, including the
additional scale λ in the definition of the matrices (see Lemma 8.11) and choosing γ1λ > 10 and δ ∈ (0, 1/4)

such that (recall that λ ≤ 1)

sup
ρj ,ρk∈[1−2δ,1−δ],j 6=k

1

λγ1
· ‖ρj(1− ρj/2)ej − ρk(1− ρk/2)ek‖l2 = 3 · 10−K (8.10)

inf
ρj ,ρk∈[1−2δ,1−δ],j 6=k

1

λγ1
· ‖ρj(1− ρj/2)ej − ρk(1− ρk/2)ek‖l2 > 2 · 10−K . (8.11)

Let f(x) = (1− x/2)x, then for x ∈ [0, 1], |f ′(x)| ≤ 1. It follows that∥∥∥∥∥∥
N∑
j=1

(
ρj(1− ρj/2)− ρ′j(1− ρ′j/2)

)
ej

∥∥∥∥∥∥
l2

≤

∥∥∥∥∥∥
N∑
j=1

(
1

ρj
− 1

ρ′j

)
ej

∥∥∥∥∥∥
l2

.

Hence, for sufficiently small δ, for any (A(γ1; ρ), 1) ∈ Ω1 (recall the additional factor of λ) and ρ′ sufficiently
close to ρ with (A(γ1; ρ′), 1) ∈ Ω1,

dist(ΞP2
(A(γ1; ρ′), 1),ΞP2

(A(γ1; ρ), 1))

γ1λ
∥∥∥∑N

j=1

(
1
ρj
− 1

ρ′j

)
ej

∥∥∥
l2

≤ 1

γ2
1λ

2
< 1,

with the same bound holding for Ω2. It follows that Cond(ΞP2
,Ω) ≤ 1.

Step 3: Proof for (P3). This is almost identical step 2 with replacing Lemma 8.11 with Lemma 8.12, and
deleting the corresponding factors of 1− ρj/2. �

8.4. Details on numerical example in §2.1. In this section, we elaborate on the numerical example in §2.1.
The example is a simplification of the arguments found in the proof of Theorem 2.2 that uses Lemma 8.12
extensively. In our experiment, we use N1 = 2 and λ = 1, but for full generality, we do not keep these
parameters fixed in the discussion below. We assume throughout that λ ∈ (0, 1] and N1 ≥ 2. The experiment
is done for real matrices so that the LISTA network architecture can be used.

Let γ > 0, ρ ∈ RN1 \ {0}, and D ∈ CN2+1×N2+1 be a unitary discrete cosine transform matrix. Define

A(γ, ρ) := D

(
a(γ, ρ)> 0

0 ‖a(γ, ρ)‖l2I

)
, where a(γ, ρ)> := γ

(
1
ρ1
· · · 1

ρN1

)
∈ R1×N1 ,

and I ∈ RN2×N2 is the identity matrix. Observe that A(γ, ρ) ∈ Rm×N , with N = N1 + N2 and m =

N2 + 1 and that A has irrational entries (hence only approximations can be used in real-life computations).
Furthermore, let δ = 1/6 and γK =

√
2

3λ (1− δ) · 10K , where K is the parameter from Theorem 2.2. Also let

y(x(2)) = D
(

1 ‖a(γ, ρ)‖l2x(2)
)>
∈ RN2+1 for x(2) ∈ RN2 (8.12)

and ΩK =
{(
y(x(2)), A(γK , ρ)

)
: ρj ∈ [1− 2δ, 1− δ], x(2) ∈ RN2

}
. Next define

ρ′ =
(
ρ′1 1− δ · · · · · · 1− δ

)
and ρ] =

(
1− δ ρ]2 1− δ · · · 1− δ

)

34 THE BARRIERS OF DEEP LEARNING AND SMALE’S 18TH PROBLEM

where ρ′1, ρ
]
2 ∈ [1−2δ, 1−δ). We let ei denote the i’th canonical basis vector for RN1 and define x′ =

ρ′1
λγK

e1

and x] =
ρ]1
λγK

e2. For this choice of parameters we have from Lemma 8.12 and the fact that D is unitary that(
x′, x(2)

)> ∈ Ξ3

(
A(γK , ρ

′), y(x(2))
)

and
(
x], x(2)

)> ∈ Ξ3

(
A(γK , ρ

]), y(x(2))
)
.

Observe that we can let A(γK , ρ
′) and A(γK , ρ

]) become arbitrary close by letting ρ′1, ρ
]
2 ↑ 1− δ. We will

let ρ′1 = ρ]2, and notice that for this choice the data y(x(2)) are the same for both inputs. However, regardless
of the choice of ρ′1, ρ

]
2 ∈ [1 − 2δ, 1 − δ) the minimisers for the two problems are bounded away from each

other. In particular, we have that

inf
ρ′1,ρ

]
2∈[1−2δ,1−δ]

1

λγK
‖ρ′1e1 − ρ]2e2‖l2 > 2 · 10K and sup

ρ′1,ρ
]
2∈[1−2δ,1−δ]

1

λγK
‖ρ′1e1 − ρ]2e2‖l2 = 3 · 10K

which implies that 10K < ‖(x′, x(2))> − (x], x(2))>‖l2 < 10K+1.
In the numerical experiment in §2.1, we take A = A(γK , ρ

′) with ρ′1 = 1− δ + 2−n−1, and approximate
this matrix with the matrix An = A(γK , ρ

]), where the parameter ρ]2 = 1 − δ + 2−n−1. This ensures that
‖A−An‖ ≤ 2n. For the trained neural network, we used 8000 triples of the form

ιA,S,n =
{(
yk,n(x

(2)
k,n), An, (x

]
n, x

(2)
k,n)>

)
: k = 1, . . . , 8000, and x(2) is 5-sparse

}
. (8.13)

for n = 10, 20, 30. Note that it is not necessary to make the x(2) component sparse. This is done merely to
make the experiment more realistic, as the main usage of the problems (Pj) are for recovery of sparse vectors.

9. PROOF OF THEOREM 5.5

A roadmap for the proof is as follows. We consider the problem (P3) and unroll iterations of Chambolle
and Pock’s primal-dual algorithm [37, 38]. These iterations are approximated by NNs in Theorem 9.5, where
we obtain bounds on a rescaled version of the objective function in (9.9). The assumption of weighted rNSPL
then allows us to relate the bounds proven in Theorem 9.5 to bounds on the distance of the output of the NN
to the wanted vector and also, simultaneously, prove stability. This also allows the acceleration to exponential
convergence through a restart scheme (with a reweighting at each restart). We begin with the proof of Lemma
5.4, which allows us to consider the approximation matrices Al in the construction of the NNs. We also state
some results from compressed sensing that are needed in our proofs. We then discuss preliminary results on
unrolling iterative algorithms for (P3), which are used in the proof of Theorem 5.5. When writing out NNs in
the proofs, we will use NL−−→ arrows to denote the non-linear maps and L−→ arrows to denote the affine maps.

9.1. Some results from compressed sensing.

Proof of Lemma 5.4. Let ∆ be a (s,M) support set and x ∈ CN , then

‖x∆‖l2 ≤
ρ‖x∆c‖l1w√

ξ
+ γ‖Ax‖l2 ≤

ρ‖x∆c‖l1w√
ξ

+ γ‖Âx‖l2 + γ‖Â−A‖‖x‖l2 . (9.1)

Note that mink=1,...,r w
2
(k)

∑
j∈∆c |xj |2 ≤ (

∑
j∈∆c |xj |wj)2 = ‖x∆c‖2l1w and hence, (9.1) implies that

‖x∆‖l2 ≤
ρ‖x∆c‖l1w√

ξ
+ γ‖Âx‖l2 + γ‖Â−A‖

(
‖x∆‖l2 +

‖x∆c‖l1w
mink=1,...,r w(k)

)
.

Rearranging now gives the result. �

The following results are taken from the compressed sensing literature [1].

Lemma 9.1 (rNSPL implies l1w distance bound). Suppose that A has the weighted rNSPL of order (s,M)

with constants 0 < ρ < 1 and γ > 0. Let x, z ∈ CN , then

‖z − x‖l1w ≤
1 + ρ

1− ρ
(
2σs,M(x)l1w + ‖z‖l1w − ‖x‖l1w

)
+

2γ

1− ρ
√
ξ‖A(z − x)‖l2 . (9.2)

THE BARRIERS OF DEEP LEARNING AND SMALE’S 18TH PROBLEM 35

Lemma 9.2 (rNSPL implies l2 distance bound). Suppose that A has the weighted rNSPL of order (s,M)

with constants 0 < ρ < 1 and γ > 0. Let x, z ∈ CN , then

‖z − x‖l2 ≤
(
ρ+

(1 + ρ)κ1/4

2

) ‖z − x‖l1w√
ξ

+

(
1 +

κ1/4

2

)
γ‖A(z − x)‖l2 . (9.3)

9.2. Preliminary constructions of neural networks. When constructing NNs, we will make use of the
following maps from CM to CM , defined for various M ∈ N and β ∈ Q>0 by ψ0

β(x) = max{0, 1 −
β/‖x‖l2}x, ψ1(x) = min{1, ‖x‖−1

l2 }x.

Lemma 9.3. Let M ∈ N, β ∈ Q>0 and θ ∈ Q>0. Then there exists neural networks φ0
β,θ, φ

1
θ ∈ ND,3,2

with D = (M, 2M,M + 1,M) such that ‖φ0
β,θ(x) − ψ0

β(x)‖l2 ≤ θ and ‖φ1
θ(x) − ψ1(x)‖l2 ≤ θ for all

x ∈ CM , and the non-linear maps can be computed from sqrtθ and finitely many arithmetic operations and
comparisons.

