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ABSTRACT. Deep learning (DL) has had unprecedented success and is now entering scientific computing with full
force. However, DL suffers from a universal phenomenon: instability, despite universal approximating properties
that often guarantee existence of stable neural networks (NNs). We show the following paradox. There are basic
problems in scientific computing where one can prove the existence of NNs with great approximation qualities,
however, there does not exist any algorithm, even randomised, that can train (or compute) such a NN. Indeed,
for any positive integers K > 2 and L, there are cases where simultaneously: (a) no randomised algorithm can
compute a NN correct to K digits with probability greater than 1/2, (b) there exists a deterministic algorithm
that computes a NN with K − 1 correct digits, but any such (even randomised) algorithm needs arbitrarily many
training data, (c) there exists a deterministic algorithm that computes a NN withK−2 correct digits using no more
than L training samples. These results provide basic foundations for Smale’s 18th problem and imply a potentially
vast, and crucial, classification theory describing conditions under which (stable) NNs with a given accuracy can
be computed by an algorithm. We begin this theory by initiating a unified theory for compressed sensing and
DL, leading to sufficient conditions for the existence of algorithms that compute stable NNs in inverse problems.
We introduce Fast Iterative REstarted NETworks (FIRENETs), which we prove and numerically verify are stable.
Moreover, we prove that only O(| log(ε)|) layers are needed for an ε accurate solution to the inverse problem
(exponential convergence), and that the inner dimensions in the layers do not exceed the dimension of the inverse
problem. Thus, FIRENETs are computationally very efficient.
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1. INTRODUCTION

Deep learning (DL) has demonstrated unparalleled accomplishments in fields ranging from image classifi-
cation and computer vision [71, 83, 94], voice recognition and automated diagnosis in medicine [54, 85, 102],
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to inverse problems and image reconstruction [16, 78, 87, 105] (this list of areas is by no means exhaus-
tive, see [96], for example). However, at the same time, there is now overwhelming empirical evidence that
DL leads to unstable methods, a phenomenon that seems universal and present in all the applications listed
above [11,13,46,67,86,110,134] and in most of the new artificial intelligence (AI) technologies. These insta-
bilities are often detected by what has been commonly known in the literature as adversarial attacks. Moreover,
the instabilities can be present even in random cases and not just worst-case scenarios [74] (see also “stealth
attacks” introduced in [142] which concern perturbations to the AI system itself). There is a growing aware-
ness of this problem in high-stake applications and society as a whole [17, 67, 79], and instability seems to be
the Achilles’ heel of modern AI and DL – see Figure 1 for an example. Classical approximation theoretical
results prove, however, that a continuous function can be approximated arbitrarily well by a neural network
(NN). Thus, a stable problem described by a stable function can always be solved stably with a NN. This leads
to the basic question:

Why does DL lead to universally unstable methods even when one can prove that stable and
accurate neural networks exist?

It is important to note that an existence proof of NNs does not immediately imply that they can be con-
structed by an algorithm. In particular, we are faced with the following fundamental problem:

(Question I: Can neural networks that provable exist be trained/computed?) Let ΩT be
a collection of training data ι = {xj}, and suppose that for each ι ∈ ΩT one can prove that
there exists a NN Φι (with certain properties). In particular, there is a mappingK : ΩT → N
(a particular collection of NNs). Does there exist an algorithm, taking ι ∈ ΩT as input, that
can compute an approximation to K(ι) = Φι for all ι ∈ ΩT , and to what accuracy?

Question I is the key problem that we address (see §1.2 for a detailed summary), and our barriers, as well as
positive results, help shed light on why the desired NNs that exist are not computed.

Remark 1.1 (Stability/accuracy trade-off and existence of algorithms). It is, of course, not difficult to
compute stable NNs: the zero network is stable, however, not particularly useful. Hence, the big problem
is to compute accurate and stable NNs. Scientific computing is based on two pillars: stability and accuracy,
however, there is often a trade-off between the two, see for example [115]. Indeed, there may be barriers
preventing the existence of accurate and stable algorithms. In particular, there is a trade-off between accuracy
and stability, and some accuracy may have to be sacrificed in order to secure stability. �

1.1. Hilbert’s program, Smale’s 18th problem and the foundations of AI. The strong optimism regarding
the abilities of AI and DL is summarised in The New Yorker’s (April 2017 issue) quote of G. Hinton: “They
should stop training radiologists now.” One can argue that this optimism is comparable to the optimism about
mathematics in the early 20th century, led by D. Hilbert. Hilbert believed that mathematics could prove or
disprove any statement and, moreover, that there were no restrictions on which problems could be solved by
algorithms. The latter being emphasised in Hilbert’s 10th problem [104]: “Find an algorithm to determine
whether a given polynomial Diophantine equation with integer coefficients has an integer solution.” Hilbert
did not consider the case that such an algorithm may not exist (even though, indeed, no such algorithm exists),
suggesting a substantial optimism on what mathematics and algorithms can solve. However, Hilbert was also
well aware that such foundations were not established in mathematics and initiated a vast program leading to
the beginning of modern logic and subsequently modern computer science.

Gödel [72] and Turing [140] turned Hilbert’s optimism upside down by their foundational contributions
establishing impossibility results on what mathematics and digital computers can achieve [116]. We argue that
a program on the foundations on AI, similar to Hilbert’s program, is needed, where impossibility results are
provided in order to establish the boundaries of DL and AI.
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FIGURE 1. (Unstable neural network in image reconstruction). The neural network AU-
TOMAP (Nature (2018) [149]) represents the tip if the iceberg of DL in inverse problems.
The paper promises that one can “... observe superior immunity to noise...”. Moreover,
the follow-up announcement (Nature Methods “AI transforms image reconstruction,” [132])
proclaims: “A deep-learning-based approach improves speed, accuracy and robustness of
biomedical image reconstruction”. However, the figure shows |x+ rj |, where x is the origi-
nal image and the rjs are perturbations meant to simulate worst-case effect, as well as the that
AUTOMAP reconstruction Ψ(A(x+ rj)) from the subsampled Fourier MRI data A(x+ rj)

(here A ∈ Cm×N is a subsampled Fourier transform, see §4 for details) concluding that this
network is completely unstable. Note that the condition number cond(AA∗) = 1, so the
instabilities are not caused by poor condition. As demonstrated in [13], this is a universal
phenomenon in DL for inverse problems.

Note that such a program is already suggested in Smale’s 18th problem, from the list of mathematical
problems for the 21st century [128], which echoes Turing’s paper from 1950 [141] on the question: what is
AI? Turing asks if a computer can think, and suggests the imitation game as a test for his question about AI.
Smale takes the question even further and asks in his 18th problem:

“What are the limits of intelligence, both artificial and human?”

— Smale’s 18th problem (from the list of mathematical problems for the 21st century [128])

The question is followed by a discussion on the problem that ends as follows: “Learning is a part of human
intelligent activity. The corresponding mathematics is suggested by the theory of repeated games, neural
nets and genetic algorithms.” Given the recent unprecedented developments in DL and NNs [96], and the
impact these developments may have on AI, it is timely to consider Smale’s 18th problem. We interpret the
words “artificial intelligence” as the current state-of-the-art AI for which DL is essential. Our results provide
foundations for Smale’s 18th problem as they imply a potentially vast classification theory for determining the
limits of what DL can achieve. Importantly, this classification theory cannot be determined by the extensive
collection of non-constructive existence theorems (à la universal approximation theorems) for NNs that have
flourished over the last decades.
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1.2. Summary of the main results. Our main results demonstrate that there are fundamental barriers prevent-
ing NNs, despite their existence, from being computed by algorithms. This helps shed light on the intricate
question on why current algorithms in DL produce unstable networks despite the fact that stable NNs often ex-
ist in the particular application. Indeed, our results demonstrate that there is a rich and unknown classification
theory on which types of stable NNs can be computed by algorithms. The techniques for proving the barri-
ers below stem from the Solvability Complexity Index (SCI) hierarchy – that has recently been used to settle
longstanding questions in scientific computing [20, 24–26, 50–52, 80] – and that generalises the fundamental
problems of S. Smale on existence of algorithms [30,31,125–127] and the work by C. McMullen [106,107,129]
and P. Doyle & C. McMullen [61].

(I) (Neural networks may exist, but cannot be computed, even for well-conditioned problems). The answer
to the above Question I is, in general, ‘no’, even for well-conditioned problems. Mappings that take training
data to NNs may exist, however, no algorithm that computes the NN from the training data exists. This
statement is made precise in Theorems 2.1 and 2.2, and is valid for any model of computation.

(II) (Randomised algorithms do not help in solving the issue). The answer to Question I is still ‘no’ for any
randomised algorithm. That is, as Theorem 2.2 reveals, replacing a deterministic algorithm with a randomised
algorithm will not yield the desired error with probability better than coin-flipping.

(III) (Algorithms may compute neural networks toK−1 digits accuracy, but notK). As Theorem 2.2 reveals,
the answer to Question I above depends on the desired accuracy. For any integer K > 1 there exist classes
of problems for which there is a mapping taking the training data to the NN, however, there will only exist
an algorithm that can compute an approximation to the NN to K − 1 correct digits, and no algorithm – even
randomised – can compute an approximation to K correct digits.

(IV) (Algorithms may exist, but any algorithm will require arbitrary large training data). Theorem 2.2 also
shows that there are classes of problems where one can compute an approximation to the desired NN with
K−1 correct digits, however, for anyM ∈ N and any algorithm, there will be a problem so that the algorithm
requires more than M training data to provide an approximation with at least K − 1 correct digits. However,
for the same class of problems, there exists an algorithm providingK−2 correct digits using only one training
datum. Moreover, various condition numbers (see §8.1) of the classes in Theorem 2.2 are all bounded by 1.

(V) (Algorithms computing stable and accurate neural networks exist only in specific cases). (I)–(IV) demon-
strate that it is only in specific cases that there exists an algorithm that can compute the desired NN, despite
the fact that one can prove that the desired NN exists. This implies that there is a theory classifying which
NNs can be computed by algorithms and which conditions are sufficient and necessary for the existence of
algorithms. We initiate this classification theory below in Theorems 5.5 and 5.10.

(VI) (Unrolling optimisation algorithms as neural networks will, in general, not converge). The concept of
unrolling optimisation algorithms (such as ISTA or its learned version LISTA) as a sequence of NNs where
the n-th iteration can be written as the n-th NN in the sequence, often with n layers, has been a highly popular
way of creating NNs (see §7). Due to the specific choices of mappings in Theorems 2.1 and 2.2 (see §2.1),
our impossibility results imply that such sequences of NNs will in general never converge. Indeed, potentially
surprisingly, the ISTA algorithm will converge for the objective function of the optimisation problem, yet the
unrolled NNs will in general never converge to the solution set of the optimisation problem.

(VII) (Under specific conditions, unrolling yields stable and accurate neural networks). Theorems 5.5 and 5.10
show that under specific conditions that typically are present in, for example, Magnetic Resonance Imaging
(MRI), the technique of unrolling optimisation algorithms will yield stable and accurate NNs for certain
inverse problems, hence providing an algorithm for constructing these NNs. Such NNs outperform state-of-
the-art unstable (displayed in Figure 1) trained NNs based on DL, such as AUTOMAP, and they can withstand
adversarial attacks, see Figure 2. When these specific conditions are present, the unrolling NNs can even be
used to stabilise any unstable NN, see Figure 3 for an example.



THE BARRIERS OF DEEP LEARNING AND SMALE’S 18TH PROBLEM 5

(VIII) (Specific conditions yield unrolled neural networks with exponential convergence in the number of lay-
ers and fast transforms to implement the linear maps). Given specific conditions, the unrolling procedure
can be manipulated through a careful restart scheme to yield exponential convergence: one can obtain an error
of ε by using a NN with order | log(ε)| layers. Moreover, the linear maps in the layers of the NN can be im-
plemented using fast transforms in many applications (e.g. those in §5.3). Hence, one obtains fast algorithms
to produce stable and accurate NNs that can be executed very efficiently. We demonstrate this in §6, where
we note that only O(10) layers are needed to obtain optimal recovery of an undersampled noisy image.

(IX) (Stability/accuracy trade-off and avoiding overperformance). There is a trade-off between stability and
accuracy in DL, with limits on how well a stable NN can perform in inverse problems (e.g. if a NN is trained
to accurately recover vectors whose difference lies close to the kernel of the forward map, the recovery is
necessarily unstable - see §3). Figure 5 demonstrates this with a U-net trained on images consisting of
ellipses and which is quite stable. However, when a detail not in the training set is added, it washes it
out almost entirely. This is a problem in real-world clinical practice - Facebook and NYU’s 2019 FastMRI
challenge reported that networks that performed well in terms of standard image quality metrics were prone
to false negatives, failing to reconstruct small, but physically-relevant image abnormalities [90]. In contrast,
as demonstrated in §4, our NNs offer a blend of both stability and accuracy. However, they are by no means
the end of the story. Tracing out the optimal stability vs. accuracy trade-off curve is crucial for applications
and will no doubt require a myriad of different techniques to be developed to tackle different problems.

(X) (Numerical stability) It is important to understand the difference between the stability of a map and the
stability of its numerical implementation (see, for example, the recent work in [29] which considers common
functions used in classification methods). As well as the former, our results cover the latter by performing an
error analysis of the forward pass of the NNs, assuming each layer is computed with an error (see Remark
5.3). We show that only low precision is needed and that worst-case errors can only ever accumulate slowly
as the number of layers increase.

We call our neural networks Fast Iterative REstarted NETworks, or FIRENETs.

1.3. Notation. Here we briefly collect some basic notation - further notation will be introduced throughout
where appropriate. We use Nm,N to denote the class of neural networks (NNs) from Cm to CN (see §5.1
for the precise definition of a NN). Given a metric space (M, d), x ∈ M and X ⊂ M, we let d(x,X) =

dist(x,X) = infy∈X d(x, y). For a matrix A ∈ Cm×N , the norm ‖A‖ refers to the operator norm of A when
Cm and CN are equipped with the standard l2-norm. For x ∈ CN and p ∈ [1,∞], ‖x‖lp refers to the lp-norm
of x. For a set of indices S and vector x, xS is the vector defined by (xS)j = xj if j ∈ S and (xS)j = 0 if
j /∈ S. The field of complex rationals Q + iQ is denoted by Q[i]. We use � to denote the end of a proof and
� to denote the end of a remark.

2. MAIN RESULTS I: FUNDAMENTAL BARRIERS AND EXISTENCE OF ALGORITHMS

The canonical problem studied in this paper is to solve an underdetermined system of equations. In partic-
ular, the inverse problem can be described as follows:

Given noisy measurements y = Ax+ e ∈ Cm of x ∈ CN , recover x. (2.1)

Here A ∈ Cm×N represents a model of typically undersampled sampling modality (m < N ), for example,
A could be a subsampled discrete Fourier transform as in Magnetic Resonance Imaging (MRI). Moreover,
e ∈ Cm denotes the noise vector. The problem (2.1) is the basis for much of inverse problems and image
analysis. The possibility of y 6= Ax models noise or perturbations.

2.1. Existence of NNs is not enough, algorithms may not compute them sufficiently accurately. In order
to demonstrate that the results we introduce also are present in applications, we consider basic mappings used
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in modern mathematics of information, inverse problems and optimisation. Given a matrix A ∈ Cm×N and
vector y ∈ Cm, we consider the following three minimisation problems:

(P1) argminx∈CN F
A
1 (x) := ‖x‖l1w , such that ‖Ax− y‖l2 ≤ ε, (2.2)

(P2) argminx∈CN F
A
2 (x, y, λ) := λ‖x‖l1w + ‖Ax− y‖2l2 , (2.3)

(P3) argminx∈CN F
A
3 (x, y, λ) := λ‖x‖l1w + ‖Ax− y‖l2 , (2.4)

known respectively as (quadratically constrained) basis pursuit [2,22,45], unconstrained LASSO [43,81,138]
and unconstrained square-root LASSO [3, 23, 41, 143]. The parameters λ and ε are assumed to be positive
rational numbers, and the weighted l1w norm is given by ‖x‖l1w :=

∑N
l=1 wl|xl|, where the weight vector w lies

in QN>0 (so that each weight wj is a positive rational). Throughout the paper, we use the following notation:

Ξ(A, y) is the set of minimisers for (Pj) given input A ∈ Cm×N , y ∈ Cm, (2.5)

where, for notational convenience, we have suppressed the dependence on ε or λ (which are usually fixed
parameters) and the index j. As our results hold for all of the problems (Pj), we will in general not have any
subscript index on Ξ unless specifically needed. In certain cases, we will write Ξj to specify minimisers of
problem (Pj). Let

A ∈ Cm×N , S = {yk}Rk=1 ⊂ Cm, R <∞.

We consider the following key question:

Given a collection Ω of such pairs (A,S), does there exists a neural network approximating
the mapping Ξ, and can it be trained by an algorithm?

To make this question precise, we first note that A and the elements in S will typically never be exact, but can
be approximated to arbitrary precision. This would be the case if, for example, A was a subsampled discrete
cosine transform. Thus, we can access approximations {yk,n}Rk=1 ⊂ Q[i]m and An ∈ Q[i]m×N such that

‖yk,n − yk‖ ≤ 2−n, ‖An −A‖ ≤ 2−n, ∀n ∈ N. (2.6)

(The bounds 2−n are not important in what follows and can be replaced by any other sequence of positive
rationals converging to zero.) We also assume access to {xk,n}Rk=1 ⊂ Q[i]N such that

inf
x∗∈Ξ(An,yk,n)

‖xk,n − x∗‖ ≤ 2−n, ∀n ∈ N. (2.7)

Hence, the training set associated with (A,S) ∈ Ω for training a suitable NN must be

ιA,S := {(yk,n, An, xk,n) | k = 1, . . . , R, and n ∈ N} . (2.8)

Thus, given a collection of (A,S), we denote the class of all such admissible training data by

ΩT := {ιA,S as in (2.8) | (A,S) ∈ Ω, (2.6) and (2.7) hold} .

The precise statement addressing the above question is summarised in the following theorems (the first of
which follows directly from the universal approximation theorems).

Theorem 2.1 (Neural networks exist for Ξ). Consider the problem (Pj) (j = 1, 2, 3) for fixed dimensions
m < N and for fixed parameters λ or ε. Then, for any family Ω of such (A,S) described above, there exists a
mapping

K : ΩT → Nm,N , K(ιA,S) = ϕA,S

such that

ϕA,S(y) ∈ Ξ(A, y), ∀y ∈ S.

In other words, K maps the training data ΩT to NNs that solve the optimisation problem (Pj) for each
(A,S) ∈ Ω.
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Despite the existence of NNs guaranteed by Theorem 2.1, the problem of computing such a NN from
training data is a most delicate issue, as described in the following theorem (proven in §8).

Theorem 2.2 (Despite existence, neural networks may only be computed to a certain accuracy). For
j = 1, 2 or 3, consider the optimisation problem (Pj) for fixed parameters λ ∈ (0, 1] or ε ∈ (0, 1/2] and
wl = 1, where N ≥ 2 and m < N . Let K > 2 be a positive integer and let L ∈ N. Then there exists a class
Ω of elements (A,S), as in (2.5), with the following properties.

(i) There does not exist any algorithm that, given a training set ιA,S ∈ ΩT , produces a neural network
φA,S with

min
y∈S

inf
x∗∈Ξ(A,y)

‖φA,S(y)− x∗‖l2 ≤ 10−K , ∀ (A,S) ∈ Ω. (2.9)

Furthermore, for any p > 1/2, no probabilistic algorithm (BSS, Turing or any model of computation)
can produce a neural network φA,S such that (2.9) holds with probability at least p.

(ii) There does exist a deterministic Turing machine that, given ιA,S ∈ ΩT , produces a neural network
φA,S such that

max
y∈S

inf
x∗∈Ξ(A,y)

‖φA,S(y)− x∗‖l2 ≤ 10−(K−1), ∀ (A,S) ∈ Ω. (2.10)

However, for any probabilistic Turing machine (Γ,P), M ∈ N and p ∈
[
0, N−m

N+1−m

)
that produces a

neural network φA,S , there exists a training set ιA,S ∈ ΩT such that for all y ∈ S,

P
(

inf
x∗∈Ξ(A,y)

‖φA,S(y)− x∗‖l2 > 101−K

or the training data size needed to construct φA,S > M
)
> p.

(2.11)

(iii) There does exist a deterministic Turing machine that, given ιA,S ∈ ΩT and using only L training data
from each ιA,S , produces a neural network φA,S(y) such that

max
y∈S

inf
x∗∈Ξ(A,y)

‖φA,S(y)− x∗‖l2 ≤ 10−(K−2), ∀ (A,S) ∈ Ω. (2.12)

Moreover, the class Ω is well-conditioned with condition numbers of the matrices AA∗ and the solution maps
Ξ, as well as the feasibility primal local condition number (see §8.1), all bounded by 1 independent of all
parameters.

Remark 2.3 (Generalisations of Theorem 2.2). For simplicity, we have stated Theorem 2.2 for errors measured
in the l2-norm and the case of unweighted l1 regularisation (all the wl = 1) in the problems (Pj). However,
the proof can be adapted, and similar results hold for any norm replacing the l2-norm, and any non-singular
weighted l1 regularisation. Moreover, result (i) in Theorem 2.2 holds regardless of the model of computation,
even if we allowed real number arithmetic (see Definition 8.3). For further details on the precise setup, in-
cluding the definition of condition numbers, which are standard in the literature, see §8.1. Finally, the theorem
remains true if we restrict ourselves to real-valued matrices and vectors. �

Remark 2.4 (Theorem 2.2 and impossibility results in the SCI hierarchy). The impossibility results in Theo-
rem 2.2 are connected to the concept of breakdown epsilons (strong, weak and probabilistic) that were intro-
duced (in [20]) as new pillars in the SCI hierarchy in order to establish impossibility results. These concepts
are fundamental in order to understand limitations of algorithms and address key issues such as runtime and
complexity. The results in Theorem 2.2, however, address a different problem, namely the amount of training
data needed to construct the NN. Hence, our results in Theorem 2.2 extend the work in [20] to include training
data as a resource to the algorithm, which is crucial in order to understand limitations in modern AI. To capture
this we introduce Sequential General Algorithms into the SCI hierarchy (Definition 8.3) which require new
proof techniques. �
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3. MAIN RESULTS II: ALGORITHMS COMPUTE STABLE AND ACCURATE NNS IN SPECIFIC CASES

Theorem 2.2 shows that the optimisation problems (P1), (P2), and (P3) (defined in (2.2), (2.3), and (2.4))
cannot, in general, be solved by an algorithm. Hence any attempt at solving the general inverse problem
(2.1) by such methods, without additional assumptions, is doomed to fail. In fact, any stable and accurate
reconstruction procedure must be “kernel aware” (see, for example, [74]).

3.1. The failure of adversarial training. Adversarial training has become a standard attempt to remedy in-
stabilities. However, such a strategy may yield poor performance. Indeed, consider the following optimisation
problem which seeks to generate a reconstruction in the form of a NN, given samples Θ = {(ys, xs) : s =

1, ..., R,Axs = ys} and ε, λ > 0:

min
φ∈Nm,N

1

R

R∑
s=1

max
‖z‖l2≤ε

{
‖xs − φ(ys)‖2l2 + λ‖xs − φ(ys + z)‖2l2

}
. (3.1)

In other words, for each training point (y, x) ∈ Θ we find the worst-case perturbation z in the ε-ball around
y (measured by the l2-norm). This is a simplified model of what one might do using Generative Adversarial
Networks (GANs) to approximate adversarial perturbations [14, 73]. For simplicity, assume that A has full
row rank m and that we have access to exact measurements ys = Axs. Suppose that our sample is such that
mini 6=j ‖yi − yj‖l2 > 2ε. Any φ that minimises (3.1) must be such that

φ(ys + z) = xs, ∀z with ‖z‖l2 ≤ ε.

Such networks can easily be constructed using, say, ReLU activation functions. Now suppose that x2 is altered
so that x1 − x2 lies in the kernel of A. Then for any minimiser φ, we must have

φ(y1 + z) = φ(y2 + z) =
x1 + x2

2
, ∀z with ‖z‖l2 ≤ ε

and hence we can never be more than ‖x1 + x2‖l2/2 accurate over the whole test sample. Given these types
of examples and Theorem 2.2, we arrive at the following question:

Are there sufficient conditions on the matrix A that will imply the existence of an algorithm
that can compute a neural networks that are both accurate and stable for the image recon-
struction problem (2.1)?

3.2. A sufficient condition yielding an algorithm computing accurate and stable neural networks. Pre-
cise theorems can be found in §5, and for ease of exposition, we present a simplified version here. To state
this version, we need the concept of sparsity in levels from compressed sensing. This local sparsity structure
was introduced in [8] (see also [139] for different sparsities within wavelet scales), and was demonstrated
empirically to play a key role in the quality of the image recovery via the “flip test” in [8,19,121]. The issue is
that natural images are not sparse in X-lets (wavelets, curvelets, shearlets etc.); they are sparse in levels. Thus,
sparsity in levels is needed since the classical theoretical model in compressed sensing, sparsity in one level,
does not account for the recovery often found in practice for problems such as the Fourier-wavelet problem.
(The main problem for this example is that the Fourier-wavelet matrix is coherent.) For example, the seminal
work of Lustig, Donoho & Pauly on compressed sensing for MRI [101] observed both poor recovery from
uniform random sampling and the improvement offered by variable density sampling.

Definition 3.1 (Sparsity in levels). Let M = (M1, . . . ,Mr) ∈ Nr, where 1 ≤ M1 < · · · < Mr = N , and
s = (s1, . . . , sr) ∈ Nr0, where sk ≤ Mk − Mk−1 for k = 1, . . . , r and M0 = 0. A vector x ∈ CN is
(s,M)-sparse in levels if

|supp(x) ∩ {Mk−1 + 1, ...,Mk}| ≤ sk, k = 1, ..., r.
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The total sparsity is s = s1 + ...+ sr. We denote the set of (s,M)-sparse vectors by Σs,M. We also define the
following measure of distance of a vector x to Σs,M by

σs,M(x)l1w = inf{‖x− z‖l1w : z ∈ Σs,M}.

Since its introduction, this model has been used to explain the effectiveness of compressed sensing in real
life applications [18, 19, 88, 145]. For simplicity, we will assume throughout that each sk > 0 and that

wi = w(j), if Mj−1 + 1 ≤ i ≤Mj . (3.2)

In other words, the weights in the l1w norm are constant in each level. For an image c which is compressible
in the wavelet basis, σs,M(x)l1w is expected to be small if x is the vector of wavelet coefficients and the levels
correspond to wavelet levels, see [58, 135] and [103, Ch. 9]. In general, the weights are a prior on anticipated
support of the vector [69, 117, 137] and we discuss some specific choices in §5.3.

The key “kernel aware” property that guarantees algorithms that compute stable and accurate NNs (with
uniform recovery guarantees) for the inverse problem (2.1), is Definition 3.2, first used in the context of
compressed sensing in [19] for the unweighted l1 norm, and extended to l1w in [2]. In §5.3, we give examples
common in applications where this condition holds.

Definition 3.2 (weighted rNSP in levels). Let (s,M) be local sparsities and sparsity levels respectively. For
weights {wi}Ni=1 (wi > 0), we say that A ∈ Cm×N satisfies the weighted robust null space property in levels
(weighted rNSPL) of order (s,M) with constants 0 < ρ < 1 and γ > 0 if for any (s,M) support set ∆,

‖x∆‖l2 ≤
ρ‖x∆c‖l1w√

ξ
+ γ‖Ax‖l2 , for all x ∈ CN .

A simplified version of Theorem 5.5 can then be stated as follows, where suppressed constants are inde-
pendent of n and given explicitly in Theorem 5.5.

Simplified version of Theorem 5.5 (Computing stable and accurate NNs with exponential convergence).
There exists an algorithm such that for any input sparsity parameters (s,M), weights {wi}Ni=1, A ∈ Cm×N

(with the input A given by {Al}) satisfying the rNSPL with constants 0 < ρ < 1 and γ > 0 (also input), and
input parameters n ∈ N and {δ, b1, b2} ⊂ Q>0, the algorithm outputs a neural network φn with O(n) layers
and the following property. For any x ∈ CN and y ∈ Cm with

σs,M(x)l1w + ‖Ax− y‖l2 . δ, ‖x‖l2 . b1, ‖y‖l2 . b2,

we have the following exponential convergence guarantee in n

‖φn(y)− x‖l2 . δ + e−n.

(This is often called “linear convergence” or “geometric convergence”, though we have used the term expo-
nential convergence throughout this paper for clarity.)