Proof. We deal only with the case of ψ0
β since the case of ψ1 is nearly identical. Consider the maps φ0

β,θ:

x
L−→

(
x

x

)
NL−−→


|x1|2

|x2|2
...

|xM |2

x


L−→

(∑M
j=1 |xj |2

x

)
NL−−→

(
0

max
{

0, 1− β
sqrtθ(‖x‖2

l2
)

}
x

)
L−→max

{
0, 1− β

sqrtθ(‖x‖2l2)

}
x.

The first, third and final arrows are simple affine maps. The second arrow applies pointwise modulus squar-
ing, which can be done using finitely many arithmetic operations. The penultimate arrow applies a non-linear
map which can be computed from one application of sqrtθ and finitely many arithmetic operations and com-
parisons. The bound ‖ψ0

β(x)− φ0
β,θ(x)‖l2 ≤ θ follows from a simple case by case analysis. �

The final piece of machinery needed is a NN approximation of applying a pointwise version of ψ0
β .

Lemma 9.4. Let s, θ ∈ Q>0, w ∈ QN>0 and for x̂ ∈ CN consider the minimisation problem

argminx∈CN ‖x‖l1w + s‖x− x̂‖2l2 . (9.4)

Let x̃s(x̂) denote the solution of (9.4). Then, there exists φs,θ ∈ ND,2,1 such that

‖φs,θ(x̂)− x̃s(x̂)‖l2 ≤ θ‖w‖l2 , ∀x̂ ∈ CN (9.5)

and D = (N,N,N). Each affine map in the NN is linear and is an arithmetic function of w. Moreover, the
non-linear maps used can be computed from sqrtθ and finitely many arithmetic operations and comparisons.

Proof. Let B = diag(w1, ..., wN) ∈ QN×N and consider the function F (y) = ‖By‖l1/(2s) = ‖y‖l1w/(2s).
We write the minimisation problem (9.4) as proxF (x̂). Given y ∈ CN , we identify y = (y1, y2)> ∈ R2N .

First, for β > 0 and x ∈ Rn recall that the proximal operator of a multiple of the l2-norm is

proxβ‖·‖l2 (x) = max{0, 1− β/‖x‖l2}x. (9.6)

Thus, for β > 0 we define ϕβ(y) = (v(y, β) ∗ y1, v(y, β) ∗ y2)>, where ∗ denotes pointwise multiplication

and v(y, β)j = max{0, 1 − β/
√
y2

1,j + y2
2,j} for j = 1, ..., N . The function ϕβ simply corresponds to a

proximity map of the l2-norm applied component-wise to the complexified version of y. Using (9.6), we have

proxF (y) = argminz∈CN
1

2s
‖Bz‖l1 +

1

2
‖z − y‖2l2

= argminz∈CN

N∑
j=1

(
Bjj
2s

√
z2

1,j + z2
2,j +

1

2

(
(z1,j − y1,j)

2 + (z2,j − y2,j)
2
))

36 THE BARRIERS OF DEEP LEARNING AND SMALE’S 18TH PROBLEM

It follows that (in complex vector form) [proxF (y)]j = {0, 1 − Bjj/(2s)
|yj | }yj , for j = 1, . . . , N. We can

therefore write proxF (y) = Bϕ(2s)−1(B−1y). We unroll the computation of proxF (x̂) via:

x̂
L−→ B−1x̂

NL−−→ ϕ(2s)−1(B−1x̂)
L−→ Bϕ(2s)−1(B−1y).

The first arrow is a simple linear map, the second appliesϕ(2s)−1 and the third is a linear map. We approximate
this by replacing v(y, β)jyj with φ0

β,θ(y1,j + y2,ji) (denoting the replacement of ϕ(2s)−1 by ϕθ(2s)−1) where
φ0
β,θ is the NN from Lemma 9.3 with M = 1. This clearly gives φs,θ ∈ ND,2,1, so we need to only bound the

error. From Lemma 9.3 we have∥∥∥proxF (x̂)−Bϕθ(2s)−1(B−1x̂)
∥∥∥
l2

=
∥∥∥B (ϕ(2s)−1(B−1x̂)− ϕθ(2s)−1(B−1x̂)

)∥∥∥
l2
≤ θ‖w‖l2 .

The bound (9.5) now follows. �

The following theorem proves that one can construct NNs with objective function bounds. The proof
constructs approximations of unrolled iterations of Chambolle and Pock’s primal-dual algorithm [37,38]. We
have used b to denote part of the inputs of the NNs, instead of y, to avoid a clash of notation with the usual
notation for primal-dual iterations (y is used to denote a dual variable). The bounds in part 2 of Theorem 9.5
will be combined with results from §9.1 to construct the families of NNs in Theorem 5.5.

Theorem 9.5. LetA ∈ Q[i]m×N and θ ∈ Q>0. Suppose also that LA ∈ Q≥1 is an upper bound for ‖A‖, and
that τ, σ ∈ Q>0 are such that τσL2

A < 1. Let λ ∈ Q>0, w ∈ QN>0 and consider the resulting optimisation

problem (P3). Then there exists an algorithm that constructs a sequence of neural networks
{
φAn,λ, θ

}
with

the following properties:

(1) (Size) Each φAn,λ : Cm+N → CN takes as input data b ∈ Cm and an initial guess x0 ∈ CN , both of
which are completely general. Also, φAn,λ ∈ NDn,3n+1,3 with

Dn = (m+N, 2N +m, 2(N +m), 2N +m+ 1︸ ︷︷ ︸
repeated n times

, N).

(2) (O(n−1 + nθ) Error Control) Let

C = (1 + ‖w‖l2 + 2σ‖A‖‖w‖l2)

√
τ + σ

1− τσL2
A

√
τ + σ

τσ
, (9.7)

then for any inputs b ∈ Cm and x0 ∈ CN , there exists a vector ψn(b, x0) ∈ CN with∥∥ψn(b, x0)− φAn,λ(b, x0)
∥∥
l2
≤ nθC (9.8)

such that for any x ∈ CN and η ∈ [0, 1], it holds that

λ‖ψn(b, x0)‖l1w − λ‖x‖l1w + η‖Aψn(b, x0)− b‖l2 − ‖Ax− b‖l2 ≤
1

n

(
‖x− x0‖2l2

τ
+
η2

σ

)
. (9.9)

Proof. We use the notation b ∈ Cm to denote an input vector for our NNs throughout the proof and reserve y
to denote dual vectors, consistent with the literature on primal-dual algorithms for saddle point problems.

Step 1: The first step is to consider an equivalent optimisation problem over R instead of C, and rewrite
the problem as a saddle point problem. For x ∈ CN , let x1 = real(x) and x2 = imag(x) and consider
x = (x1, x2)> as a vector in R2N (and likewise for the dual variables). With an abuse of notation, we use
the same notation for complex x ∈ CN and the corresponding vector in R2N , though it will be clear from the
context whether we refer to the complex or real case. We let c = (real(b), imag(b))>. Define the matrices

K1 =

(
real(A) −imag(A)

imag(A) real(A)

)
∈ R2m×2N , K2 =

(
real(B) −imag(B)

imag(B) real(B)

)
∈ R2N×2N ,

corresponding to multiplication by the matrices A and B := diag(w1, ..., wN) respectively. Let F̃1 : R2N →
R be defined by F̃1(x) =

∑N
j=1

√
(K2x)2

j + (K2x)2
j+N and F̃3(x) = λF̃1(x). Then (P3) is equivalent to

THE BARRIERS OF DEEP LEARNING AND SMALE’S 18TH PROBLEM 37

minx∈R2N F̃3(x) + ‖K1x− c‖l2 and LA is an upper bound for ‖K1‖. The saddle point formulation of the
problem is given by

min
x∈R2N

max
y∈R2m

L(x, y) := 〈K1x, y〉+ F̃3(x)− f∗3 (y), (9.10)

where f∗3 (y) = χB1(0)(y) + 〈c, y〉, and χS denotes the indicator function of a set S, taking the value 0 on S
and +∞ otherwise, and B1(0) denotes the closed l2 unit ball.

Step 2: We will solve (9.10) by approximating Chambolle and Pock’s primal-dual algorithm [37] (with a
shift of updates considered in [38]) with a NN. We will write the iteration as an instance of the proximal point
algorithm [96] and gain a non-expansive map in a norm which we relate to the standard Euclidean norm.

We start by setting x0 = x0 (one of the inputs of the NN) and y0 = 0. Recall that for a convex function h,
we have that x = proxh(z) if and only if z ∈ x+ ∂h(x), where ∂h denotes the subdifferential of h, see, for
example, [53, Prop. B.23]. Letting g = F̃3 and f∗ = f∗3 , the exact iterates can be written as

xk+1 = argminx∈R2N g(x) +
1

2τ
‖x− (xk − τK∗1yk)‖2l2 = (I + τ∂g)−1(xk − τK∗1yk)

yk+1 = argminy∈R2m f∗(y) +
1

2σ
‖y − (yk + σK1(2xk+1 − xk)‖2l2

= (I + σ∂f∗)−1
[
yk + σK1(2xk+1 − xk)

]
.

(9.11)

Note that the solutions of these proximal mappings are given by Lemmas 9.3 and 9.4 and their proofs, as we
describe explicitly below in step 4. The function f∗ also depends on the input data b.

Let z = (x, y)> and define the matrix

Mτσ =

(
1
τ I −K∗1
−K1

1
σ I

)
∈ R2(m+N)×2(m+N),

which is positive definite by the assumption τσL2
A < 1 and hence induces a norm denoted by ‖ · ‖τσ. We can

write the iterations as (see, for example, [38, Sec. 3])

0 ∈M−1
τσ

(
∂g K∗1
−K1 ∂f∗

)
zk+1 + (zk+1 − zk)⇒ zk+1 =

[
I +M−1

τσ

(
∂g K∗1
−K1 ∂f∗

)]−1

zk.