Hence, up to the small error term σs,M(x)l1w , and in the limit n → ∞ (with exponential convergence),
we recover x stably with an error proportional to the measurement error ‖Ax − y‖l2 . Further interpretations
of the terms in this bound can be found in Remark 5.3. Theorem 5.5 also bounds the error when we only
approximately apply the nonlinear maps of the NNs: in other words, we also gain a form of stability of the
forward pass of the NN. In addition to providing stability, it is precisely the rNSPL that allows us to prove
exponential convergence through a careful restarting and reweighting scheme. We therefore call our NNs
Fast Iterative REstarted NETworks (FIRENETs). Note that, even when ignoring issues such as stability and
inexact arithmetic, a naive unrolling of iterative methods commonly used in compressed sensing gives a slow
first-order convergence rate with error boundsO(δ+n−1) (and in certain regimes second-orderO(δ+n−2)):
see Remark 5.7.
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Remark 3.3 (Logarithmic grid search when parameters are unknown). In the case that we do not know ρ or
γ (the constants in the definition of rNSPL), we can perform a log-scale grid search for suitable parameters.
Given a total budget of O(n log(n)) layers, we can still gain exponential convergence in n by choosing the
parameters in the grid search that lead to the vector with minimal FA3 (the objective function of (P3)). In some
cases, such as Theorem 5.10, it is possible to prove probabilistic results where ρ and γ are known. �

Finally, in §5.3, we apply Theorem 5.5 to examples in compressive imaging (see §6 for computational
examples), with A arising from multilevel random subsampling (Definition 5.8) of Fourier and Walsh (or
binary) measurements, and sparsity in levels measured in terms of wavelet coefficients. Theorem 5.10 gives
precise bounds on the number of samples needed, m, and the number of layers of a NN needed to achieve a
specified accuracy:

Simplified version of Theorem 5.10. We show that stable and accurate (with exponential convergence in
the number of layers) neural networks for image reconstruction can be constructed via an algorithm, with the
number of samples needed the same, up to logarithmic terms, as the current best known oracle estimators.

Remark 3.4 (Stability in the l2-norm and kernel awareness properties for other norms). We prove stability
results for perturbations of input measured in the l2-norm. Since our vector space is finite-dimensional, this
immediately provides stability in any norm. However, for norms different to the l2-norm, the constants in-
volved may vary with the dimension of the problem. This raises the question of whether kernel awareness
properties similar to Definition 3.2 can be directly used to prove stability results in other norms and avoid this
dependence. �

4. FIRENET: BALANCING THE TRADE-OFF BETWEEN STABILITY AND ACCURACY

As demonstrated in [13], current DL methods for image reconstruction can be unstable in the sense that
(1) a tiny perturbation, in either the image or sampling domain, can cause severe artefacts in the reconstructed
image (instability - see Figure 1), and/or (2) a tiny detail in the image domain might be washed out in the
reconstructed image (lack of accuracy), resulting in potential false negatives. Inevitably, there is a stability-
accuracy trade-off, for this type of linear inverse problem, making it impossible for any reconstruction method
to become arbitrarily stable without sacrificing accuracy or visa versa (see §3). In this section, we show that
the NNs computed by our algorithm (FIRENETs) are stable with respect to tiny perturbations and accurate for
images which are sparse in wavelets. As most images are sparse in wavelets, these networks also show great
generalisation properties to unseen images.

Computing worst-case (adversarial) perturbations – First we describe the algorithm developed in [13] for
computing perturbations meant to simulate worst-case effect in terms of reconstruction artefacts. It is this
algorithm which has been used to compute the perturbed images, seen in Figures 1, 2, 4, and 5. The algorithm
does the following. Given an image x ∈ CN and a NN φ ∈ Nm,N , designed for image reconstruction from
samples y provided by a specific sampling modality described by the matrix A, the algorithm searches for a
perturbation of the image that makes the most severe change in the output of the network while still keeping
the perturbation small. The algorithm seeks a vector r ∈ CN such that

‖φ(y +Ar)− φ(Ax)‖l2 is large, while ‖r‖l2 is small.

Specifically, consider the optimisation problem

Qφy (r) =
1

2
‖φ(y +Ar)− x‖2l2 −

λ

2
‖r‖2l2 , r∗(y) ∈ argmax

r
Qφy (r). (4.1)

The problem (4.1) seeks perturbations in the image domain since this provides an easy way to compare the
original image and deduce whether the reconstruction of the perturbed image is acceptable/unacceptable. Of
course, we could have just as easily considered perturbations in the sampling domain instead.
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x |x+ v1| |x+ v2| |x+ v3|

Φ(A(x+ v1)) Φ(A(x+ v2)) Φ(A(x+ v3)) Φ(A(x+ v4))

FIGURE 2. (The FIRENET is stable to worst-case perturbations). Using the same
method as in Figure 1, we compute perturbations vj in the image domain, to simulate worst-
case effect for the FIRENET Φ: Cm → CN . Here x and A ∈ Cm×N are the same image
and sampling matrix as in Figure 1. Moreover, for each j = 1, 2, 3 we have ensured that
‖vj‖l2 ≥ ‖rj‖l2 , where the rj’s are the perturbations from Figure 1. In the top row, we see
the perturbed images |x + vj |, j = 0, 1, 2, 3 (assuming v0 = 0), and in the bottom row, we
see the network’s reconstruction from the perturbed measurements A(x+ vj).

The non-concavity of the objective function in (4.1) means that finding a global maximiser of (4.1) is
very difficult (if not impossible), even for small values of m and N . The test aims to locate local maxima
of (4.1) by using a gradient search method. A natural method to find local maxima is gradient ascent with
momentum. This uses the gradient of Qφy (which can easily be written down) along with two parameters
γ > 0 (the momentum) and η > 0 (the learning rate) in each step towards a local maximum. Namely, r(0) is
initialised randomly and then we update the perturbation at the jth step via v(j + 1) = γv(j) + η∇rQφy (r(j))

and r(j + 1) = r(j) + v(j + 1). The final perturbation is taken after M steps, where typically we run 10-
100 steps, seeking the perturbation which causes the worst reconstructed image. Just as in the case when
training NNs using stochastic gradient descent with momentum, choosing the parameters γ and η is an art of
engineering, and the optimal choices of γ, η are based on empirical testing.

Worst-case (adversarial) perturbations for AUTOMAP and FIRENETs – Figure 1 in the introduction
shows the algorithm applied to the AUTOMAP [149] network used for MRI reconstruction with 60% subsam-
pling. The network weights are provided by the authors of [149] and had been trained on de-identified brain
images from the MGH–USC HCP dataset [63], where the image measurements y = Ax+ewere contaminated
with small Gaussian noise e. The image x seen in Figure 1 is taken from the mentioned dataset, the algorithm
is run on the AUTOMAP network to find a sequence of perturbations |r1| < |r2| < |r3|. In order to illustrate
the smallness of the perturbations, we have visualised |x+ rj | in the first row of Figure 1. As can be seen from
the second row in the figure, the network reconstruction completely deforms the image and the reconstruction
is severely unstable (similar results for other networks are demonstrated in [13]).

In contrast, we have applied the same algorithm, but now for the new NNs (FIRENETs) reported in this
paper. Figure 2 shows the algorithm applied to the constructed FIRENETs described by Theorems 5.5 and
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|x+ r3| Ψ(ỹ), ỹ = A(x+ r3) Φ (ỹ,Ψ(ỹ))

FIGURE 3. (Adding a few FIRENET layers at the end of AUTOMAP makes it stable).
The FIRENET Φ: Cm × CN → CN takes as input measurements y ∈ Cm and an initial
guess for x, which we call x0 ∈ CN . We now concatenate a 25-layer (p = 5, n = 5)
FIRENET Φ and the AUTOMAP network Ψ: Cm → CN , by using the output from AU-
TOMAP as initial guess x0, i.e., we consider the neural network mapping y 7→ Φ(y,Ψ(y)).
In this experiment we consider the perturbed image x+ r3 from Figure 1 and the perturbed
measurements ỹ = A(x + r3) (here A is as in Figure 1). As can be seen from the figure,
the new network is stable with respect to AUTOMAP’s worst-case perturbation r3. Note
that in all other experiments we use the initial guess x0 = 0, and consider Φ as a mapping
Φ: Cm → CN .

5.10 (we have renamed the perturbations vj to emphasise the fact that these perturbations are sought for the
new NNs and have nothing to do with the adversarial perturbations in Figure 1). We now see that despite the
search for adversarial perturbations, the reconstruction remains stable. The error in the reconstruction was
also found to be of the same order of the perturbation (as expected from the stability in Theorems 5.5 and
5.10). In applying the test to FIRENETs, we tested/tuned the parameters in the gradient ascent algorithm
considerably (much more so than was needed for applying the test to AUTOMAP, where finding instabilities
was straightforward) in order to find the worst reconstruction results, yet the reconstruction remained stable.
Finally, it should be mentioned that this search algorithm is just one form of test and it is likely that there
are many other tests for creating instabilities for NNs for inverse problems. This highlights the importance of
results such as Theorems 5.5 and 5.10, which guarantee stability regardless of the perturbation.

Stabilising unstable NNs with FIRENETs – Our NNs also act as a stabiliser. For example, Figure 3 shows
the adversarial example for AUTOMAP (taken from Figure 1), but now shows what happens when we take the
reconstruction from AUTOMAP as an input to our FIRENETs. Here we are using the fact that we can view
our networks as approximations of unrolled (or unfolded) and restarted iterative methods, allowing us to use
the output of AUTOMAP as the initial image for the reconstruction. We see that FIRENETs fix the output of
AUTOMAP and stabilise the reconstruction.

Generalisation – In order to demonstrate the generalisation properties of our NNs, Figure 4 shows the
stability algorithm applied to FIRENETs for a range of images. This shows stability across different types
of images and also highlights an important fact. Namely, methods based on the conditions in §3 allow great
generalisation properties and avoid the need for time-consuming and expensive retraining of NNs for different
classes of images.

The accuracy/stability trade-off and false negatives – It is easy to produce a perfectly stable network: the
zero network is the obvious candidate! However, this network would obviously have poor performance and
produce many false negatives. The challenge is to simultaneously ensure performance and stability. Figure
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|x1 + v1| |x2 + v2| |x3 + v3|

Φ(A(x1 + v1)) Φ(A(x2 + v2)) Φ(A(x3 + v3))

FIGURE 4. (FIRENET withstand worst-case perturbations and generalises well). To
show that FIRENET generalises well and are stable, we consider three different images xj ,
j = 1, 2, 3. For each image xj we compute a perturbation vj meant to simulate worst-
case effect for a FIRENET Φ with n = 5 and p = 5. The first row shows the perturbed
images xj + vj , whereas the second row shows the FIRENET reconstructions from data
A(xj+vj). Here we used a subsampling ration of 25%, the perturbations vj have magnitude
‖Avj‖l2/‖Axj‖l2 ≥ 0.05 in the measurement domain.

5 highlights this issue. Here we have trained a NN to recover a set of ellipses images from noisy Fourier
measurements y = Ax+ e, where e is small additive Gaussian noise and m/N = 0.15. The network is using
a standard benchmarking architecture for image reconstruction, and maps y 7→ φ(A∗y), where φ : CN → RN

is a trainable U-net NN [87, 100]. This network (with the given training procedure) has been used as an
example of a NN that is robust towards adversarial attacks [70] and it is indeed stable with respect to worst-
case perturbations. However, a key issue is that it is also producing false negatives due to its inability to
reconstruct details. Similarly, as reported in the 2019 FastMRI challenge, trained NNs that performed well
in terms of standard image quality metrics were prone to false negatives: they failed to reconstruct small, but
physically-relevant image abnormalities [90]. FIRENET, on the other hand, has a guaranteed performance
(on images being sparse in wavelet bases) and stability given specific conditions on the sampling procedure.
The challenge is to determine the optimal balance between accuracy/stability, a problem that is well known in
numerical analysis.

5. MAIN RESULTS III: PRECISE FORMULATIONS OF THEOREM 5.5 AND THEOREM 5.10

5.1. Neural networks and notational conventions. To state our theorems, we need to be precise about the
definition of a NN. For introductions to the field of DL and NNs, we refer the reader to [84, 96] and [114],
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Original Original + detail (h1) U-Net reconstruction FIRENET reconstruction
x x+ h1 φ(A∗A(x+ h1)) Φ(A(x+ h1))

(full size) (cropped, blue frame) (cropped, blue frame) (cropped, blue frame)

Orig. + worst-case noise U-Net reconstruction Orig. + worst-case noise FIRENET reconstruction
|x+ h2| φ(A∗A(x+ h2)) |x+ h3| Φ(A(x+ h3))

(cropped, red frame) (cropped, red frame) (cropped, red frame) (cropped, red frame)

FIGURE 5. (Trained neural networks with limited performance are often stable). We
have trained a U-net type network (see §4 for details) φ : CN → RN to reconstruct images
from measurements y 7→ φ(A∗y). The network has been trained solely on a set of ellipses
images. The network is perfectly stable with respect to small worst-case perturbations but,
as it is trained on images consisting of ellipses, it creates false negatives when it is unable to
reconstruct crucial details. In this figure, h1 ∈ CN is the perturbation corresponding to the
text “can u see it?” and the perturbations h2, h3 ∈ CN , are computed to simulate worst case
effect for the U-Net and FIRENET (with n = 5 and p = 5), respectively. The magnitude of
the perturbations hj are ‖Ahj‖l2/‖Ax‖l2 ≥ 0.05 for j = 2, 3.

respectively, and the references therein. In order to capture standard architectures used in practice such as
skip connections, we consider the following definition of a NN. Without loss of generality and for ease of
exposition, we also work with complex-valued NNs. Such networks can be realised by real-valued NNs by
splitting into real and imaginary parts. A NN is a mapping φ : Cm → CN that can be written as a composition

φ(y) = VL(ρL−1(...ρ1(V1(y)))),

where

• Each Vj is an affine map CNj−1 → CNj given by Vj(x) = Wjx+ bj(y) where Wj ∈ CNj×Nj−1 and
the bj(y) = Rjy + cj ∈ CNj are affine functions of the input y.

• Each ρj : CNj → CNj is one of two forms:
(i) There exists an index set Ij ⊂ {1, ..., Nj} (possibly a strict subset) such that ρj applies a possibly

non-linear function fj : C → C element-wise on the input vector’s components with indices in
Ij . In other words

ρj(x)k =

{
fj(xk), if k ∈ Ij
xk, otherwise.
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(ii) There exists a possibly non-linear function fj : C → C such that, after decomposing the input
vector x as (x0, X

T , Y T )T for scalar x0 and X ∈ Cmj (so that Y ∈ CNj−1−mj ), we have

ρj :

x0

X

Y

→
 0

fj(x0)X

Y

 . (5.1)

The affine dependence of the bias terms bj(y) on y allows skip connections from the input to the current
level as in standard definitions of feed-forward NNs (see, for example, [124] page 269). The above type of
architecture has become standard [78, 87, 123, 148].

Remark 5.1 (On the use of multiplication). The use of non-linear functions of the form (ii) may be re-
expressed using a combinations of element-wise logarithm and exponential functions (of the form (i)). Another
option is to use the following element-wise squaring trick:

x0

X

Y

→
fj(x0)

X

Y

→


fj(x0)1
X

fj(x0)1 +X

Y



→


fj(x0)21
X2

[fj(x0)1 +X]2

Y

→
 0

1
2

[
[fj(x0)1 +X]2 − fj(x0)21−X2

]
= fj(x0)X

Y

 ,

where 1 denotes a vector of ones of the same size as X (so that fj(x0)→ fj(x0)1 is a linear map). However,
this is not done in practice since (5.1) is directly trainable via backpropagation. �

Note that we do not allow the matricesWj to depend on y. In other words, the NN is not adaptive dependent
on its input. We will denote the collection of all NNs of the above form byND,L,q , where the vector D = (N0 =

m,N1, ..., NL = N) denotes the dimensions in each layer, L denotes the number of layers and q denotes the
number of different non-linear functions applied (including the count of different Ij and mj). In general, we
will require that the layer sizes Nj do not grow with j so that the size of each layer is of the same order as the
sampling matrix A.

The problem considered in this paper is stable reconstruction from noisy undersampled measurements, as
in (2.1). More precisely, we consider NNs that can be constructed via algorithms. To make this precise, we
assume that we have access to a sequence of matrices Al ∈ Q + iQ =: Q[i] such that ‖A − Al‖ ≤ ql for
some known null sequence {ql}. This is consistent with the training set given by (2.8). To construct NNs via
an algorithm, care must be taken with the non-linear activation functions. We assume that for each θ ∈ Q>0

we have access to a routine “sqrtθ” such that |sqrtθ(x) −
√
x| ≤ θ for all x ∈ R≥0. In what follows, the

non-linear maps fj used in the NNs are either arithmetic or constructed using arithmetic operations and sqrtθ.
We will always ensure that sqrtθ acts only on non-negative real numbers and on rational inputs if the input to
the NN is rational. We refer to the pair (φ, θ) as a NN.

Remark 5.2 (Approximating
√
x with neural networks). On any bounded set (for bounded input our con-

structed NNs only require the routine sqrtθ on a bounded set), we can construct an approximation to
√
x using

standard non-linear activation functions such as ReLU [97] (more efficient approximations may be achieved
by using other activation functions such as rational maps [38, 136]). Note that this can be done in the Turing
sense [140] if we restrict to rational input w ∈ Q≥0. When considering real number arithmetic, this can be
done in the Blum–Shub–Smale sense [30]. The choice of the square root function is somewhat arbitrary, but
simplifies our proof of Theorem 5.5. Similar results hold for other activation functions. �
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Remark 5.3 (An interpretation of θ). As well as being necessary from a foundations point of view, an im-
portant interpretation of θ is numerical stability, or accumulation of errors, of the forward pass of the NN. In
particular, a larger value of θ shows greater stability for applying the nonlinear maps in finite precision. The
results we prove are typically of the form

‖φn(y)− x‖l2 ≤ ε+ c1(A, x)‖Ax− y‖l2 + c2(A, x)υn, ∀x ∈ S ⊂ CN , y ∈ Cm, (5.2)

where (φn, θn) is a (sequence of) NN(s) with O(n) layers that is computed by an algorithm, υ ∈ (0, 1)

describes the exponential rate of convergence in the number of layers, ε > 0 (in our results ε will be related
to the distance to vectors that are sparse in levels: σs,M(x)l1w in Definition 3.1), and θ−1

n = θ−1 is bounded
independent of n. Up to the error tolerance ε, the constant c1(A, x) can be thought of as an asymptotic local
Lipschitz constant for the NNs as n→∞, and thus measures stability of inexact input y. In practice one would
use floating point arithmetic to approximate square roots. Hence, the boundedness of θ−1

n is a numerical notion
of stability - the accuracy needed for approximating square roots (and the non-linear maps) does not become
too great and errors do not accumulate as n increases. Moreover, in practice, the value of θ−1 needed is well
below what is achieved using standard floating-point formats. �

5.2. The construction of stable and accurate neural networks. The main result of this section, Theorem
5.5, uses the concept of sparsity in levels and weighted robust null space property in levels defined in §3. We
also define the following quantities:

ξ = ξ(s,M, w) :=

r∑
k=1

w2
(k)sk, ζ = ζ(s,M, w) := min

k=1,...,r
w2

(k)sk, κ = κ(s,M, w) :=
ξ(s,M, w)

ζ(s,M, w)
.

Unless there is ambiguity, we will drop the (s,M, w) from the notation of these parameters. Recall the setup
throughout this paper of a matrix A ∈ Cm×N (m < N ), where we have access to an approximation sequence
Al such that ‖A − Al‖ ≤ ql with known ql → 0 as l → ∞. In this regard, the following simple perturbation
lemma is useful (whose proof is given in §9).

Lemma 5.4 (The weighted rNSP in levels is preserved under perturbations or approximations). Assume
that (3.2) holds and that A satisfies the weighted rNSPL of order (s,M) with constants 0 < ρ < 1 and γ > 0.
Let Â be an approximation of A such that

‖Â−A‖ < 1− ρ

γ
(

1 +
√
ξ

mink=1,...,r w(k)

)
Then Â satisfies the weighted rNSPL of order (s,M) with new constants

ρ̂ =
ρ+ γ

√
ξ‖Â−A‖

mink=1,...,r w(k)

1− γ‖Â−A‖
, γ̂ =

γ

1− γ‖Â−A‖
.

Lemma 5.4 says that if A satisfied the weighted rNSPL of order (s,M), then so does Al for large enough l.
Moreover, given the null sequence {ql}, we can compute how large l must be and the new constants. For ease
of exposition, we drop the notational hats from these constants. We are now ready to state our main result,
which is proven in §9.

Theorem 5.5 (Stable and accurate neural networks with uniform recovery guarantees can be con-
structed). There exists an algorithm such that for any input sparsity parameters (s,M), weights {wi}Ni=1,
A ∈ Cm×N (with the input A given by {Al}) satisfying the rNSPL with constants 0 < ρ < 1 and γ > 0 (also
input), and input parameters n ∈ N, {δ, b1, b2} ⊂ Q>0 and υ ∈ (0, 1) ∩Q>0, the algorithm outputs a neural
network φn such that the following holds. For

C1 =

(
1 + ρ

2
+ (3 + ρ)

κ1/4

4

)(
3 + ρ

1− ρ

)
∼ κ1/4

1− ρ
, C2 = 2

(
3 + ρ

1− ρ
+

7 + ρ

1− ρ
κ1/4

2

)
γ ∼ κ1/4γ

1− ρ
,
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(1) (Size) φn ∈ ND(n,p),3np+1,3 with

D(n,p) = (m, 2N +m, 2(N +m), 2N +m+ 1︸ ︷︷ ︸
np times

, N),

where p ∈ N with the bound p ≤
⌈

3C2‖A‖
υ

⌉
. Moreover, θ−1 ∼ p2(1 + ‖w‖l2) max

{
1,
‖w‖l2
‖A‖γ

√
ξ

}
.

(2) (Exponentially Convergent, Uniform and Stable Recovery Guarantees) For any pair (x, y) ∈ CN ×
Cm such that

2C1

C2

√
ξ
· σs,M(x)l1w + 2‖Ax− y‖l2 ≤ δ, ‖x‖l2 ≤ b1, ‖y‖l2 ≤ b2,

we have the following exponentially convergent, uniform and stable recovery guarantees:

‖φn(y)− x‖l2 ≤
2C1√
ξ
· σs,M(x)l1w + 2C2 · ‖Ax− y‖l2 +

(
1 + υ

1− υ

)
C2 · δ + b2C2 · υn, (5.3)

‖φn(y)− x‖l1w ≤
(

3 + ρ

1− ρ

) √
ξ

C1

(
2C1√
ξ
· σs,M(x)l1w + 2C2 · ‖Ax− y‖l2 +

(
1 + υ

1− υ

)
C2 · δ + b2C2 · υn

)
.

(5.4)

Remark 5.6 (The optimal choice of υ). For a total budget of L = 3pn+ 1 layers,

υn = exp

(
(L− 1)

3

⌈
3C2‖A‖

υ

⌉−1

log(υ)

)

If we ignore the ceiling function, then the optimal choice of υ is υ = e−1 (strictly speaking Theorem 5.5 is
only stated for rational υ, but we can easily approximate e−1). This yields the error term

υn = exp

(
− (L− 1)

3
d3C2e‖A‖e−1

)
and exponential convergence in the number of layers L. This is not optimal. For example, a study of the proof
of Theorem 5.5 shows that we can replace 3C2 in the exponential by

2

(
1 + ρ

1− ρ
+

3 + ρ

1− ρ
κ1/4

2

)
γ + ε

for arbitrary ε > 0. Suppose that we want b2C2 · rn ∼ δ, then the number of layers required is proportional to
C2‖A‖ log(b2δ

−1), and only grows logarithmically with the precision δ−1. This is made precise in Theorem
5.10, where we apply Theorem 5.5 to examples in compressive imaging. �

The proof of Theorem 5.5 uses the optimisation problem (P3) (defined in (2.2)), in the construction of φn.
It is also possible to prove similar results using (P1) and (P2), but we do not provide the details. The NNs
constructed are approximations of unrolled primal-dual iterations for (P3), with a careful restart scheme to
ensure exponential convergence in the number of layers. Pseudocode is provided in 6, as well as computational
experiments. The bounds in (5.3) and (5.4) are not quite optimal. If we were able to work in exact arithmetic
(taking θ → 0 and Al → A), we obtain slightly smaller constants, though these do not affect the asymptotic
rates. The pseudocode is written with θ → 0 and Al → A, and slightly different parameters accordingly. The
approach of unrolling iterative methods as NNs has a rich history in DL, as discussed in §7.

Remark 5.7 (What happens without restart or with unknown δ?). Without the restart scheme, the convergence
in the number of layers scales asO(n−1). However, one can get rid of the assumption 2C1/(C2

√
ξ)σs,M(x)l1w+

2‖Ax−y‖l2 ≤ δ. (The assumption is to ensure that the reweighting of the restarts do not become too small - in
practice, we found that this was not an issue and the assumption was not needed, with (up to small constants)
δ replaced by 2C1/(C2

√
ξ)σs,M(x)l1w + 2‖Ax− y‖l2 in (5.3). See also the discussion in §6.) More precisely,
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the proof of Theorem 5.5 can be adapted to show the following. For an additional input β ∈ Q>0 (and without
inputs b2, δ and υ), there exists an algorithm that computes φ̂n ∈ NDn,3n+1,3 with

Dn = (m+N, 2N +m, 2(N +m), 2N +m+ 1︸ ︷︷ ︸
n times

, N),

such that for any x, x0 ∈ CN with ‖x‖l2 ≤ b1 and all y ∈ Cm, the following reconstruction guarantees hold:

‖φ̂n(y, x0)− x‖l2 ≤
2C1√
ξ
σs,M(x)l1w + 2C2

[
‖Ax− y‖l2 +

‖A‖
n

(
‖x− x0‖2l2

β
+ β

)]
, (5.5)

‖φ̂n(y, x0)− x‖l1w ≤
(

3 + ρ

1− ρ

) √
ξ

C1

(
2C1√
ξ
σs,M(x)l1w + 2C2

[
‖Ax− y‖l2 +

‖A‖
n

(
‖x− x0‖2l2

β
+ β

)])
.

(5.6)

Here, x0 should be interpreted as an initial guess (an arbitrary input to the NNs) and β should be interpreted
as a scaling parameter, with optimal scaling β ∼ ‖x− x0‖l2 . A good choice for β is ‖x‖l2 , or, in the case that
this is unknown, ‖y‖l2/‖A‖. For completeness, we have provided a proof sketch of (5.5) and (5.6) at the end
of §9.3. �

Algorithm unrolling is particularly well-suited to scenarios where it is difficult to collect large training sam-
ples, and can provide a means of interpretability, overcoming the black-box nature of many NNs. However,
training a finite fixed number of layers typically incurs the same stability and generalisation issues mentioned
above. Moreover, learning the weights and biases usually prevents the convergence analysis of standard (un-
learned) iterative methods carrying over. In particular, there is no guarantee of objective function minimisation
(let alone convergence of the iterated arguments) or any form of convergence as the number of layers increases.
A subtle, yet fundamental, point regarding iterative methods, whether they are unrolled as a NN and possible
supplemented with learned parameters or not, is the following. Theorem 2.2 states that, in general, the optimi-
sation problems (P1), (P2), and (P3) are non-computable. This is despite the fact that there are many results
in the literature describing rates of convergence for iterative methods. The resolution of this apparent puzzle
is that convergence results regarding iterative methods are typically given in terms of the objective function
that is being minimised (see also Theorem 9.5, which we use to prove Theorem 5.5). As the proof of Theorem
5.5 shows, it is crucial to have conditions such as the rNSPL to convert these objective function bounds to the
desired error bounds on the distance to the minimisers or vector x. Moreover, this property has the key effect
of allowing exponential convergence through restarting and reweighting.

5.3. Examples in compressive imaging. As an example application of Theorem 5.5, we consider the case
of Fourier and Walsh sampling, using the Haar wavelets as the sparsifying transform. Our results can be
generalised to the infinite-dimensional setting with the use of higher-order Daubechies wavelets (though the
results are more complicated to write down), and we refer the reader to [6,7] for compressed sensing in infinite
dimensions. We first define the concept of multilevel random subsampling [8].

Definition 5.8 (Multilevel random subsampling). Let N = (N1, . . . , Nl) ∈ Nl, where 1 ≤ N1 < · · · < Nl =

N and m = (m1, . . . ,ml) ∈ Nl with mk ≤ Nk−Nk−1 for k = 1, . . . , l, and N0 = 0. For each k = 1, . . . , l,
let Ik = {Nk−1 + 1, . . . , Nk} if mk = Nk − Nk−1 and if not, let tk,1, . . . , tk,mk be chosen uniformly and
independently from the set {Nk−1 + 1, . . . , Nk} (with possible repeats), and set Ik = {tk,1, . . . , tk,mk}. If
I = IN,m = I1 ∪ · · · ∪ Il we refer to I as an (N,m)-multilevel subsampling scheme.