The multi-valued operator

M−1
τσ

(
∂g K∗1
−K1 ∂f∗

)
is maximal monotone with respect to the inner product induced by Mτσ [96] and hence the iterates are non-
expansive in the norm ‖ · ‖τσ. We also have that

‖(x, y)>‖2τσ ≤
‖x‖2l2
τ

+
‖y‖2l2
σ

+ 2LA‖x‖l2‖y‖l2 ≤
(
LA
ν

+ τ−1

)
‖x‖2l2 +

(
LAν + σ−1

)
‖y‖2l2 ,

for any ν > 0 by the generalised AM–GM inequality. Choosing ν = σLA and using τσL2
A < 1, we have that

‖(x, y)>‖2τσ ≤ (τ−1 + σ−1)‖(x, y)>‖2l2 . (9.12)

A similar calculation yields that

‖(x, y)>‖2l2 ≤
τ + σ

1− τσL2
A

‖(x, y)>‖2τσ. (9.13)

Step 3: Next, we use convergence guarantees proven in [38] to obtain inequalities that closely resem-
ble (9.9). Define the ergodic averages Xk = 1

k

∑k
j=1 x

j , Y k = 1
k

∑k
j=1 y

j . By convexity, the map from
(x1, y1)> to (Xk, Y k)> is also non-expansive in the norm ‖ · ‖τσ. It also holds (see [38] Theorem 1 and
remarks) that

L(Xk, y)− L(x, Y k) ≤ 1

k

(
‖x− x0‖2l2

τ
+
‖y‖2l2
σ

)
, ∀x ∈ R2N ,∀y ∈ R2m. (9.14)

38 THE BARRIERS OF DEEP LEARNING AND SMALE’S 18TH PROBLEM

Let y be parallel to KXk − c such that ‖y‖l2 = η ≤ 1, and x be general in (9.14). This gives

F̃3(Xk)− F̃3(x) + 〈K1X
k − c, y〉+ 〈c−K1x, Y

k〉 ≤ 1

k

(
‖x− x0‖2l2

τ
+
η2

σ

)
.

Since ‖Y k‖l2 ≤ 1 (otherwise we gain a contradiction in that the left-hand side of (9.14) is infinite), this
implies

F̃3(Xk)− F̃3(x) + η‖K1X
k − c‖l2 − ‖K1x− c‖l2 ≤

1

k

(
‖x− x0‖2l2

τ
+
η2

σ

)
. (9.15)

Step 4: The next step is to unroll the iterations in (9.11) as (complex-valued) NNs that approximate the
Xk. We unroll via the following steps:Xk

xk

yk

 L−→

 Xk

xk − τA∗yk

yk − σAxk

 NL−−→

 Xk

xk+1

yk − σAxk

 L−→

Xk+1

xk+1

uk

 NL−−→

Xk+1

xk+1

yk+1

 ,

with uk = yk + σA(2xk+1 − xk) − σb. The first arrow is a simple linear map, the second computes
xk+1 =

(
I + τλ∂FA1

)−1
(xk − τA∗yk). The third is an affine map and the final arrow applies ψ1 to uk.

We now define the approximations Z̃k and z̃k (of Zk = (Xk, Y k)> and zk = (xk, yk)> respectively)
defined by replacing ψ1 with φ1

θ (Lemma 9.3) and the computation of (I + τλ∂FA1)−1(xk − τA∗yk) with
φ(2τλ)−1,θ(x̃

k − τA∗ỹk) (Lemma 9.4). We initialise the network with x̃0 = x0 and y0 = 0. Since the
composition of two affine maps is affine, it follows that the mapping from (b, x0) to X̃n can be realised by
φAn,λ ∈ NDn,3n+1,3 with

Dn = (m+N, 2N +m, 2(N +m), 2N +m+ 1︸ ︷︷ ︸
repeated n times

, N).

Clearly, the sequence of NNs are NNs in the sense of §5.1 and can be constructed by an algorithm (see §8.1).
Step 5: Finally, we bound the difference between Zk and Z̃k to deduce (9.8), and the error bound in the

objective function using the inequalities in Step 3. We write x̃k = xk + ek1 , ỹ
k = yk + ek2 and clearly have

that e0
1 = 0 and e0

2 = 0. We can write x̃k+1 = φ(2τλ)−1(x̃k − τA∗ỹk) + ek+1
3 , with ‖ek+1

3 ‖l2 ≤ θ‖w‖l2 by
Lemma 9.4. We also have that ỹk+1 = ψ1(ỹk+σA(2x̃k+1− x̃k)−σb)+ek+1

4 ,with ‖ek+1
4 ‖l2 ≤ θ by Lemma

9.3. Since ψ1 is non-expansive, it follows that ỹk+1 = ψ1(ỹk+σA(2(x̃k+1−ek+1
3)− x̃k)−σb)+ek+1

5 , with
‖ek+1

5 ‖l2 ≤ θ(1 + 2σ ‖A‖ ‖w‖l2). We can then use the fact that the iterates applied with the exact proximal
maps are non-expansive in the norm ‖ · ‖τσ, along with (9.13) and (9.12), to conclude that

‖Xn − X̃n‖l2 ≤
√

τ + σ

1− τσL2
A

‖Zn − Z̃n‖τσ

≤
√

τ + σ

1− τσL2
A

[
‖Zn−1 − Z̃n−1‖τσ + θ

√
τ + σ

τσ

(
1 + ‖w‖l2 + 2σ‖A‖‖w‖l2)

)]

≤ nθ(1 + ‖w‖l2 + 2σ‖A‖‖w‖l2)

√
τ + σ

1− τσL2
A

√
τ + σ

τσ
.

It follows that (9.8) holds with ψn(b, x0) = Xn and the complex version of (9.15) implies (9.9). �

9.3. Proof of Theorem 5.5. Step 1: The first step is to derive a bound on the distance between vectors
using the square-root LASSO objective function and rNSPL. For any inputs A (the rational approximations
{Al}), ρ and γ described in the theorem, we can compute, using Lemma 5.4, a positive integer l in finitely
many arithmetic operations and comparisons, such that Al ∈ Q[i]m×N satisfies the rNSPL with constants

THE BARRIERS OF DEEP LEARNING AND SMALE’S 18TH PROBLEM 39

(1 + ρ)/2 ∈ (0, 1), 2γ > 0. Lemmas 9.1 and 9.2 therefore imply that for any pair z1, z2 ∈ CN we have

‖z1 − z2‖l1w ≤
3 + ρ

1− ρ
(
2σs,M(z2)l1w + ‖z1‖l1w − ‖z2‖l1w

)
+

8γ
√
ξ

1− ρ
‖Al(z1 − z2)‖l2 , (9.16)

‖z1 − z2‖l2 ≤
(

1 + ρ

2
+

(3 + ρ)κ1/4

4

) ‖z1 − z2‖l1w√
ξ

+
(

2 + κ1/4
)
γ‖Al(z1 − z2)‖l2 . (9.17)

Combining these two inequalities, we obtain the bound

‖z1 − z2‖l2 ≤
2C1√
ξ
σs,M(z2)l1w +

C1√
ξ

(
‖z1‖l1w − ‖z2‖l1w

)
+ C2‖Al(z1 − z2)‖l2

≤ 2C1√
ξ
σs,M(z2)l1w+2C2‖Alz2 − y‖l2 +

C1

λ
√
ξ

(
λ‖z1‖l1w− λ‖z2‖l1w+‖Alz1 − y‖l2−‖Alz2 − y‖l2

)
,

(9.18)

where the second inequality follows from the fact that ‖Al(z1 − z2)‖l2 ≤ ‖Alz1 − y‖l2 + ‖Alz2 − y‖l2 and
we chose a positive rational λ ≤ C1/(C2

√
ξ) (we will specify how small |λ−C1/(C2

√
ξ)|must be later, and

always assume λ ∼ C1/(C2

√
ξ)). For notational convenience, we define

G(z1, z2, y) := λ‖z1‖l1w − λ‖z2‖l1w + ‖Alz1 − y‖l2 − ‖Alz2 − y‖l2 , (9.19)

the difference between the values of the objective function FA3 for arguments z1 and z2. We also define

c(z, y) :=
2C1

C2

√
ξ
· σs,M(z)l1w + 2‖Alz − y‖l2 . (9.20)

It follows from (9.18) and λ ≤ C1/(C2

√
ξ) that

‖z1 − z2‖l2 ≤
C1

λ
√
ξ

(c(z2, y) +G(z1, z2, y)) , (9.21)

which also implies the bound G(z1, z2, y) ≥ −c(z2, y). These bounds hold for general z1, z2 and y.
Step 2: We now apply Theorem 9.5 using a suitable scaling to define a family of parametrised NNs, which

we iterate later in the proof (this corresponds to restarting primal-dual iterations with different parameters).
Let σ = τ ∈ (4‖Al‖−1/5, 5‖Al‖−1/6) be positive rational numbers. We can compute such parameters by
approximating ‖Al‖ via any standard algorithm that approximates the largest singular value of a rectangular
matrix using finitely many arithmetic operations and comparisons. We now use Theorem 9.5 (with θ specified
below) with input y/(pβ) and x0/(pβ) for a given p ∈ N, and β ∈ Q>0 (which we explicitly define below).
Given φAlp,λ(y/(pβ), x0/(pβ)), Theorem 9.5 ensures the existence of a vector ψp = ψp(y/(pβ), x0/(pβ))

satisfying ∥∥∥ψp (y
pβ ,

x0

pβ

)
− φAp,λ

(
y
pβ ,

x0

pβ

)∥∥∥
l2
≤ pCθ

where C is given in (9.7) and

λ‖ψp‖l1w − λ
∥∥∥∥ xpβ

∥∥∥∥
l1w

+

∥∥∥∥Aψp − y

pβ

∥∥∥∥
l2
− 1

pβ
‖Ax− y‖l2 ≤

1

p

(
‖x(pβ)−1 − x0(pβ)−1‖2l2

τ
+

1

σ

)
(9.22)

for any x ∈ CN (and we have taken η = 1 in (9.9)). Define the map Hβ
p : Cm × CN → CN by

Hβ
p (y, x0) = pβφAlp,λ

(
y

pβ
,
x0

pβ

)
.

The additional scaling factors can be incorporated so that Hβ
p ∈ NDp,3p+1,3. Rescaling (9.22) yields the

existence of a vector ψ̂p(y, x0) ∈ CN (where the ·̂ denotes an appropriate rescaling by multiplying by pβ)
such that

G
(
ψ̂p(y, x0), x, y

)
≤ 5

4

(
‖Al‖
p2β
‖x− x0‖2l2 + ‖Al‖β

)
, (9.23)

40 THE BARRIERS OF DEEP LEARNING AND SMALE’S 18TH PROBLEM

where we have used τ−1 = σ−1 ≤ 5‖Al‖/4. Moreover, the constant C in Theorem 9.5 is bounded by

C = (1 + ‖w‖l2 + 2σ‖Al‖‖w‖l2)

√
τ + σ

1− τσL2
A

√
τ + σ

τσ
≤ Ĉ1(1 + ‖w‖l2), (9.24)

for a constant Ĉ1 that we can explicitly compute. Hence, upon rescaling (9.8), we arrive at∥∥∥ψ̂p(y, x0)−Hβ
p (y, x0)

∥∥∥
l2
≤ p2θβĈ1(1 + ‖w‖l2).

Using Hölder’s inequality, this also implies that∥∥∥ψ̂p(y, x0)−Hβ
p (y, x0)

∥∥∥
l1w

≤ p2θβĈ1(1 + ‖w‖l2)‖w‖l2 .

It follows from the reverse triangle inequality that

G
(
Hβ
p (y, x0), x, y

)
≤ G

(
ψ̂p(y, x0), x, y

)
+ p2θβĈ1(1 + ‖w‖l2) (‖Al‖+ λ‖w‖l2) . (9.25)

Using this bound in (9.23), and the fact that λ . (γ
√
ξ)−1, we can choose θ ∈ Q>0 such that

θ−1 . p2(1 + ‖w‖l2) max

{
1,
λ‖w‖l2
‖Al‖

}
. p2(1 + ‖w‖l2) max

{
1,
‖w‖l2
‖A‖γ

√
ξ

}
,

and, simultaneously,

G
(
Hβ
p (y, x0), x, y

)
≤ 4

3

(
‖Al‖
p2β
‖x− x0‖2l2 + ‖Al‖β

)
.

Combining this with (9.21), we obtain the key inequality

G
(
Hβ
p (y, x0), x, y

)
≤ 4C2

1‖Al‖
3p2βλ2ξ

[c(x, y) +G(x0, x, y)]
2

+
4

3
‖Al‖β. (9.26)

Step 3: In this step, we specify the choice of p and β. So far, we have not used any information regarding
the vectors x and y. Recall that for our recovery theorem, we restricted to pairs (x, y) such that

2C1

C2

√
ξ
· σs,M(x)l1w + 2‖Ax− y‖l2 ≤ δ, ‖x‖l2 ≤ b1, ‖y‖l2 ≤ b2.

Using this, we can choose l larger if necessary such that for any such (x, y), we have the bound

c(x, y) ≤ 2C1

C2

√
ξ
· σs,M(x)l1w + 2‖Ax− y‖l2 + 2‖A−Al‖‖x‖l2 ≤ 2δ.

The following lemma shows how to choose β and p to gain a decrease in G by a factor of υ ∈ (0, 1), up to
small controllable error terms.

Lemma 9.6. Let υ ∈ (0, 1) ∩Q>0, ε0 ∈ Q>0 and choose β ∈ Q>0 such that 8‖Al‖β = 3υ0υ(ε0 + 2δ) for

some υ0 ∈ [1, 2). Then for any x0 with G(x0, x, y) ≤ ε0 and positive integer p ≥
⌈

8C1‖Al‖
3υλ
√
ξ
√

(2−υ0)υ0

⌉
the

following bound holds
G
(
Hβ
p (y, x0), x, y

)
≤ υ (2δ + ε0) . (9.27)

Proof. The choice of β ensures that 4
3‖Al‖β ≤

υ0υ
2 (2δ + ε0). Using (9.26), and the fact that 0 ≤ c(x, y) +

G(x0, x, y) ≤ 2δ + ε0, the bound (9.27) therefore holds if

32C2
1‖Al‖2

9p2υ0υλ2ξ
(2δ + ε0) ≤ (2− υ0)υ

2
(2δ + ε0).

Rearranging and taking the square root gives the result, where the ceiling function ensures p is an integer. �

We denote the choice of β in Lemma 9.6 by β(υ, ε0). Since 8/3 < 3, we can, by taking l larger and by
making λ closer to C1/(C2

√
ξ) if necessary, and through an appropriate choice of υ0, ensure that we can

compute (using finitely many arithmetic operations and comparisons) a choice p(υ) ≤
⌈

3C2‖A‖
υ

⌉
such that

the conclusion of the lemma holds.

THE BARRIERS OF DEEP LEARNING AND SMALE’S 18TH PROBLEM 41

Step 4: We are now ready to construct our NNs. Note first that G(0, x, y) ≤ ‖y‖l2 ≤ b2, for any y in
our desired input. Given n ∈ N, we set ε0 = b2 and for j = 2, ..., n set εj = υ (2δ + εj−1) . By summing
a geometric series, this implies εn ≤ 2υδ

1−υ + υnb2. We define φn(y) iteratively as follows. We set φ1(y) =

H
β(υ,ε0)
p(υ) (y, 0) and for j = 2, ..., n we set φj(y) = H

β(υ,εj−1)

p(υ) (y, φj−1(y)). Clearly this algorithmically
constructs a NN φn. We can concatenate (by combining affine maps) the NNs corresponding to the Hβ

p

maps to see that φn ∈ ND(n,p),3np+1,3. Moreover, Lemma 9.6 implies the bound G (φn(y), x, y) ≤ εn ≤
2υδ
1−υ + υnb2. Combining this with (9.18),

‖φn(y)− x‖l2 ≤
2C1√
ξ
σs,M(x)l1w + 2C2‖Ax− y‖l2 + 2C2‖A−Al‖l2b1 +

C1

λ
√
ξ

(
2υδ

1− υ
+ υnb2

)
, (9.28)

Again, we can apriori choose l and λ to ensure that

2C2‖A−Al‖l2b1 +
C1

λ
√
ξ

(
2υδ

1− υ
+ υnb2

)
≤ C2

(
2υδ

1− υ
+ δ + υnb2

)
.

Applying this bound to (9.28) yields (5.3).
Finally, we argue for the error in the weighted l1w-norm. Note that since ρ < 1, the choice of λ ensures that

8γ
√
ξ

1−ρ < 3+ρ
1−ρ

1
λ . It follows from (9.16), using the same argument for the l2 case, that

‖φn(y)− x‖l1w ≤
3 + ρ

1− ρ

(
2σs,M(x)l1w +

2

λ
‖Alx− y‖l2 +

1

λ
G (φn(y), x, y)

)
, (9.29)

Again, we can apriori adjust l and λ as necessary to obtain the bound

‖φn(y)− x‖l1w ≤
3 + ρ

1− ρ

(
2σs,M(x)l1w +

2C2

√
ξ

C1
‖Ax− y‖l2 +

C2

√
ξ

C1

(
2υδ

1− υ
+ υnb2

)
+ δ

C2

√
ξ

C1

)
,

where the final term in brackets corresponds to this final approximation. Simplifying this yields (5.4). �

To end this section, we provide a brief proof sketch of the bounds in Remark 5.7. The argument is similar
to the proof of Theorem 5.5. We set φ̂n(y, x0) = βφAln,λ

(
y
β ,

x0

β

)
, and the arguments in Theorem 5.5 show

that we can choose τ, σ, l and θn with θ−1
n = O(n2) such that for any x, x0 ∈ CN and y ∈ Cm,

G
(
φ̂n(y, x0), x, y

)
≤ 3

2

‖A‖
n

(
‖x− x0‖2l2

β
+ β

)
.

If ‖x‖l2 ≤ b1, then we can choose l such that 2‖A− Al‖b2 ≤ ‖A‖β/(2n) min{C1/(C2λ
√
ξ), 1} and hence

(5.5) follows from (9.18). Similarly, we can use the corresponding bound (9.29) to show (5.6).

10. PROOF OF THEOREM 5.10

For the benefit of the reader, we first recall the orthonormal bases used. We then provide coherence
estimates which are used to obtain bounds on the number of samples needed, and end this section with
the proof of Theorem 5.10. It will be convenient to sometimes enumerate the vector or tensor elements
starting from 0, or negative numbers. That is for x ∈ CN with d = 1 we might denote its elements as
x = (x(0), . . . , x(N − 1)), or x = (x(−N/2 + 1), . . . , x(N/2)) and for d > 1 its k = (k1, . . . , kd)’th
element is written as x(k). It will always be clear from the context, which range of indices we consider.
Furthermore, recall from §5.3 that we let N = Kd and K = 2r for r ∈ Z≥0. This is assumed throughout this
section.