Definition 5.9 (Multilevel subsampled unitary matrix). A matrix A ∈ Cm×N is an (N,m)-multilevel sub-
sampled unitary matrix if A = PIDU for a unitary matrix U ∈ CN×N and (N,m)-multilevel subsampling
scheme I. Here D is a diagonal scaling matrix with diagonal entries

Dii =

√
Nk −Nk−1

mk
, i = Nk−1 + 1, ..., Nk, k = 1, ..., l
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and PI denotes the projection onto the linear span of the subset of the canonical basis indexed by I (i.e.
subsampled rows).

Throughout this subsection, we let K = 2r for r ∈ N, and we consider vectors on CK or d-dimensional
tensors on CK×···×K . To keep consistent notation with previous sections, we setN = Kd so that the objective
is to recover a vectorised x ∈ CN . The following can also be generalised to rectangles (i.e. C2r1×···×2rd with
possibly different r1, ..., rd) or dimensions that are not powers of two, but we stick to the case of multi-
dimensional dyadic cubes for simplicity.

Let V ∈ CN×N be either the matrix F (d) or W (d), corresponding to the d−dimensional discrete Fourier or
Walsh transform (see §10.1). In the Fourier case, we divide the different frequencies {−K/2 + 1, . . . ,K/2}d

into dyadic bands. For d = 1, we let B1 = {0, 1} and

Bk =
{
−2k−1 + 1, . . . ,−2k−2

}
∪
{

2k−2 + 1, . . . , 2k−1
}
, k = 2, . . . , r.

In the Walsh case, we define the frequency bands B1 = {0, 1} and Bk = {2k−1, . . . , 2k − 1} for k = 2, . . . , r

in the one-dimensional case. In the general d-dimensional case for Fourier or Walsh sampling, we set

B
(d)
k = Bk1

× . . .×Bkd , k = (k1, . . . , kd) ∈ Nd.

For a d-dimensional tensor c ∈ CK×···×K , we will assume we can observe subsampled measurements of
V vec(c), where vec(c) ∈ CN is a vectorised version of c. To recover a sparse representation, we consider
the Haar wavelet coefficients. We denote the discrete Haar Wavelet transform by Φ∈ CN×N , and note that
Ψ∗ = Ψ−1 since Ψ is unitary. In other words, we consider a multilevel subsampled unitary matrix (Definition
5.9), with U = VΨ∗. Given {mk=(k1,...,kd)}rk1,...,kd=1, we use a multilevel random sampling such that mk

measurements are chosen from B
(d)
k according to Definition 5.8. This corresponds to l = rd and the Ni’s can

be chosen given a suitable ordering of the Fourier/Walsh basis. The sparsity in levels structure (Definition 3.1)
is chosen to correspond to the r wavelet levels. A pictorial representation is given in Figure 6. Finally, we
define the quantities

MF (s,k) :=

‖k‖l∞∑
j=1

sj

d∏
i=1

2−|ki−j| +

r∑
j=‖k‖l∞+1

sj2
−2(j−‖k‖l∞ )

d∏
i=1

2−|ki−j| (5.7)

MW(s,k) := s‖k‖l∞

d∏
i=1

2−|ki−‖k‖l∞ |. (5.8)

For notational convenience, we also define

Z = max

{
1,

maxj=1,...,r w(j)

√
(Mj −Mj−1)√

ξ(s,M, w)

}
.

We can now state the main theorem of this section (proven in §10), which states how many samples are
needed and the number of layers of the NN needed. The key bound on the number of layers is that it only
depends logarithmically on the error δ, a consequence of the exponential convergence in Theorem 5.5. We
discuss the sampling conditions below.

Theorem 5.10. Consider the above setup of recovering a d-dimensional tensor c ∈ CKd

(N = Kd) from
subsampled Fourier or Walsh measurements V c, such that A is a multilevel subsampled unitary matrix with
respect to U = VΨ∗. Let εP ∈ (0, 1) and

L = d · r2 · log(2m) · log2 (s · κ(s,M, w)) + log(ε−1
P ).

Suppose that:

• (a) In the Fourier case

mk & κ(s,M, w) · MF (s,k) · L. (5.9)
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FIGURE 6. The different sampling regions used for the sampling patterns for Fourier (left,
r = 3) and Walsh (right, r = 4). The axis labels correspond to the frequencies in each band
and the annular regions are shown as the shaded greyscale regions.

• (b) In the Walsh case

mk & κ(s,M, w) · MW(s,k) · L. (5.10)

Then with probability at least 1−εP,A satisfies the weighted rNSPL of order (s,M) with constants ρ = 1/2 and
γ =
√

2. The conclusion of Theorem 5.5 then holds for the uniform recovery of the Haar wavelet coefficients

x = Ψc ∈ CN . (5.11)

Moreover, for any δ ∈ (0, 1), let J (δ, s,M, w) be the collection of all y ∈ Cm such that y = PIDV c + e

where

‖c‖l2 ≤ 1, max

{
σs,M(Ψc)l1w√

ξ
, ‖e‖l2

}
≤ δ. (5.12)

Then we can construct, via an algorithm, a neural network φ ∈ ND,3n+1,3 such that with probability at least
1− εP,

‖φ(y)− c‖l2 . κ
1/4δ, ∀y = PIDV c+ e ∈ J (δ, s,M, w). (5.13)

The network parameters are

D = (m, 2N +m, 2(N +m), 2N +m+ 1︸ ︷︷ ︸
n times

, N),

where

n ≤
⌈
log
(
δ−1Z

)
κ1/4Z

⌉
. (5.14)

The sampling conditions (5.9) and (5.10) are optimised by minimising κ(s,M, w). Up to a constant scale,
this corresponds to the choice w(j) =

√
s/sj and

n =

⌈
log

(
δ−1 max

j=1,...,r

√
max

{
1,
Mj −Mj−1

rsj

})
r1/4 max

j=1,...,r

√
max

{
1,
Mj −Mj−1

rsj

}⌉
.

Up to log-factors, the measurement condition then becomes equivalent to that for the currently best known
oracle estimator (where one assumes apriori knowledge of the support of the vector) [4, Prop. 3.1]. In the
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case of Fourier measurements, we can interpret the condition as follows. For d = 1, this estimate yields the
multilevel sampling estimates

mk &

 k∑
j=1

sj2
−|k−j| +

r∑
j=k+1

sj2
−3|k−j|

 · r · L.
In other words, up to logarithmic factors and exponentially small terms, sj measurements are needed in each
level. Furthermore, if s1 = . . . = sr = s∗ and d = 2 then (5.9) holds if

m(k1,k2) & s∗2
−|k1−k2| · r · L. (5.15)

Another interpretation is gained by considering

mk =
∑

‖k‖l∞=k

mk, k = 1, . . . , r,

the number of samples per annular region. We then have

mk & 3dd

(
sk +

k−1∑
l=1

sl2
−(k−l) +

r∑
l=k+1

sl2
−3(l−k)

)
· r · L, (5.16)

which is the same estimate as the one dimensional case for bounded d. Note that the number of samples
required in each annular region is (up logarithmic factors) proportional to the corresponding sparsity sk with
additional exponentially decaying terms dependent on sl, l 6= k. In the case of Walsh sampling, (5.15) remains
the same whereas (5.16) becomes

mk & 2d · d · r · L · sk,

and there are no terms from the sparsity levels sl, l 6= k.

6. FIRENET: EXAMPLE OF THE EXPONENTIAL CONVERGENCE AND PSEUDOCODE

We now provide a computational experiment to demonstrate Theorem 5.10 (and Theorem 5.5). Note that
the matrix A and its adjoint can be implemented rapidly using the fast Fourier transform (or fast Walsh–
Hadamard transform). We take the image shown in Figure 7, a subsampling rate of only 15%, and corrupt
the measurements by adding 2% Gaussian noise. Figure 7 shows the reconstructions using Fourier and Walsh
sampling and Haar wavelets. Similar results hold for other wavelets, such as Daubechies wavelets with a larger
number of vanishing moments. In fact, the reconstruction results are better than what we have shown for the
Haar wavelet system. We have chosen to show the Haar wavelet results because this is the system for which
Theorem 5.10 is stated. Pseudocode for the reconstruction is shown in Algorithm 1. For the reconstruction,
we take λ = 0.00025, τ = σ = 1, p = 5 and the weights as discussed in §5.3. In the spirit of no parameter
tuning, the weights were selected based on a standard phantom image, and not the image we use to test the
algorithm. These parameters are certainly not optimal, and instead were chosen simply to emphasise that we
have deliberately avoided parameter tuning. Moreover, we found that the choice of δ in the algorithm was of
little consequence, so have taken δ = 10−9.

Figure 8 shows the convergence in the number of inner iterations (or, equivalently, n - the total number
of inner iterations is np and hence we have not specified n, which is typically chosen to be 5). We show
the error between the constructed image after j iterations (denoted by cj) and the true image (denoted by
c), as well as the convergence of the objective function which we denote by F in the figure caption. To
compute the minimum of F , denoted F ∗, we ran several thousand iterates of the non-restarted version of
the algorithm so that the error in the value of F ∗ is at least an order of magnitude smaller than the shown
values of F (cj) − F ∗. Whilst the objective function is guaranteed to converge to the minimum value when
computing F ∗ this way, there is no guarantee that the vectors computed by the non-restarted version converge
to a minimiser, as demonstrated by the non-computability results in Theorem 2.2. However, in this case, the
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Image Fourier Sampling Walsh Sampling

FIGURE 7. Left: The true image. Middle: Reconstruction from noisy Fourier measure-
ments. Right: Reconstruction from noisy Walsh measurements. Both images were recon-
structed using only a 15% sampling rate according to the sampling patterns in Figure 6 and
n = p = 5. The top row shows the full image and the bottom row shows a zoomed in section
(corresponding to the red boxes in the top row).
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FIGURE 8. The convergence of the algorithm in the number of inner iterations. The dashed
line shows the relative error for the solution set of (P3). In both cases, the error between
the reconstruction and the image decreases exponentially until this bound is reached. The
objective function gap decreases exponentially slightly beyond this point, demonstrating that
the robust null space property (in levels) controls the l2-norm difference between vectors
(locally around c∗) down to the error ‖c− c∗‖l2 (see the bound (9.18) in our proof).
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Algorithm 1: FIRENETcomp constructs a FIRENET which corresponds to n iterations of InnerIt
with a rescaling scheme. We have written the output as the map φn to emphasise that FIRENETcomp
defines a NN. InnerIt performs p iterations of Chambolle and Pock’s primal-dual algorithm for
square-root LASSO (the order of updates is swapped compared to [47]). The functions ϕs and ψ1 are
proximal maps given by

[ϕs(x)]j = max

{
0, 1− s

|xj |

}
xj , ψ1(y) = min

{
1,

1

‖y‖l2

}
y.

Both of these are approximated by NNs in our proof.

Function FIRENETcomp(A, p, τ, σ, λ, {wj}Nj=1, ε0, δ, n)

Initiate with φ0 ≡ 0 (other initial vectors can also be chosen).
(NB: ε0 should be of the same order as ‖y‖l2 for inputs y ∈ Cm.)
for k = 1, ..., n do

εk = e−1(δ + εk−1),

βk = εk
2‖A‖

φk(·) = pβk · InnerIt
(
·

pβk
, φk−1(·)

pβk
, A, p, σ, τ, λ, {wj}Nj=1

)
end
return: FIRENET φn : Cm → CN

end

Function InnerIt(y, x0, A, p, τ, σ, λ, {wj}Nj=1)

Set B = diag(w1, ..., wN ) ∈ CN×N .
Initiate with x0 = x0, y0 = 0 ∈ Cm (the superscripts denote indices not powers).
for k = 0, ..., p− 1 do

xk+1 = Bϕτλ(B−1(xk − τA∗yk))

yk+1 = ψ1(yk + σA(2xk+1 − xk)− σy)

end
X =

∑p
k=1

xk

p

return: X ∈ CN (ergodic average of p iterates)
end

non-restarted version converged to a vector c∗ up to an error much smaller than ‖c− c∗‖l2 . Hence ‖c− c∗‖l2
gives an indication of the minimum error we can expect from using (P3) to recover the image.

The figure shows the expected exponential convergence, as the number of inner iterations increases, of the
objective function values as well as cj to c until the error is of the order ‖c − c∗‖l2 . This corresponds to an
initial phase of exponential convergence, where the υ−n term (with υ = e−1) is dominant in Theorem 5.5,
followed by a plateau to the minimal error ‖c − c∗‖l2 (shown as the dotted line). This plateau occurs due to
inexact measurements (the noise) and the fact that the image does not have exactly sparse wavelet coefficients.
This corresponds to the robust null space property (in levels) only being able to bound the distance ‖c− cj‖l2
up to the same order as ‖c− c∗‖l2 . In other words, we can only accelerate convergence up to this error bound.
The error plateau disappears in the limit of exactly sparse vectors and zero noise (in the limit δ ↓ 0 in Theorem
5.5), and one gains exponential convergence down to essentially machine precision. Finally, the acceleration
is of great practical interest. Rather than the several hundred (or even thousands) of iterations that are typically
needed for solving compressed sensing optimisation problems with first-order iterative methods, we obtain
optimal accuracy in under 20 iterations. This was found for a range of different images, subsampling rates etc.
The fact that so few layers are needed, coupled with the fast transforms for implementing the affine maps in
the NNs, makes the NNs very computationally efficient and competitive speed-wise with state-of-the-art DL.
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7. CONNECTIONS WITH PREVIOUS WORK

The paper touches on many different areas of mathematics and AI, thus we have divided the areas into the
following subsections: (i) Computational barriers in DL, foundations and the SCI hierarchy; (ii) Instabilities
in DL; (iii) DL in inverse problems; and (iv) Compressed sensing, optimisation and unrolling of algorithms.

(i) Computational barriers in DL, foundations and the SCI hierarchy: The SCI hierarchy and its foundations
framework provide the basis for the techniques for the computational barriers and foundations (what is and
what is not computationally possible) results in DL proved in this paper. The SCI hierarchy has recently been
used to solve longstanding questions on existence of algorithm [20,24–26,50–52,80]. It was introduced in [80]
and is an effective tool to establish the boundaries of what computers can achieve in scientific computing and
also in computer assisted proofs, see for example the work by C. Fefferman & L. Seco (Dirac-Schwinger
conjecture) [64–66] and T. Hales et. al (Kepler’s conjecture/Hilbert’s 18th problem) [76, 77] that implicitly
prove results in the SCI hierarchy (see [24] for details). It generalises S. Smale’s seminal work [125, 127]
with L. Blum, F. Cucker, M. Shub [30, 31] and his program on the foundations of scientific computing and
existence of algorithms pioneered by C. McMullen [106, 107, 129] and P. Doyle & C. McMullen [61]. In
particular, the work by F. Cucker [53] can be viewed as an early version of the SCI hierarchy.