10.1. Setup: the relevant orthonormal bases.

Discrete Fourier transform. For a d-dimensional signal x = {x(t)}K−1
t1,...,td=0 ∈ CK×···×K we denote its

Fourier transform by [Fx](ω) = 1
N1/2

∑K−1
t1,...,td=0 x(t) exp(2πiω·t

K), ω ∈ Rd. For discrete computations,

it is customary to consider this transform at the integers ω ∈ {−K/2+1, . . . ,K/2}d and let F (d) ∈ CKd×Kd

42 THE BARRIERS OF DEEP LEARNING AND SMALE’S 18TH PROBLEM

denote the corresponding matrix so that F (d)vec(x) = {[Fx](ω)}ω∈{−K/2+1,...,K/2}d for a suitable vectori-
sation vec(x) of x and ordering of the ω’s. Let

ϑω =
{
N−1/2 exp

(
−2πiK−1ω · t

)
: t ∈ {0, . . . ,K − 1}d

}
⊂ CK×···×K .

Then {
vec(ϑω) : ω ∈ {−K/2 + 1, . . . ,K/2}d

}
(10.1)

is an orthonormal basis for CKd

= CN . Furthermore, recall from §5.3, that we divide the different frequencies
into dyadic bands. For d = 1 we let B1 = {0, 1} and

Bk =
{
−2k−1 + 1, ...,−2k−2

}
∪
{

2k−2 + 1, ..., 2k−1
}
, k = 2, ..., r.

In the general d-dimensional case we set B(d)
k = Bk1 × ...×Bkd for k = (k1, ..., kd) ∈ Nd.

Walsh transform.

Definition 10.1. The Walsh functions vn : [0, 1)→ {+1,−1} are defined by

vω(z) = (−1)
∑∞
j=1(ω(j)+ω(j+1))z(j)

, z ∈ [0, 1), ω ∈ Z≥0, (10.2)

where (z(i))i∈N denotes the binary expansion of z (terminating if z is a dyadic rational) and we write ω =∑∞
j=1 ω

(j)2j−1 for ω(j) ∈ {0, 1}. For z ∈ [0, 1)d and ω ∈ Zd≥0, we let vω(z) = vω1
(z1) · · · vωd(zd).

For x ∈ CK×···×K and K = 2r we let its d-dimensional Walsh transform be denoted by

[Wx](ω) =
1

N1/2

K−1∑
t1,...,td=0

x(t)vω(t/K), ω ∈ {0, . . . , 2r − 1}d.

As in the Fourier case, we let W (d) ∈ CN×N so that W (d)vec(x) = {[Wx](ω)}ω∈{0,...,K−1}d for a suitable
vectorisation of x and ordering of the ω’s. We let %ω = {N−1/2vω(t/K) : t ∈ {0, . . . ,K−1}d}⊂CK×···×K

and note that {
vec(%ω) : ω ∈ {0, . . . ,K − 1}d

}
(10.3)

is an orthonormal basis for CN . As in the Fourier case we recall the frequency bands introduced in §5.3.
Let B1 = {0, 1} and Bk = {2k−1, . . . , 2k − 1} for k = 2, . . . , r in the one-dimensional case, and B(d)

k =

Bk1 × ...×Bkd , k = (k1, ..., kd) ∈ Nd. Whether the notation refers to the Walsh or Fourier frequency bands
will always be clear from the context.

Haar-wavelet transform. On CK the Haar wavelet vectors are defined as

ψj,p(i) =


2
j−r

2 , p2r−j ≤ i <
(
p+

1

2

)
2r−j

−2
j−r

2 ,

(
p+

1

2

)
2r−j ≤ i < (p+ 1)2r−j

0, otherwise,

for j = 0, ..., r − 1 and p = 0, ..., 2j − 1, and we can define the corresponding scaling vectors as ϕj,p(i) =

|ψj,p(i)|. To simplify the notation we set ψ(0)
j,k = ϕj,k and ψ(1)

j,k = ψj,k. For d > 1 and q = (q1, ..., qd) ∈
{0, 1}d, p= (p1, . . . , pd) ∈ Zd≥0 define the tensor product ψq

j,p = ψ
(q1)
j,p1
⊗ ...⊗ ψ(qd)

j,pd
. Splitting these tensors

by scale

C1 = {vec(ψq
0,0) : q ∈ {0, 1}d}, Cj = {vec(ψq

j−1,p) : q ∈ {0, 1}d\{0}, pk = 0, ..., 2j−1 − 1},

for j = 2, ..., r, we get thatC1∪· · ·∪Cr is an orthonormal basis for CN . Next, let the vectors inC1∪· · ·∪Cr,
form the rows of a matrix Φ ∈ CN×N . The matrix Ψ is called the discrete wavelet transform (DWT)
matrix, and its inverse Ψ−1 is called the inverse discrete wavelet transform (IDWT) matrix. Notice that
since C1 ∪ · · · ∪ Cr is an orthonormal basis, we have the relation Ψ−1 = Ψ∗.

THE BARRIERS OF DEEP LEARNING AND SMALE’S 18TH PROBLEM 43

10.2. Uniform recovery guarantees and coherence estimates. We express U =
[
U (k,j)]‖k‖l∞≤r,r

k=1,j=1
in block

form, where the entries in each Uk,j consist of the inner products 〈ϕ, ρω〉 for ϕ ∈ Cj and where ρω is an
element in either (10.1) or (10.3) with ω ∈ B

(d)
k , depending on whether we consider Fourier or Walsh

sampling. For this decomposition we define local coherence as follows.

Definition 10.2. Let U =
[
U (k,j)]‖k‖l∞≤r,r

k=1,j=1
be defined as above. Then the (k, j)th local coherence of U is

µ(Uk,j) =
∣∣∣B(d)

k

∣∣∣max
p,q
|(Uk,j)pq|2, where

∣∣∣B(d)
k

∣∣∣ is the cardinality of B(d)
k .

Recall from Definition 3.1, that for an (s,M)-sparse vector, s = s1 + . . . + sr denotes the total sparsity.
Furthermore, m =

∑‖k‖l∞≤r
k=1 mk denotes the total number of samples in an (N,m)-multilevel subsampling

scheme. The following shows that to use Theorem 5.5, we need to bound the local coherences of U .

Proposition 10.3 ([1]). Let εP ∈ (0, 1), (s,M) be local sparsities and sparsity levels respectively with
2 ≤ s ≤ N , and consider the (N,m)-multilevel subsampling scheme to form a subsampled unitary matrix A
as in Definitions 5.8 and 5.9. Let

tj = min

{⌈
ξ(s,M, w)

w2
(j)

⌉
,Mj −Mj−1

}
, j = 1, ..., r, (10.4)

and suppose that

mk & L′ ·
r∑
j=1

tjµ(Uk,j), k = 1, ..., l (10.5)

where L′ = r · log(2m) · log2(t) · log(N) + log(ε−1
P). Then with probability at least 1 − εP, A satisfies the

weighted rNSPL of order (s,M) with constants ρ = 1/2 and γ =
√

2.

The following bound the local coherences of U , withMF (s,k) andMW(s,k) defined in (5.7) and (5.8).

Lemma 10.4 (Coherence bound for Fourier case). Consider the d-dimensional Fourier–Haar–wavelet ma-
trix with blocks Uk,j , then the local coherences satisfy

µ(Uk,j) . 2−2(j−‖k‖l∞)+

d∏
i=1

2−|ki−j|, (10.6)

where for t ∈ R, t+ = max{0, t}. It follows that

r∑
j=1

sjµ(Uk,j) .
‖k‖l∞∑
j=1

sj

d∏
i=1

2−|ki−j| +

r∑
j=‖k‖l∞+1

sj2
−2(j−‖k‖l∞)

d∏
i=1

2−|ki−j| =MF (s,k). (10.7)

Proof. From the one-dimensional case treated in [6, See proof of Lem. 1], we have∣∣∣[Fψ(1)
j,p

]
(ω)
∣∣∣2 . {2−k2−|k−j|, if j ≤ k,

2−k2−3|k−j|, otherwise
,

We proceed by showing that |[Fψ(0)
j,p](ω)|2 . 2−k2−|k−j| in the one-dimensional case, before considering d

dimensions. Let ω 6= 0 correspond to a frequency in Bk, j ∈ {0, ..., r − 1} and p ∈ {0, ..., 2j − 1}. Then[
Fψ(0)

j,p

]
(ω) = 2

j
2−re2πiωp2−j

2r−j−1∑
t=0

e2πiωt2−r = 2
j
2−re21−jπiωp 1− e2πiω2−j

1− e2πiω2−r
.

A simple application of the double angle formula then yields∣∣∣[Fψ(0)
j,p

]
(ω)
∣∣∣ . 2

j
2−r

∣∣sin(πω2−j)
∣∣

|sin(πω2−r)|
=

2
j
2

|ω|
|ω2−r|

|sin(πω2−r)|
∣∣sin(πω2−j)

∣∣ . 2
j
2−k

∣∣sin(πω2−j)
∣∣ ,

44 THE BARRIERS OF DEEP LEARNING AND SMALE’S 18TH PROBLEM

where the second inequality follows from |ω2−r| ≤ 1/2 and 2k . |ω|. If k > j, this implies |[Fψ(0)
j,p](ω)|2 .

2−k2−|k−j|. If k ≤ j, we use that | sin(πt)| ≤ π|t|, ∀t ∈ R to get
∣∣sin(πω2−j)

∣∣ . 2k−j . Hence,∣∣∣[Fψ(0)
j,p

]
(ω)
∣∣∣2 . 2j−2k22k−2j = 2−j = 2−k2−|k−j|.

If ω = 0 then by definition we have |[Fψ(0)
j,p](ω)|2 . 2−j = 2−k2−|k−j| and hence this bound still holds.

We now consider the general d-dimensional case. The above computations give that

µ(U (k,1)) . 2
∑d
i=1 ki max

q∈{0,1}d

d∏
i=1

max
w∈Bki

∣∣∣[Fψ(qi)
0,0

]
(ω)
∣∣∣2 . d∏

i=1

2−|ki−1|.

Similarly for j > 1

µ(U (k,j)).2
∑d
i=1ki max

q∈{0,1}d\{0}

d∏
i=1

max
w∈Bki

max
pi∈{0,...,2j−1−1}

∣∣∣[Fψ(qi)
j−1,pi

]
(ω)
∣∣∣2. max

q∈{0,1}d\{0}

d∏
i=1

2−|ki−j|−2qi(j−ki)+ .

The maximum value of this estimate is obtained when the non-zero component of q corresponds to the maxi-
mum value of ki. This gives precisely (10.6). �

Before proceeding with the Walsh–Haar–wavelet case, we recall the following lemma [8].

Lemma 10.5. Let ω and j ≥ 0 be integers so that 2j ≤ ω < 2j+1 and let ∆j
k = [k2−j , (k + 1)2−j) for

k∈ Z≥0. Then vω is constant on each of the intervals ∆j+1
k , k ∈ {0, . . . , 2j+1− 1}. Each of the intervals ∆j

k

can be decomposed into the intervals ∆j+1
2k and ∆j+1

2k+1, where vω is equal to 1 on exactly one of them and
equal to −1 on the other. When ω = 0, we have vω ≡ 1.

Lemma 10.6 (Coherence bound for Walsh case). Consider the d-dimensional Walsh–Haar–wavelet matrix
with blocks U (k,j), then the local coherences satisfy

µ(U (k,j)) .


d∏
i=1

2−|ki−j| if ki ≤ j for i = 1, ..., d with at least one equality,

0 otherwise

. (10.8)

It follows that
r∑
j=1

sjµ(U (k,j)) . s‖k‖l∞

d∏
i=1

2−|ki−‖k‖l∞ | =MW(s,k). (10.9)

Proof. We begin with some computations in the one-dimensional case. Let Ij,p = {p2r−j , . . . , (p+1)2r−j−
1}. We recall that that supp(ψ

(0)
j,p) = supp(ψ

(1)
j,p) = Ij,p. Using Lemma 10.5 it is clear that for 2m ≤ ω <

2m+1, %ω is constant on Im+1,k, for k ∈ {0, . . . , 2m+1 − 1} and that for any pair Im+1,2t, Im+1,2t+1, %ω
changes sign. For ω = 0, we have that %ω is all constant. Keeping track of the supports gives the relations∣∣∣〈ψ(0)

j,p , %ω

〉∣∣∣ =

2−j/2 if ω < 2j

0 otherwise
, and

∣∣∣〈ψ(1)
j,p , %ω

〉∣∣∣ =

2−j/2 if 2j ≤ ω < 2j+1

0 otherwise
.

In particular, we can rewrite this as |〈ψ(0)
j,p , %ω〉| = 2−j/2 = 2−k/22−(j−k)/2 if ω ∈ Bk, k ≤ j and 0

otherwise, and note that |〈ψ(1)
j,p , %ω〉| = 2−j/2 if ω ∈ Bj+1 and 0 otherwise.

THE BARRIERS OF DEEP LEARNING AND SMALE’S 18TH PROBLEM 45

Turning to the general d-dimensional case. The above computations immediately give that µ(U (k,1)) .∏d
i=1 δki,1, where δi,j is the Kronecker-delta. Similarly for j > 1

µ(U (k,j)) =
∣∣∣B(d)

k

∣∣∣ max
q∈{0,1}d\{0}

d∏
i=1

max
ωi∈Bki

max
pi∈{0,...,2j−1−1}

∣∣∣〈%ωi , ψ(qi)
j−1,pi

〉
∣∣∣2

. 2
∑d
i=1 ki max

q∈{0,1}d\{0}

d∏
i=1

(
δqi,0δki<j2

−ki−|ki−j| + δqi,1δki,j2
−ki
)

. max
q∈{0,1}d\{0}

d∏
i=1

(
δqi,0δki<j2

−|ki−j| + δqi,1δki,j

)
.

This estimate is zero unless ki ≤ j and at least one of the ki is equal to j. In this case the maximum
corresponds to qi = 1 if ki = j and qi = 0 otherwise. This gives precisely (10.8). �

10.3. Proof of Theorem 5.10. For the benefit of the reader, we recall that A = PIDVΨ. We apply Propo-
sition 10.3, noting that the tj in (10.4) satisfy

tj .
ξ(s,M, w)

w2
(j)

≤ sj · κ(s,M, w), t . s · κ(s,M, w). (10.10)

Therefore
∑r
j=1 tjµ(Uk,j) . κ(s,M, w)

∑r
j=1 sjµ(Uk,j). Combining with (10.10), note that (10.5) holds if

mk & κ(s,M, w) ·

 r∑
j=1

sjµ(Uk,j)

 · L, where (10.11)

L =
r · log(2m)

log(2)
·log2 (s · κ(s,M, w))·log(N)+log(ε−1

P) = d·r2 ·log(2m)·log2 (s · κ(s,M, w))+log(ε−1
P),

since N = 2r·d. In the Fourier sampling case, by Lemma 10.4, (10.11) holds if (5.9) holds. Similarly, in the
Walsh sampling case, by Lemma 10.6, (10.11) holds if (5.10) holds. By Proposition 10.3, with probability
at least 1 − εP, A satisfies the weighted rNSPL of order (s,M) with constants ρ = 1/2 and γ =

√
2. The

conclusion of Theorem 5.5 then holds for the uniform recovery of the Haar wavelet coefficients x = Ψc ∈
CN .

For the final part, we use Theorem 5.5. The only difference is that we have to compose the NNs with (an
approximation of) the matrix Ψ∗ to recover approximations of c from approximations of x = Ψc. Recall that

Z = max

{
1,

maxj=1,...,r w(j)

√
(Mj −Mj−1)√

ξ(s,M, w)

}
and set n0 =

⌈
log
(
δ−1Z

)
κ1/4Z

⌉
. Let p be as in Theorem 5.5 and let n1 ∈ Z≥0 such that n0 = n1p+n2 for

n1 ∈ {0, ..., p−1} (the n from the statement of the theorem corresponds to n1p). Set φ(y) = Ψ∗ [φn1(y, 0)] ,

where φn1
denotes the NN from Theorem 5.5 with b1 = 1, b2 = ‖A‖ + δ and υ = e−1. Strictly speaking,

we need to approximate ‖A‖ and e−1, and also apply a rational approximation of the matrix Ψ∗ instead
of Ψ∗, but we have avoided this extra notational clutter (the associated approximation errors can be made
smaller than κ1/4δ since the vectors we apply the matrix to are uniformly bounded). Now suppose that
y = PIDV c + e ∈ J (δ, s,M, w), and notice that for ‖c‖l2 ≤ 1 we have that ‖y‖l2 ≤ ‖A‖ + ‖e‖l2 ≤ b2

since Ψ is an isometry. Then, since C1, C2 ∼ κ1/4 (using that κ ≥ 1), (5.3) implies that

‖φ(y)− c‖l2 = ‖φn0
(y, 0)−Ψc‖l2 . κ

1/4δ + b2κ
1/4e−n1 .

The theorem follows if we can prove that b2e−n1 . δ.
Let t be as in (10.4) and let ∆1,∆2, ... be a partition of {1, ..., N} such that each support set is (t,M)-

sparse. We can choose such as partition with at most

max
j=1,...,r

⌈
Mj −Mj−1

tj

⌉
. max
j=1,...,r

⌈
Mj −Mj−1

min{ξ(s,M, w)/w2
(j),Mj −Mj−1}

⌉

46 THE BARRIERS OF DEEP LEARNING AND SMALE’S 18TH PROBLEM

sets. The proof of Proposition 10.3 shows thatA satisfies the RIPL of order (t,M) and hence for any x ∈ CN ,

‖Ax‖l2 ≤
∑
i

‖A(x∆i
)‖l2 .

∑
i

‖x∆i
‖l2 . max

j=1,...,r

√√√√⌈ Mj −Mj−1

min{ξ(s,M, w)/w2
(j),Mj −Mj−1}

⌉
‖x‖l2 ,

where we have used Hölder’s inequality in the last step. It follows that ‖A‖ . Z and hence that p . κ1/4Z
and b2 . Z . This implies that n1 & log

(
δ−1Z

)
and b2e−n1 . δ, completing the proof. �

ACKNOWLEDGMENTS

An unrolled version of Chambolle and Pock’s primal-dual algorithm [53, Ch. 15.3] was developed in
TensorFlow by Krisitian M. Haug, prior to this work. We are grateful to Kristian, for sharing his code and
allowing us to use parts of in when implementing the FIRENETs. We would also like to thank Ben Adcock
and Alex Townsend for useful discussions. This work was supported by a Research Fellowship at Trinity
College, Cambridge (M.J.C.), and a Leverhulme Prize and a Royal Society University Research Fellowship
(A.C.H.).

REFERENCES

[1] B. Adcock, V. Antun, and A. C. Hansen. Uniform recovery in infinite-dimensional compressed sensing and applications to structured
binary sampling. arXiv preprint arXiv:1905.00126, 2019.