In [24] J. Ben-Artzi, O. Nevanlinna, M. Seidel and two of the authors established a collection of techniques
for proving sharp results on existence of algorithms that form a basis for techniques in the SCI hierarchy
framework. These ideas were extended to randomised algorithms (crucial for this paper) by A. Bastounis, V.
Vlacic and one of the authors in [20]. The SCI hierarchy has also been used in signal processing and sam-
pling theory by H. Boche & V. Pohl in [33], see also the work by H. Boche & V. Pohl [34], H. Boche & U.
Mönich [32] and M. Koller, J. Großmann, U. Mönich & H. Boche [92] (which concerns stability of convolu-
tional NNs). Recent result using the SCI hierarchy to establish boundaries in computational mathematics and
scientific computing include the work by S. Olver & M. Webb [146] and the work by J. Ben-Artzi, M. Mar-
letta & F. Rösler [25, 26]. There is a vast literature on impossibility results regarding existence of algorithms
for different problems in mathematics. The seminal work of S. Weinberger [147] is a great example. These
results can also be interpreted as classification results in the SCI hierarchy, as the framework is flexible and
can encompass any model of computation.

Our results should be viewed in connection with the vast literature in approximation theory – starting with
the universal approximation theorem (e.g. see the survey paper [114] by A. Pinkus) – and many follow up
papers establishing the great approximation qualities of NNs, see, for example, the work by H. Bölcskei, P.
Grohs, G. Kutyniok & P. Petersen [35] and the results by I. Daubechies, R. DeVore, S. Foucart, B. Hanin
& G. Petrova [56]. What all these results have in common is that there is no algorithm constructing the
approximating NNs that are proven to exist. Indeed, the literature is full of existence results that will typically
not imply the existence of algorithms computing the NNs. Our results are therefore very much related to the
gap between the theory and practice when it comes to computing NNs, as pointed out by B. Adcock & N.
Dexter [5].

(ii) Instabilities in DL: Initiated by the work of C. Szegedy et. al. [134], there is now a vast literature on the
instability phenomenon in DL in a wide variety of applications [11, 13, 46, 67, 86, 110, 134] ranging from
image recognition and classification, via audio and speech recognition to automatic diagnosis in medicine,
image reconstruction and inverse problems. Thus we can only highlight a small subset here. A significant
development was the DeepFool research programme and software package of S. Moosavi–Dezfooli, A. Fawzi
& P. Frossard [110], which was followed by the construction of so-called universal adversarial perturbations
[109]. The construction of and mitigation against adversarial attacks is now an active area of research. To
the best of our knowledge, [13] and [86] were the first works to demonstrate the instability phenomenon
for inverse problems in imaging. There is also an increasing amount of work dedicated to the important
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problem of numerical instability in ML, see, for example, the recent work of P. Blanchard, D. Higham & N.
Higham [29].

(iii) DL in inverse problems: The work of K. Jin, M. McCann, E. Froustey & M. Unser [87] was influential
in highlighting the promise of DL for inverse problems in imaging. This is now a rapidly evolving area of
research, which we will not attempt to summarise. See [16, 112] for overviews of current techniques. Note
that sparse regularization has been used as the basis for some DL technique, e.g. by using DL to recover the
parts of an image that sparse regularization cannot such as in [40], or by designing NN architectures through
the process of unrolling an optimisation algorithm (see, e.g., [16]) discussed below. Another approach is to
learn variational regularisers, see, for example, [91].

(iv) Compressed sensing, optimisation and unrolling of algorithms: Our positive results rely on theory from
the compressed sensing literature initiated by E. Candes, J. Romberg & T. Tao [44] and D. Donoho [59]. In
particular, our results rely on the many results on structured sampling in structured compressed sensing, see
the work by B. Adcock et. al. [4, 8, 9], A. Bastounis et. al. [18, 19], J. Bigot, C. Boyer & P. Weiss [28, 39]
and G. Kutyniok & W. Lim [95], see also the work by F. Krahmer and R. Ward [93]. Moreover, our results
are closely related to the work of A. Ben-Tal & A. Nemirovski [27], who were one of the first to realise how
key assumptions in compressed sensing – such as the robust nullspace property – help bound the error of
the approximation to a minimiser (produced by an optimisation algorithm) in terms of error bounds on the
approximation to the objective function. Our construction of stable and accurate NNs uses the optimisation
problem (P3) and approximations of unrolled (or unfolded) primal-dual iterations with a restart scheme: see
the discussion at the start of §9. Unrolling iterative methods as NNs was first developed by Gregor & LeCun
in [75] who considered LISTA, a learned version of ISTA, for recover of sparse vectors. This work has been
followed by theoretical grantees [49, 99], ensuring the existence of NN with linear convergence towards the
minimizer. Yet, neither [49] nor [99], use the theoretically correct weights, as these they can only be computed
as solutions of intractably large optimisation problems.

Many other algorithms have been unrolled as NNs. For example, see the work of R. Cohen, G. Dardikman–
Yoffe, Y. Eldar, J. Geng, Q. He, Y. Li, J. Luo, V. Monga, R. van Sloun, O. Solomon, M. Tofighi, Y. Yang, Y.
Zhang [55,98,130], and A. Aberdam, A. Beck, A. Golts, M. Elad, V. Papyan, Y. Romano, J Sulam [1,113,133].
Typically, such approaches train the weights and biases, and even the activation functions of the NNs (see also
the comments after Remark 5.7). We shall not attempt a broad survey, and instead point the reader to the
papers of M. McCann, K. Jin & M. Unser [105] and V. Monga, Y. Li & Y. Eldar [108] for up to date reviews.

To prove convergence of vectors (as opposed to objective functions), it is crucial to have conditions such as
the robust null space property (in levels) of Definition 3.2. Moreover, this property enables a restart scheme
to achieve exponential convergence in the number of layers. Typically, exponential convergence for restart
schemes requires a Łojasiewicz-type inequality of the form γd(x,X∗)ν ≤ f(x)−f∗, where f is the objective
function and d(x,X∗) denotes the distance to the set of minimisers [36, 37, 89]. For example, V. Roulet, N.
Boumal & A. d’Aspremont [122] achieve exponential convergence, using the restarted NESTA algorithm
[22], for exact recovery (noiseless) of sparse vectors if A satisfies the null space property. By taking into
account computability and construction of NNs, and allowing noise, approximate sparsity, sparsity in levels
and complex-valued vectors and matrices, our results and framework are more general than [122]. The work
of D. Donoho & Y. Tsaig [60] was one of the first to connect statistical and computational performance by
empirically showing that recovery problems with larger sample sizes can also be easier to solve numerically.
This message is echoed in our Theorem 5.10.

8. PROOF OF THEOREM 2.2 AND TOOLS FROM THE SCI HIERARCHY

In this section, we prove Theorem 2.2. In order to do this, we will need some analytical results regarding
phase transitions of solutions of (P1), (P2) and (P3) which are given in §8.2. However, before analysing these
phase transitions, we need some preliminary definitions regarding algorithms, inexact inputs, and condition
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numbers. There are two main reasons for this framework. First, because our definitions are general, they
lead to stronger impossibility results than when restricted to specific models of computation. Second, our
framework greatly simplifies the proofs and makes it clear what the key mechanisms behind the proofs are
(§8.2 describes this in terms of phase transitions of minimisers). We have sought to make these discussions
widely accessible and self-contained.

8.1. Algorithmic preliminaries: a user-friendly guide. We begin with a definition of a computational prob-
lem, which is deliberately general in order to capture any computational problem.

Definition 8.1 (Computational problem). Let Ω be some set, which we call the domain, and Λ be a set of
complex valued functions on Ω such that for ι1, ι2 ∈ Ω, then ι1 = ι2 if and only if f(ι1) = f(ι2) for all f ∈ Λ,
called an evaluation set. Let (M, d) be a metric space, and finally let Ξ : Ω→M be a function which we call
the problem function. We call the collection {Ξ,Ω,M,Λ} a computational problem. When it is clear whatM
and Λ are we will sometimes write {Ξ,Ω} for brevity.

Remark 8.2 (Multivalued problems). In some cases, such as when considering the optimisation problems
(Pj) that may have more than one solution, we consider Ξ(ι) ⊂ M. With an abuse of notation, we then set
d(x,Ξ(ι)) = dist(x,Ξ(ι)) = infy∈Ξ(ι) d(x, y) and this distinction will be made clear from context. �

The set Ω is the set of objects that give rise to our computational problems. The problem function Ξ : Ω→
M is what we are interested in computing. Finally, the set Λ is the collection of functions that provide us with
the information we are allowed to read as input to an algorithm. For example, Ω could consist of a collection
of matrices A and data y in (2.1), Λ could consist of the pointwise entries of the vectors and matrices in Ω, Ξ

could represent the solution set (with the possibility of more than one solution as in Remark 8.2) of any of the
problems (Pj) and (M, d) could be CN with the usual Euclidean metric (or any other suitable metric).

Given the definition of a computational problem, we need the definition of a general algorithm, whose
conditions hold for any reasonable notion of a deterministic algorithm. Throughout this paper, we deal with
the case that Λ = {fj}j∈β , where β is some (at most) countable index set.

Definition 8.3 (General Algorithm). Given a computational problem {Ξ,Ω,M,Λ}, a general algorithm is a
mapping Γ : Ω→M such that for each ι ∈ Ω

(i) There exists a non-empty finite subset of evaluations ΛΓ(ι) ⊂ Λ,
(ii) The action of Γ on ι only depends on {ιf}f∈ΛΓ(ι) where ιf := f(ι),

(iii) For every κ ∈ Ω such that κf = ιf for every f ∈ ΛΓ(ι), it holds that ΛΓ(κ) = ΛΓ(ι).

If, in addition, there exists a canonical ordering ΛΓ(ι) = {fΓ
ι,1 = fk1 , ..., f

Γ
ι,SΓ(ι) = fkSΓ(ι)

}, where SΓ(ι) =

|ΛΓ(ι)|, such that if κ ∈ Ω and fΓ
ι,j(ι) = fΓ

ι,j(κ) for all j ≤ r < SΓ(ι), then fΓ
ι,j = fΓ

κ,j for all j ≤ r + 1,
then we call Γ a Sequential General Algorithm. In this case, we use the notation kj(Γ, ι) to denote the ordered
indices corresponding to the evaluation functions that the algorithm reads.

The three properties of a general algorithm are the most basic natural properties we would expect any de-
terministic computational device to obey. The first condition says that the algorithm can only take a finite
amount of information, though it is allowed adaptively to choose, depending on the input, the finite amount of
information that it reads. The second condition ensures that the algorithm’s output only depends on its input,
or rather the information that it has accessed (or “read”). The final condition is very important and ensures
that the algorithm produces outputs and consistently accesses information. In other words, if it sees the same
information for two different inputs, then it cannot behave differently for those inputs. Note that the definition
of a general algorithm is more general than the definition of a Turing machine [140] or a Blum–Shub–Smale
(BSS) machine [30], which can be thought of as digital and analog computational devices respectively. In
particular, a general algorithm has no restrictions on the operations allowed. The extra condition for a se-
quential general algorithm is satisfied by any algorithm defined by a computational machine with input tape
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of readable information (one should think of the ordered indices of the evaluation functions as corresponding
to sequentially reading the tape which encodes the input information). Hence, a sequential general algorithm
is still more general than a Turing or a BSS machine. Complete generality in Definition 8.3 is used for two
primary reasons:

(i) Strongest possible bounds: Since Definition 8.3 is completely general, the lower bounds hold in any
model of computation, such as a Turing machine or a BSS machine. On the other hand, the algorithms
we construct in this paper are made to work using only arithmetic operations over the rationals. Hence,
we obtain the strongest possible lower bounds and the strongest possible upper bounds.

(ii) Simplified exposition: Using the concept of a general algorithm considerably simplifies the proofs of
lower bounds and allows us to see precisely the mechanisms behind the proofs.

Next, we consider the definition of a randomised general algorithm, which again is more general than a
probabilistic Turing or probabilistic BSS machine. Randomised algorithms are widely used in practice in areas
such as optimisation, algebraic computation, machine learning, and network routing. See, for example, the
early papers of von Neumann [144] and de Leeuw et al. [57] that describe probabilistic Turing machines. In the
case of Turing machines, it is currently unknown, in the sense of polynomial runtime, whether randomisation
is beneficial from a complexity class viewpoint [15, Ch. 7], however, rather intriguingly this is not the case for
BSS machines [30, Ch. 17] (some of the proofs in this reference are non-constructive - it is an open problem
whether any probabilistic BSS machine can be simulated by a deterministic machine having the same machine
constants and with only a polynomial slowdown). Nevertheless, randomisation is an extremely useful tool in
practice. (A famous example is the problem of primality testing. The first algorithm that did this in polynomial-
time (in the size of the representation of the number) was probabilistic [131] and it was only decades later that
a deterministic polynomial time algorithm was discovered [10].) From a machine learning point of view, we
also want to consider randomised algorithms to capture procedures such as stochastic gradient descent which
are commonly used to train NNs. As developed in [20], the concept of a general algorithm can be extended
to a randomised general algorithm. This concept allows for universal impossibility results regardless of the
computational model.

Definition 8.4 (Randomised General Algorithm). Given a computational problem {Ξ,Ω,M,Λ}, a Ran-
domised General Algorithm (RGA) Γran is a collectionX of general algorithms Γ : Ω→M, a sigma-algebra
F on X and a family of probability measures {Pι}ι∈Ω on F such that the following conditions hold:

(1) For each ι ∈ Ω, the mapping Γran
ι : (X,F) → (M,B) defined by Γran

ι (Γ) = Γ(ι) is a random
variable, where B is the Borel sigma-algebra onM.

(2) For each n ∈ N and ι ∈ Ω, the set {Γ ∈ X : sup{m ∈ N : fm ∈ ΛΓ(ι)} ≤ n} ∈ F .
(3) For each ι1, ι2 ∈ Ω and E ∈ F , such that for every Γ ∈ E we have f(ι1) = f(ι2) for every

f ∈ ΛΓ(ι1), then Pι1(E) = Pι2(E).

With slight abuse of notation, we denote the family of randomised general algorithms by RGA.

The first two conditions are measure theoretic to avoid pathological cases and ensure that “natural sets” one
might define for a random algorithm (such as notions of stopping times) are measurable. These conditions
hold for all standard probabilistic machines (such as a Turing or BSS machine). The third condition ensures
consistency, namely, that in the case of identical evaluations, the laws of the output cannot change. Finally, we
will use the standard definition of a probabilistic Turing machine (which is a particular case of Definition 8.4).
However, to make sense of probabilistic Turing machines in our context (in particular, to restrict operations to
the rationals which can be encoded in the natural numbers), we must define the notion of inexact input.