[2] B. Adcock, C. Boyer, and S. Brugiapaglia. On oracle-type local recovery guarantees in compressed sensing. Inf. Inference, 2018.
[3] B. Adcock, S. Brugiapaglia, and M. King-Roskamp. Do log factors matter? On optimal wavelet approximation and the foundations of

compressed sensing. arXiv preprint arXiv:1905.10028, 2019.
[4] B. Adcock and A. C. Hansen. Generalized sampling and infinite-dimensional compressed sensing. Found. Comput. Math., 16(5):1263–

1323, 2016.
[5] B. Adcock, A. C. Hansen, C. Poon, and B. Roman. Breaking the coherence barrier: A new theory for compressed sensing. In Forum of

Mathematics, Sigma, volume 5. Cambridge University Press, 2017.
[6] B. Adcock, A. C. Hansen, and B. Roman. A note on compressed sensing of structured sparse wavelet coefficients from subsampled

Fourier measurements. IEEE Signal Process Lett., 23(5):732–736, 2016.
[7] N. Akhtar and A. Mian. Threat of adversarial attacks on deep learning in computer vision: A survey. IEEE Access, 6:14410–14430,

2018.
[8] V. Antun. Coherence estimates between Hadamard matrices and Daubechies wavelets, 2016. Master’s thesis, University of Oslo.
[9] V. Antun, F. Renna, C. Poon, B. Adcock, and A. C. Hansen. On instabilities of deep learning in image reconstruction and the potential

costs of AI. PNAS, 2020.
[10] M. Arjovsky, S. Chintala, and L. Bottou. Wasserstein generative adversarial networks. In Proceedings of the 34th International Confer-

ence on Machine Learning-Volume 70, pages 214–223, 2017.
[11] S. Arora and B. Barak. Computational complexity: a modern approach. Cambridge University Press, 2009.
[12] S. Arridge, P. Maass, O. Öktem, and C.-B. Schönlieb. Solving inverse problems using data-driven models. Acta Numer., 28:1–174, 2019.
[13] N. Baker et al. Workshop report on basic research needs for scientific machine learning: Core technologies for artificial intelligence.

Technical report, USDOE Office of Science (SC), Washington, DC (United States), 2019.
[14] A. Bastounis and A. C. Hansen. On the absence of uniform recovery in many real-world applications of compressed sensing and the

restricted isometry property and nullspace property in levels. SIAM J. Imaging Sci., 10(1):335–371, 2017.
[15] A. Bastounis, A. C. Hansen, and V. Vlačić. The extended Smale’s 9th problem - on computational barriers and paradoxes in estimation,

regularisation, learning and computer-assisted proofs. Preprint, 2020.
[16] S. Becker, J. Bobin, and E. J. Candès. NESTA: A fast and accurate first-order method for sparse recovery. SIAM J. Imaging Sci., 4(1):1–

39, 2011.
[17] A. Belloni, V. Chernozhukov, and L. Wang. Square-root lasso: pivotal recovery of sparse signals via conic programming. Biometrika,

98(4):791–806, 2011.
[18] J. Ben-Artzi, M. J. Colbrook, A. C. Hansen, O. Nevanlinna, and M. Seidel. Computing Spectra – On the Solvability Complexity Index

hierarchy and towers of algorithms. arXiv:1508.03280v5, 2020.
[19] J. Ben-Artzi, M. Marletta, and F. Rösler. Computing scattering resonances. arXiv:2006.03368, 2020.
[20] J. Ben-Artzi, M. Marletta, and F. Rösler. Computing the sound of the sea in a seashell. arXiv:2009.02956, 2020.
[21] A. Ben-Tal and A. Nemirovski. Lectures on modern convex optimization–2020/2021.
[22] J. Bigot, C. Boyer, and P. Weiss. An analysis of block sampling strategies in compressed sensing. IEEE Trans. Inf. Theory, 62(4):2125–

2139, 2016.
[23] P. Blanchard, D. J. Higham, and N. J. Higham. Accurately computing the log-sum-exp and softmax functions. IMA J. Numer. Anal.,

2020. draa038.

THE BARRIERS OF DEEP LEARNING AND SMALE’S 18TH PROBLEM 47

[24] L. Blum, F. Cucker, M. Shub, and S. Smale. Complexity and Real Computation. Springer-Verlag New York, Inc., 1998.
[25] L. Blum, M. Shub, and S. Smale. On a theory of computation and complexity over the real numbers: NP-completeness, recursive

functions and universal machines. American Mathematical Society. Bulletin., 21(1):1–46, 1989.
[26] H. Boche and V. Pohl. The solvability complexity index of sampling-based Hilbert transform approximations. In 2019 13th International

conference on Sampling Theory and Applications (SampTA), pages 1–4. IEEE, 2019.
[27] H. Bölcskei, P. Grohs, G. Kutyniok, and P. Petersen. Optimal approximation with sparsely connected deep neural networks. SIAM J.

Math. Data Sci., 1:8–45, 2019.
[28] J. Bolte, A. Daniilidis, and A. Lewis. The łojasiewicz inequality for nonsmooth subanalytic functions with applications to subgradient

dynamical systems. SIAM J. Optim., 17(4):1205–1223, 2007.
[29] N. Boullé, Y. Nakatsukasa, and A. Townsend. Rational neural networks. arXiv preprint arXiv:2004.01902, 2020.
[30] C. Boyer, J. Bigot, and P. Weiss. Compressed sensing with structured sparsity and structured acquisition. Appl. Comput. Harmon. Anal.,

46(2):312 – 350, 2019.
[31] T. A. Bubba, G. Kutyniok, M. Lassas, M. Maerz, W. Samek, S. Siltanen, and V. Srinivasan. Learning the invisible: a hybrid deep

learning-shearlet framework for limited angle computed tomography. Inverse Problems, 35(6):064002, 2019.
[32] P. Bürgisser and F. Cucker. Condition : the geometry of numerical algorithms. Grundlehren der mathematischen Wissenschaften.

Springer, Berlin, Heidelberg, New York, 2013.
[33] E. J. Candes and Y. Plan. A Probabilistic and RIPless Theory of Compressed Sensing. IEEE Trans. Inf. Theory, 57(11):7235–7254, 2011.
[34] E. J. Candès, J. Romberg, and T. Tao. Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency

information. IEEE Trans. Inf. Theory, 52(2):489–509, 2006.
[35] E. J. Candes, J. K. Romberg, and T. Tao. Stable signal recovery from incomplete and inaccurate measurements. Commun. Pure Appl.

Math., 59(8):1207–1223, 2006.
[36] N. Carlini and D. Wagner. Audio adversarial examples: Targeted attacks on speech-to-text. In 2018 IEEE Security and Privacy Work-

shops (SPW), pages 1–7. IEEE, 2018.
[37] A. Chambolle and T. Pock. A first-order primal-dual algorithm for convex problems with applications to imaging. J. Math. Imaging

Vision, 40(1):120–145, 2011.
[38] A. Chambolle and T. Pock. On the ergodic convergence rates of a first-order primal–dual algorithm. Math. Program., 159(1-2):253–287,

2016.
[39] X. Chen, J. Liu, Z. Wang, and W. Yin. Theoretical linear convergence of unfolded ISTA and its practical weights and thresholds. In

Advances in Neural Information Processing Systems, pages 9061–9071, 2018.
[40] M. J. Colbrook and A. C. Hansen. On the infinite-dimensional QR algorithm. Numer. Math., 143(1):17–83, 2019.
[41] M. J. Colbrook, B. Roman, and A. C. Hansen. How to compute spectra with error control. Phys. Rev. Lett., 122(25):250201, 2019.
[42] F. Cucker. The arithmetical hierarchy over the reals. J. Logic Comput., 2(3):375–395, 1992.
[43] G. E. Dahl, D. Yu, L. Deng, and A. Acero. Context-dependent pre-trained deep neural networks for large-vocabulary speech recognition.

IEEE Trans. Audio Speech Lang. Process., 20(1):30–42, 2011.
[44] I. Daubechies, R. DeVore, S. Foucart, B. Hanin, and G. Petrova. Nonlinear approximation and (deep) relu networks. ArXiv,

abs/1905.02199, 2019.
[45] R. DeVore, B. Hanin, and G. Petrova. Neural network approximation. arXiv preprint arXiv:2012.14501, 2020.
[46] R. A. DeVore. Nonlinear approximation. Acta Numer., 7:51–150, 1998.
[47] D. L. Donoho. Compressed sensing. IEEE Trans. Inf. Theory, 52(4):1289–1306, 2006.
[48] P. Doyle and C. McMullen. Solving the quintic by iteration. Acta Math., 163(3-4):151–180, 1989.
[49] Q. Fan et al. MGH–USC human connectome project datasets with ultra-high b-value diffusion MRI. Neuroimage, 124:1108–1114, 2016.
[50] C. Fefferman and L. Seco. On the energy of a large atom. Bull. Amer. Math. Soc. (N.S.), 23(2):525–530, 1990.
[51] C. Fefferman and L. Seco. Interval arithmetic in quantum mechanics. In Applications of interval computations (El Paso, TX, 1995),

volume 3 of Appl. Optim., pages 145–167. Kluwer Acad. Publ., Dordrecht, 1996.
[52] S. G. Finlayson, J. D. Bowers, J. Ito, J. L. Zittrain, A. L. Beam, and I. S. Kohane. Adversarial attacks on medical machine learning.

Science, 363(6433):1287–1289, 2019.
[53] S. Foucart and H. Rauhut. A mathematical introduction to compressive sensing. Birkhäuser Basel, 2013.
[54] M. P. Friedlander, H. Mansour, R. Saab, and Ö. Yilmaz. Recovering compressively sampled signals using partial support information.

IEEE Trans. Inf. Theory, 58(2):1122–1134, 2012.
[55] M. Genzel, J. Macdonald, and M. März. Solving inverse problems with deep neural networks–robustness included? arXiv preprint

arXiv:2011.04268, 2020.
[56] R. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich feature hierarchies for accurate object detection and semantic segmentation. In

Proceedings of the IEEE conference on computer vision and pattern recognition, pages 580–587, 2014.
[57] K. Gödel. Über formal unentscheidbare Sätze der Principia Mathematica und verwandter Systeme I. Monatshefte für mathematik und

physik, 38(1):173–198, 1931.
[58] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio. Generative adversarial nets.

In Advances in neural information processing systems, pages 2672–2680, 2014.
[59] N. M. Gottschling, V. Antun, B. Adcock, and A. C. Hansen. The troublesome kernel: why deep learning for inverse problems is typically

unstable. arXiv preprint arXiv:2001.01258, 2020.