Suppose we are given a computational problem {Ξ,Ω,M,Λ}, and that Λ = {fj}j∈β , where we remind
the reader that β is some index set that can be finite or countably infinite. However, obtaining fj may be a
computational task on its own, which is exactly the problem in most areas of computational mathematics. In
particular, for ι ∈ Ω, fj(ι) could be the number e

π
j i for example. Hence, we cannot access or store fj(ι) on a



28 THE BARRIERS OF DEEP LEARNING AND SMALE’S 18TH PROBLEM

computer, but rather fj,n(ι) where fj,n(ι)→ fj(ι) as n→∞. This idea is formalised in the definition below,
however, to put this in perspective it is worth mentioning The Solvability Complexity Index (SCI) hierarchy.

Remark 8.5 (The Solvability Complexity Index (SCI) hierarchy). The SCI of a computational problem is the
smallest number of limits needed in order to compute the solution. The full hierarchy is described in [24],
and the mainstay of the hierarchy are the ∆α

k classes. The α denotes the model of computation that would
indicate the Turing or the BSS model. Informally, we have the following description. Given a collection C of
computational problems, then

(i) ∆α
0 is the set of problems that can be computed in finite time, the SCI = 0.

(ii) ∆α
1 is the set of problems that can be computed using one limit (the SCI = 1) with control of the error,

i.e. ∃ a sequence of algorithms {Γn} such that d(Γn(ι),Ξ(ι)) ≤ 2−n, ∀ι ∈ Ω.
(iii) ∆α

2 is the set of problems that can be computed using one limit (the SCI = 1) without error control,
i.e. ∃ a sequence of algorithms {Γn} such that limn→∞ Γn(ι) = Ξ(ι), ∀ι ∈ Ω.

(iv) ∆α
m+1, for m ∈ N, is the set of problems that can be computed by using m limits, (the SCI ≤ m), i.e.
∃ a family of algorithms {Γnm,...,n1

} such that

lim
nm→∞

. . . lim
n1→∞

Γnm,...,n1(ι) = Ξ(ι), ∀ι ∈ Ω. �

The above hierarchy gives rise to the concept of ’∆1-information’. That is, in informal terms, the problem
of obtaining the inexact input to the computational problem is a ∆1 problem. One may think of an algorithm
taking the number exp(1) or

√
2 as input. Indeed, one can never produce an exact version of these numbers to

the algorithm, however, one can produce an approximation to an arbitrary small accuracy.

Definition 8.6 (∆1-information). Let {Ξ,Ω,M,Λ} be a computational problem. We say that Λ has ∆1-
information if each fj ∈ Λ is not available, however, there are mappings fj,n : Ω → Q + iQ such that
|fj,n(ι)− fj(ι)| ≤ 2−n for all ι ∈ Ω. Finally, if Λ̂ is a collection of such functions described above such that
Λ has ∆1-information, we say that Λ̂ provides ∆1-information for Λ. Moreover, we denote the family of all
such Λ̂ by L1(Λ).

Note that we want to have algorithms that can handle all computational problems {Ξ,Ω,M, Λ̂} whenever
Λ̂ ∈ L1(Λ). In order to formalise this, we define what we mean by a computational problem with ∆1-
information.

Definition 8.7 (Computational problem with ∆1-information). A computational problem where Λ has ∆1-
information is denoted by {Ξ,Ω,M,Λ}∆1 := {Ξ̃, Ω̃,M, Λ̃}, where

Ω̃ =
{
ι̃ = {fj,n(ι)}j,n∈β×N : ι ∈ Ω, {fj}j∈β = Λ, |fj,n(ι)− fj(ι)| ≤ 2−n

}
,

Moreover, if ι̃ = {fj,n(ι)}j,n∈β×N ∈ Ω̃ then we define Ξ̃(ι̃) = Ξ(ι) and f̃j,n(ι̃) = fj,n(ι). We also set
Λ̃ = {f̃j,n}j,n∈β×N. Note that Ξ̃ is well-defined by Definition 8.1 of a computational problem and the definition
of Ω̃ includes all possible instances of ∆1-information Λ̂ ∈ L1(Λ).

We can now define a probabilistic Turing machine for {Ξ,Ω,M,Λ}, where the algorithm Γ is executed by
a Turing machine [140], that has an oracle tape consisting of {ι̃f}f∈Λ̃. In what follows, we have deliberately
not written down the (lengthy) definition of a Turing machine (found in any standard text [15, 62]), which one
should think of as an effective algorithm or computer programme (the famous Church–Turing thesis).

Definition 8.8. Given the definition of a Turing machine, a probabilistic Turing machine for {Ξ,Ω,M,Λ}
is a Turing machine that has an oracle tape consisting of {ι̃f}f∈Λ̃ (for ι̃ ∈ Ω̃), with an additional read only
tape containing independent binary random numbers (0 or 1 with equal probability), and which halts with
probability one and outputs a single element ofM. The law of such a machine will be denoted by P. With an
abuse of notation, we sometimes denote the probabilistic Turing machine by (Γ,P).
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Remark 8.9 (Where does the output live?). Strictly speaking, when we say that the output of a probabilistic
Turing machine lies in M, we mean that the output is a natural number that corresponds, via an encoding,
to an element of a subset of M such as (Q + iQ)N ⊂ CN . However, we follow the usual convention of
suppressing such encodings in our discussions and proofs. Occasionally we will also consider sequences of
(probabilistic) Turing machines, in which case there is an additional input parameter n, which ranges over the
natural numbers. �

One should think of Definition 8.8 as an algorithm for the computational problem with inexact input, but
with the additional ability to generate random numbers (this corresponds to the binary input tape) and execute
commands based on the sequence of random numbers that are generated. The reader should intuitively think of
this as a computer program with a random number generator. For equivalent definitions and the basic properties
of such machines, we refer the reader to [15,62]. For simplicity, we have only considered probabilistic Turing
machines that halt with probability one, though extensions can be made to non-halting machines. Note that
Definition 8.8 is a special case of Definition 8.4, where Pι = P is fixed across different ι. In particular, given a
probabilistic Turing machine, the sigma-algebra and probability distribution generated by the standard product
topology on {0, 1}N induce the relevant collection X of Turing machines and sigma-algebra F , as well as P.

Finally, we also recall the standard definitions of condition used in optimisation [30, 42, 118, 119]. The
classical condition number of an invertible matrix A is given by Cond(A) = ‖A‖‖A−1‖. For different types
of condition numbers related to a possibly multivalued (signified by the double arrow) mapping Ξ : Ω ⊂ Cn ⇒
CN we need to establish what types of perturbations we are interested in. For example, if Ω denotes the set of
diagonal matrices (which we treat as elements of Cn for some n), we may not be interested in perturbations in
the off-diagonal elements as they will always be zero. In particular, we may only be interested in perturbations
in the coordinates that are varying in the set Ω. Thus, given Ω ⊂ Cn we define the active coordinates of Ω to
be Act = Act (Ω) = {j : ∃x, y ∈ Ω, xj 6= yj}. Moreover, for ν > 0 (including the obvious extension to
ν =∞) we define

Ων = {x : ∃ y ∈ Ω such that ‖x− y‖l∞ ≤ ν, xActc = yActc} .

In other words, Ων is the set of ν-perturbations along the non-constant coordinates of elements in Ω. We can
now recall some of the classical condition numbers from the literature [30, 42, 118, 119].

(1) Condition of a mapping: Let Ξ : Ω ⊂ Cn ⇒ Cm be a linear or non-linear mapping, and suppose that Ξ

is also defined on Ων for some ν > 0. Then,

Cond (Ξ,Ω) = sup
x∈Ω

lim
ε→0+

sup
x+z∈Ων

0<‖z‖l2≤ε

{
dist(Ξ(x+ z),Ξ(x))

‖z‖l2

}
,

where we allow for multivalued functions by defining dist(Ξ(x+ z),Ξ(z)) = infw1∈Ξ(x+z),w2∈Ξ(z) ‖w1 −
w2‖l2 (see Remark 8.2). We will use this notion of condition number for (P1), (P2) and (P3).

(2) Distance to infeasibility - the Feasibility Primal condition number: For the problem (P1) of basis pursuit
(for (P2) and (P3) the following condition number is always zero) we set

ν(A, y) = sup
{
ε ≥ 0 : ‖ŷ‖l2 , ‖Â‖ ≤ ε, (A+ Â, y+ ŷ) ∈ Ω∞ ⇒ (A+ Â, y+ ŷ) are feasible inputs to ΞP1

}
,

and define the Feasibility Primal (FP) local condition number

CFP(A, y) :=
max {‖y‖l2 , ‖A‖}

ν(A, y)
.

We then define the FP global condition number via

CFP (ΞP1 ,Ω) := sup
(A,y)∈Ω

CFP(A, y).
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Remark 8.10 (Condition numbers in different norms). One can also define the above condition numbers using
norms different from the l2-norm. However, the results of Theorem 2.2 are given for the l2-norm so we stick
to the above cases (also note that for finite-dimensional spaces, all norms are equivalent). �

8.2. Phase transitions. In order to prove Theorem 2.2, we will need the following lemmas which describe
phase transitions of the minimisers of the respective optimisation problems.

Lemma 8.11 (Phase transition for basis pursuit). Let N ≥ 2 and consider the problem (P1) for

A =
(
w1

ρ1

w2

ρ2
· · · wN

ρN

)
∈ C1×N , y = 1, ε ∈ [0, 1),

where ρj > 0 for j = 1, ..., N . Then the set of solutions is given by

N∑
j=1

[
tj(1− ε)

ρj
wj

]
ej , s.t. tj ∈ [0, 1],

N∑
j=1

tj = 1 and tj = 0 if ρj > min
k
ρk, (8.1)

where ej correspond to the canonical basis of CN .

Proof. Let x̂j = xjwjρ
−1
j , then the optimisation problem becomes

argminx̂∈CN f(x̂) :=

N∑
j=1

ρj |x̂j | such that

∣∣∣∣∣∣1−
N∑
j=1

x̂j

∣∣∣∣∣∣ ≤ ε. (8.2)

Since ε < 1 and the (ρ1, ρ2, ...ρN ) weighted l1 norm is convex, it follows that the solution must lie on the
hypersurface segment x̂1 + x̂2 + ... + x̂j = 1 − ε for x̂j ∈ R≥0. We now claim that if x̂ is a solution of
(8.2), and ρj > mink ρk, then x̂j = 0. Suppose for a contradiction that there exists a solution x̂ of (8.2)
where x̂j > 0 and ρj > mink ρk. Pick any l such that ρl = mink ρk, then x̂ + x̂j(el − ej) is feasible with
f(x̂+ x̂j(el − ej)) < f(x̂), a contradiction. Similarly, if x is of the form (8.1), then f(x̂) = (1− ε) mink ρk.
In particular, the objective function is constant over the set of all such vectors and the result follows. �

Lemma 8.12 (Phase transition for LASSO). Let N ≥ 2 and consider the problem (P2) for

A = λ
(
w1

ρ1

w2

ρ2
· · · wN

ρN

)
∈ C1×N , y = 1,

where 0 < ρj < 2 for j = 1, ..., N . Then the set of solutions is given by(
1− mink ρk

2

) N∑
j=1

ρjtj
λwj

ej , s.t. tj ∈ [0, 1],

N∑
j=1

tj = 1 and tj = 0 if ρj > min
k
ρk, (8.3)

where ej correspond to the canonical basis of CN .

Proof. Let x̂j = xjλwjρ
−1
j , then the optimisation problem becomes

argminx̂∈CN f(x̂) :=

∣∣∣∣∣∣1−
N∑
j=1

x̂j

∣∣∣∣∣∣
2

+

N∑
j=1

ρj |x̂j | .

It is clear that any optimal solution must be real and hence we restrict our argument to real x̂. Define the 2N

quadrant subdomains Dk1,...,kN = {x̂j · (−1)kj > 0} for kj ∈ {0, 1}, and notice that

∇f(x̂) =


−2(1−

∑N
j=1 x̂j) + (−1)k1ρ1

...
−2(1−

∑N
j=1 x̂j) + (−1)kNρN

 , for x̂ ∈ Dk1,...,kN .

We first look for stationary points of the objective function in the subdomains Dk1,...,kN . The condition for
a stationary point in the interior of such a domain leads to the constraint that k1 = k2 = ... = kN . If
k1 = k2 = ... = kN = 1, then ∇f = 0 leads to the contradiction ρj = 2(x̂1 + ...+ x̂N )− 2 < 0. Finally, in
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the case (and only in the case) of ρ1 = ρ2 = ... = ρN , there is a hypersurface segment of stationary points in
D0,0,...,0 given by x̂1 + ...+ x̂N = 1− ρ1/2 (recall that we assumed ρ1 < 2 so this segment exists).

First, consider the case that ρ1 = ... = ρN . Then any optimal solution must either lie on the boundary of
some Dk1,...,kN or on the hypersurface segment x̂1 + ...+ x̂N = 1− ρ1/2 in D0,0,...,0. A simple case by case
analysis now yields that the solutions x̂ are given by convex combinations of (1 − ρj/2)ej for j = 1, ..., N .
Now consider the case that not all of the ρj are equal. Then any optimal solution must lie on the boundary
of some Dk1,...,kN . A simple case by case analysis now yields that the solutions x̂ are given by convex
combinations of (1 − ρj/2)ej for j such that ρj = mink ρk. Rescaling back to the variable x now gives the
result. �

Lemma 8.13 (Phase transition for square-root LASSO). Let N ≥ 2 and consider the problem (P3) for

A = λ
(
w1

ρ1

w2

ρ2
· · · wN

ρN

)
∈ C1×N , y = 1,

where 0 < ρj < 1 for j = 1, ..., N . Then the set of solutions is given by

N∑
j=1

ρjtj
λwj

ej , s.t. tj ∈ [0, 1],

N∑
j=1

tj = 1 and tj = 0 if ρj > min
k
ρk, (8.4)

where ej correspond to the canonical basis of CN .

Proof. Let x̂j = xjλwjρ
−1
j , then the optimisation problem becomes

argminx̂∈CN f(x̂) :=

∣∣∣∣∣∣1−
N∑
j=1

x̂j

∣∣∣∣∣∣+

N∑
j=1

ρj |x̂j | .