48 THE BARRIERS OF DEEP LEARNING AND SMALE’S 18TH PROBLEM

[60] K. Gregor and Y. LeCun. Learning fast approximations of sparse coding. In Proceedings of the 27th International Conference on Inter-
national Conference on Machine Learning, pages 399–406, 2010.

[61] T. Hales et al. A formal proof of the Kepler conjecture. Forum Math. Pi, 5:e2, 29, 2017.
[62] T. C. Hales. A proof of the Kepler conjecture. Annals of Mathematics (2), 162(3):1065–1185, 2005.
[63] K. Hammernik, T. Klatzer, E. Kobler, M. P. Recht, D. K. Sodickson, T. Pock, and F. Knoll. Learning a variational network for recon-

struction of accelerated MRI data. Magn. Reson. Med., 79(6):3055–3071, 2018.
[64] R. Hamon, H. Junklewitz, and I. Sanchez. Robustness and explainability of artificial intelligence. JRC Technical Report, 2020.
[65] A. C. Hansen. On the solvability complexity index, the n-pseudospectrum and approximations of spectra of operators. J. Amer. Math.

Soc., 24(1):81–124, 2011.
[66] T. Hastie, R. Tibshirani, and M. Wainwright. Statistical learning with sparsity: the lasso and generalizations. CRC press, 2015.
[67] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In Proceedings of the IEEE conference on computer

vision and pattern recognition, pages 770–778, 2016.
[68] C. F. Higham and D. J. Higham. Deep learning: An introduction for applied mathematicians. SIAM Rev., 61(4):860–891, 2019.
[69] G. Hinton et al. Deep neural networks for acoustic modeling in speech recognition: The shared views of four research groups. IEEE

Signal Process Mag., 29(6):82–97, 2012.
[70] Y. Huang et al. Some investigations on robustness of deep learning in limited angle tomography. In International Conference on Medical

Image Computing and Computer-Assisted Intervention, pages 145–153. Springer, 2018.
[71] K. H. Jin, M. T. McCann, E. Froustey, and M. Unser. Deep convolutional neural network for inverse problems in imaging. IEEE Trans.

Image Process., 26(9):4509–4522, 2017.
[72] A. Jones, A. Tamtögl, I. Calvo-Almazán, and A. Hansen. Continuous compressed sensing for surface dynamical processes with helium

atom scattering. Sci. Rep., 6:27776, 2016.
[73] H. Karimi, J. Nutini, and M. Schmidt. Linear convergence of gradient and proximal-gradient methods under the Polyak-łojasiewicz

condition. In Joint European Conference on Machine Learning and Knowledge Discovery in Databases, pages 795–811. Springer, 2016.
[74] F. Knoll et al. Advancing machine learning for MR image reconstruction with an open competition: Overview of the 2019 fastMRI

challenge. Magn. Reson. Med., 2020.
[75] E. Kobler, A. Effland, K. Kunisch, and T. Pock. Total deep variation: A stable regularizer for inverse problems. arXiv preprint

arXiv:2006.08789, 2020.
[76] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep convolutional neural networks. In Advances in neural

information processing systems, pages 1097–1105, 2012.
[77] G. Kutyniok and W.-Q. Lim. Optimal compressive imaging of fourier data. SIAM J. Imag. Sci., 11(1):507–546, 2018.
[78] Y. LeCun, Y. Bengio, and G. Hinton. Deep learning. Nature, 521:436 EP –, 05 2015.
[79] J. Liu, X. Chen, Z. Wang, and W. Yin. ALISTA: Analytic weights are as good as learned weights in LISTA. In International Conference

on Learning Representations, 2018.
[80] J. Long, E. Shelhamer, and T. Darrell. Fully convolutional networks for semantic segmentation. In Proceedings of the IEEE conference

on computer vision and pattern recognition, pages 3431–3440, 2015.
[81] M. Lustig, D. Donoho, and J. M. Pauly. Sparse MRI: The application of compressed sensing for rapid MR imaging. Magn. Reson. Med.,

58(6):1182–1195, 2007.
[82] J. Ma, R. P. Sheridan, A. Liaw, G. E. Dahl, and V. Svetnik. Deep neural nets as a method for quantitative structure–activity relationships.

JCIM, 55(2):263–274, 2015.
[83] S. Mallat. A wavelet tour of signal processing: The sparse way. Academic Press, third edition, 2008.
[84] Y. V. Matiyasevich. Hilbert’s tenth problem. MIT Press, 1993.
[85] M. T. McCann, K. H. Jin, and M. Unser. Convolutional neural networks for inverse problems in imaging: A review. IEEE Signal Process

Mag., 34(6):85–95, 2017.
[86] C. McMullen. Families of rational maps and iterative root-finding algorithms. Annals of Mathematics (2), 125(3):467–493, 1987.
[87] C. McMullen. Braiding of the attractor and the failure of iterative algorithms. Invent. Math., 91(2):259–272, 1988.
[88] V. Monga, Y. Li, and Y. C. Eldar. Algorithm unrolling: Interpretable, efficient deep learning for signal and image processing. arXiv

preprint arXiv:1912.10557, 2019.
[89] S. Moosavi-Dezfooli, A. Fawzi, O. Fawzi, and P. Frossard. Universal adversarial perturbations. In IEEE Conf. on computer vision and

pattern recognition, pages 86–94, July 2017.
[90] S.-M. Moosavi-Dezfooli, A. Fawzi, and P. Frossard. Deepfool: a simple and accurate method to fool deep neural networks. In Proceed-

ings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 2574–2582, 2016.
[91] M. J. Muckley et al. State-of-the-art Machine Learning MRI Reconstruction in 2020: Results of the Second fastMRI Challenge. arXiv

preprint arXiv:2012.06318, 2020.
[92] A. Pinkus. Approximation theory of the MLP model in neural networks. Acta Numer., 8:143–195, 1999.
[93] R. B. Platte, L. N. Trefethen, and A. B. Kuijlaars. Impossibility of fast stable approximation of analytic functions from equispaced

samples. SIAM Rev., 53(2):308–318, 2011.
[94] B. Poonen. Undecidable problems: a sampler. Interpreting Gödel: Critical Essays, pages 211–241, 2014.
[95] A. Raj, Y. Bresler, and B. Li. Improving robustness of deep-learning-based image reconstruction. In International Conference on Machine

Learning, pages 7932–7942. PMLR, 2020.

THE BARRIERS OF DEEP LEARNING AND SMALE’S 18TH PROBLEM 49

[96] R. T. Rockafellar. Monotone operators and the proximal point algorithm. SIAM J. Control Optim., 14(5):877–898, 1976.
[97] B. Roman, A. Hansen, and B. Adcock. On asymptotic structure in compressed sensing. arXiv preprint arXiv:1406.4178, 2014.
[98] V. Roulet, N. Boumal, and A. d’Aspremont. Computational complexity versus statistical performance on sparse recovery problems. Inf.

Inference, 9(1):1–32, 2020.
[99] S. Shalev-Shwartz and S. Ben-David. Understanding machine learning: From theory to algorithms. Cambridge university press, 2014.

[100] S. Smale. The fundamental theorem of algebra and complexity theory. American Mathematical Society. Bulletin., 4(1):1–36, 1981.
[101] S. Smale. On the efficiency of algorithms of analysis. Bull. Amer. Math. Soc. (N.S.), 13(2):87–121, 1985.
[102] S. Smale. Complexity theory and numerical analysis. Acta Numer., 6:523–551, 1997.
[103] S. Smale. Mathematical problems for the next century. Math. Intelligencer, 20:7–15, 1998.
[104] R. Strack. Imaging: AI transforms image reconstruction. Nat. Methods, 15(5):309, 2018.
[105] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. J. Goodfellow, and R. Fergus. Intriguing properties of neural networks. In

Int. Conf. on Learning Representations, 2014.
[106] A. Turing. On Computable Numbers, with an Application to the Entscheidungsproblem. Proc. London Math. Soc. (2), 42(3):230–265,

1936.
[107] A. Turing. I.-Computing machinery and intelligence. Mind, LIX(236):433–460, 1950.
[108] I. Y. Tyukin, D. J. Higham, and A. N. Gorban. On adversarial examples and stealth attacks in artificial intelligence systems. arXiv

preprint arXiv:2004.04479, 2020.
[109] S. A. van de Geer. Estimation and testing under sparsity. Springer, 2016.
[110] Q. Wang, M. Zenge, H. E. Cetingul, E. Mueller, and M. S. Nadar. Novel sampling strategies for sparse MR image reconstruction. Proc.

Int. Soc. Mag. Res. in Med., 2014.
[111] M. Webb and S. Olver. Spectra of Jacobi operators via connection coefficient matrices. arXiv preprint arXiv:1702.03095, 2017.
[112] S. Weinberger. Computers, Rigidity, and Moduli: The Large-Scale Fractal Geometry of Riemannian Moduli Space. Princeton University

Press, USA, 2004.
[113] B. Zhu, J. Z. Liu, S. F. Cauley, B. R. Rosen, and M. S. Rosen. Image reconstruction by domain-transform manifold learning. Nature,

555(7697):487, 03 2018.

	1. Introduction
	2. Main Results I: Fundamental barriers and existence of algorithms
	3. Main Results II: Algorithms compute stable and accurate NNs in specific cases
	4. FIRENET: Balancing the trade-off between stability and accuracy
	5. Main Results III: Precise formulations of Theorem 5.5 and Theorem 5.10
	6. FIRENET: Example of the exponential convergence and pseudocode
	7. Connections with previous work
	8. Proof of Theorem 2.2 and tools from the SCI hierarchy
	9. Proof of Theorem 5.5
	10. Proof of Theorem 5.10
	Acknowledgments
	References