It is clear that any optimal solution must be real and hence we restrict our argument to real x̂. The objective
function is piecewise affine and since ρj < 1, the gradient of f is non-vanishing on the interior of any of the
domains Dk1,...,kN = {x̂j · (−1)kj > 0} for kj ∈ {0, 1}. It follows that the optimal solutions must lie on
the boundaries of the domains Dk1,...,kN . A simple case by case analysis shows that the solutions x̂ are given
by convex combinations of ej for j such that ρj = mink ρk. Rescaling back to the variable x now gives the
result. �

We will also need the following propositions, which give useful criteria for impossibility results.

Proposition 8.14. Let {Ξ,Ω,M,Λ} be a computational problem. Suppose that there are two sequences
{ι1n}n∈N, {ι2n}n∈N ⊂ Ω satisfying the following conditions:

(a) There are sets S1, S2 ⊂ M and κ > 0 such that infx1∈S1,x2∈S2 d(x1, x2) > κ and Ξ(ιjn) ⊂ Sj for
j = 1, 2.

(b) For every f ∈ Λ there is a cf ∈ C such that |f(ιjn)− cf | ≤ 1/4n for all n ∈ N and j = 1, 2.

Then, if we consider {Ξ,Ω,M,Λ}∆1 , we have the following:

(i) For any sequential general algorithm Γ and M ∈ N, there exists ι ∈ Ω and Λ̂ ∈ L1(Λ) such that

dist(Γ(ι),Ξ(ι)) > κ/2 or SΓ(ι) > M.

(ii) If there is an ι0 ∈ Ω such that for every f ∈ Λ we have that (b) is satisfied with cf = f(ι0), then for
any RGA Γ and p ∈ [0, 1/2), there exists ι ∈ Ω and Λ̂ ∈ L1(Λ) such that

Pι
(

dist(Γ(ι),Ξ(ι)) ≥ κ/2
)
> p.

Proof. Without loss of generality, we assume that Ω = {ι1n}n∈N∪{ι2n}n∈N. Part (ii) follows immediately from
Proposition 5.2 of [20], so we only prove part (i). Let Γ be a sequential general algorithm andM ∈ N. We will
construct the required Λ̂ ∈ L1(Λ) inductively. By Definition 8.3 and the setup of ∆1−information for Λ, there
exists some fk1

∈ Λ and n1 ∈ N such that for all ι ∈ Ω and for all Λ̂ ∈ L1(Λ), we have fΓ
ι,1 = fk1,n1

. We set
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fk1,n1
(ιjm) = cfk1

for all m ≥ n1 and choose fk1,n1
(ιjm) consistently for m < n1. Again by Definition 8.3

and the setup of ∆1−information for Λ, it follows that there exists fk2 ∈ Λ and n2 ∈ N (which without loss
of generality ≥ n1) such that for all m ≥ n1, either ΛΓ(ιjm) = {fk1,n1} or fΓ

ιjm,2
= fk2,n2 . In the latter case,

we set fk2,n2
(ιjm) = cfk2

for all m ≥ n2 and choose fk2,n2
(ιjm) consistently for m < n2. We continue this

process for a maximum of M steps up to

fΓ
ιjm,min{M,|ΛΓ(ιjm)|}

as follows. At the qth step after defining fkq,nq , by Definition 8.3 and the setup of ∆1−information for Λ,
it follows that there exists fkq+1 ∈ Λ and nq+1 ∈ N (which without loss of generality ≥ nq) such that
for all m ≥ nq , either ΛΓ(ιjm) ⊂ {fk1,n1 , ..., fkq,nq} or fΓ

ιjm,q+1
= fkq+1,nq+1 . In the latter case, we set

fkq+1,nq+1
(ιjm) = cfkq+1

for all m ≥ nq+1 and choose fkq+1,nq+1
(ιjm) consistently for m < nq+1. We can

then choose the rest of the function values to obtain Λ̂.
Given this Λ̂ ∈ L1(Λ), suppose for a contradiction that for any ι ∈ Ω,

dist(Γ(ι),Ξ(ι)) ≤ κ/2 and SΓ(ι) ≤M.

Without loss of generality, we assume that the above construction is carried out for M steps. It follows that
we must have f(ι1nM ) = f(ι2nM ) for all f ∈ Λ̂Γ(ι1nM ). By (ii) and (iii) of Definition 8.3, it follows that
Γ(ι1nM ) = Γ(ι2nM ). Let ε > 0 be arbitrary. Since dist(Γ(ι),Ξ(ι)) ≤ κ/2 for all ι ∈ Ω, there exists sj ∈ Sj

such that d(Γ(ιjnM ), sj) < κ/2 + ε. It follows that

inf
x1∈S1,x2∈S2

d(x1, x2) ≤ d(s1, s2) ≤ d(Γ(ι1nM ), s1) + d(Γ(ι2nM ), s2) < κ+ 2ε.

Since ε > 0 was arbitrary, we have

inf
x1∈S1,x2∈S2

d(x1, x2) ≤ κ,

the required contradiction. �

Proposition 8.15. Let {Ξ,Ω,M,Λ} be a computational problem and u > 1 be a positive integer. Suppose
that there are u sequences {ιjn}n∈N ⊂ Ω, for j = 1, ..., u, satisfying the following conditions:

(a) There are sets Sj ⊂ M, for j = 1, ..., u, and κ > 0 such that infxj∈Sj ,xk∈Sk d(xj , xk) > κ for any
j 6= k and Ξ(ιjn) ⊂ Sj for j = 1, ..., u.

(b) For every f ∈ Λ, there is a cf ∈ C such that |f(ιjn)− cf | ≤ 1/4n for all n ∈ N and j = 1, ..., u.

Then, if we consider {Ξ,Ω,M,Λ}∆1 , for any halting probabilistic Turing machine (Γ,P), M ∈ N and
p ∈ [0, (u− 1)/u), there exists ι ∈ Ω and Λ̂ ∈ L1(Λ) such that

P
(

dist(Γ(ι),Ξ(ι)) > κ/2 or SΓ(ι) > M
)
> p.

Proof. Without loss of generality, we assume that Ω = ∪uj=1{ιjn}n∈N. Let (Γ,P) be a halting probabilistic
Turing machine and M ∈ N, p ∈ [0, (u − 1)/u). Suppose for a contradiction that for all ι ∈ Ω and all
Λ̂ ∈ L1(Λ), we have

P
(

dist(Γ(ι),Ξ(ι)) > κ/2 or SΓ(ι) > M
)
≤ p.

We will construct the required Λ̂ ∈ L1(Λ) inductively. Let β ∈ (0, 1) be such that (1 − β)M − p > 1/u.
Such a β exists since p ∈ [0, (u − 1)/u). Since the Turing machine must halt with probability one, there
exists finite sets K1, N1 ⊂ N such that with probability (w.r.t. P) at least 1 − β, for all ι ∈ Ω and for all
Λ̂ ∈ L1(Λ), it holds that fΓ

ι,1 = fk1,n1
for some k1 ∈ K1 and n1 ∈ N1. We set fk1,n1

(ιjm) = cfk1
for all

m ≥ max{n1 : n1 ∈ N1} and choose fk1,n1
(ιjm) consistently otherwise.

We continue this process inductively for M steps up to fΓ
ιjm,min{M,|ΛΓ(ιjm)|} as follows. At the qth step after

defining fkq,nq for kq ∈ Kq and nq ∈ Nq , it follows (again since the Turing machine halts with probability
one) that there exists finite sets Kq+1, Nq+1 ⊂ N with the following property. Let Eq+1 be the event that for
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all ιjm ∈ Ω with m ≥ max{n : n ∈ N1 ∪ ... ∪Nq}, either fΓ
ιjm,q+1

= fkq+1,nq+1
, for some kq+1 ∈ Kq+1 and

nq+1 ∈ Nq+1, or |Λ(ιjm)| ≤ q. Then

P(Eq+1| ∩k≤q Ek) ≥ 1− β.

We then set fkq+1,nq+1
(ιjm) = cfkq+1

for all m ≥ max{n : n ∈ N1 ∪ ... ∪Nq+1} and choose fkq+1,nq+1
(ιjm)

consistently otherwise. This ensures the existence of Kq+2 and Nq+2. After completing the M th step, we can
choose the rest of the function values to obtain Λ̂.

It follows that for m ≥ max{n : n ∈ N1 ∪ ... ∪NM}, the outputs Γ(ιjm) conditional on the event

E1 ∩ ... ∩ EM ∩ {SΓ(·) ≤M}

are equal for j = 1, ..., u. Since infxj∈Sj ,xk∈Sk d(x1, x2) > κ for j 6= k, it follows that the events

Fj := {dist(Γ(ιjm),Ξ(ιjm)) ≤ κ/2} ∩ {SΓ(ιjm) ≤M} ∩ E1 ∩ ... ∩ EM , j = 1, ..., u

are disjoint. Moreover, using the fact that P(A ∩B) = P(A) + P(B)− P(A ∪B),

P(Fj) ≥ P({dist(Γ(ιjm),Ξ(ιjm)) ≤ κ/2} ∩ {SΓ(ιjm) ≤M}) + P(E1 ∩ ... ∩ EM )− 1

≥ P({dist(Γ(ιjm),Ξ(ιjm)) ≤ κ/2} ∩ {SΓ(ιjm) ≤M}) + (1− β)M − 1

≥ (1− β)M − p > 1/u.

But this contradicts the disjointness of the Fj’s. �

8.3. Proof of Theorem 2.2.

Proof of Theorem 2.2. We will argue for m = 1 and construct such an Ω for this case. The general case of
m > 1 follows by embedding our construction for the case of a given A ∈ C1×(N+1−m) in the first row of
matrices and vectors of the form

Â =

(
A 0

0 αI

)
, ŷ = (y, 0)T , (A, y) ∈ Ω,

where I ∈ C(m−1)×(m−1) denotes the (m − 1) × (m − 1) identity matrix and α = α(A) is chosen such
that ÂÂ∗ is a multiple of the identity. In particular, such an embedding does not effect the relevant condition
numbers (it is straightforward to see that the matrix norm, distance to infeasibility for (P1) and condition
numbers of the mappings are all unchanged).

For the classes we consider, the setup of Theorem 2.2 coincides with the ∆1−information model discussed
in §8.1. In particular, we can use Lemmas 8.11, 8.12 and 8.13 to derive the relevant xs,n’s in (2.7). This means
that we can apply Propositions 8.14 and 8.15 with the metric corresponding to the l2-norm. Recall that for this
theorem, we assume that w1 = w2 = ... = wN = 1.

Step 1: Proof for (P1). First, consider the class defined by

Ω1 =
{

(A(γ1; ρ), y) : A(γ1; ρ) := γ1

(
1
ρ1

1
ρ2
· · · 1

ρN

)
, y = 1, ρj ∈ [1− 2δ, 1− δ]

}
,

for fixed γ1 > 10 and δ ∈ (0, 1/4). We choose γ1 and δ such that

sup
ρj ,ρk∈[1−2δ,1−δ],j 6=k

‖ρjej − ρkek‖l2 = 3 · 10−K · γ1

1− ε
, (8.5)

inf
ρj ,ρk∈[1−2δ,1−δ],j 6=k

‖ρjej − ρkek‖l2 > 2 · 10−K · γ1

1− ε
, (8.6)
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where the ej denote the canonical basis of CN . Note that we can ensure γ1 > 10 since ε ≤ 1/2 and K ≥ 2. If
ρj ∈ [1− 2δ, 1− δ) then by (a simple rescale of) Lemma 8.11,

ΞP1(A(γ1; (ρ1, 1− δ, ..., 1− δ)T ), 1) =
(1− ε)ρ1

γ1
e1,

ΞP1
(A(γ1; (1− δ, ρ2, 1− δ, ..., 1− δ)T ), 1) =

(1− ε)ρ2

γ1
e2.

Since (8.6) holds, it follows by selecting appropriate sequences ιjn for choices of ρj = ρnj ↑ 1 − δ that the
conditions of Proposition 8.14 hold for Ω1 with

Sj =

{
1− ε
γ1

ρej : ρ ∈ [1− 2δ, 1− δ]
}
, κ = 2 · 10−K . (8.7)

Moreover, the condition for part (ii) of Proposition 8.14 also holds with ι0 = (A(γ1; (1 − δ, 1 − δ, ..., 1 −
δ)T ), 1).

Now suppose for a contradiction that there exists a (halting) RGA (with input TA,S ) and p > 1/2 that
produces a NN φA such that

min
y∈SA

inf
x∗∈ΞP1

(A,y)
‖φA(y)− x∗‖l2 ≤ 10−K

holds with probability at least p for all (A, y) ∈ Ω1. Then there exists a (halting) RGA, Γ, taking TA,S as input
that computes a solution of (P1) to K correct digits with probability at least p on each input in Ω1. However,
this contradicts Proposition 8.14 (ii). Next, consider the class defined by

Ω2 =
{

(A(γ2; ρ), y) : A(γ2; ρ) = γ2

(
1
ρ1

1
ρ2
· · · 1

ρN

)
, y = 1, ρj ∈ [1− 2δ, 1− δ], ρj 6= ρk if j 6= k

}
,

where γ2 = γ1/10 > 1 so that

sup
ρj ,ρk∈[1−2δ,1−δ],j 6=k

‖ρjej − ρkek‖l2 = 3 · 10−K+1 · γ2

1− ε
, (8.8)

inf
ρj ,ρk∈[1−2δ,1−δ],j 6=k

‖ρjej − ρkek‖l2 > 2 · 10−K+1 · γ2

1− ε
. (8.9)

By extending the argument above to u = N + 1 − m = N (recall without loss of generality that m = 1)
sequences and sets Sj defined as in (8.7), the conditions of Proposition 8.15 hold with κ = 2 · 10−K+1. Now
suppose that there exists a (halting) probabilistic Turing machine (Γ,P), M ∈ N and p ∈

[
0, N−m

N+1−m

)
, such

that for any (A, 1) ∈ Ω2, Γ computes a NN φA with

P
(

inf
x∗∈ΞP1

(A,y)
‖φA(y)− x∗‖l2 > 101−K or the sample size needed to construct φA > M

)
≤ p.

Then there exists a (halting) probabilistic Turing machine that computes a solution of (P1) to K − 1 correct
digits on each input in Ω2 with sample size at mostM with probability at least 1−p. However, this contradicts
Proposition 8.15.

We now set Ω = Ω1 ∪ Ω2. Note that the negative statements of part (i) and (ii) follow from the above
arguments by considering restrictions to Ω1 and Ω2 respectively. Hence, we are left with proving the condition
number bounds, part (iii) and the positive part of part (ii). First, note that Cond(AA∗) = 1 for any (A, y) ∈ Ω.
For any (A, y) ∈ Ω, we have ν(A, y) = ‖A‖ ≥ 1 = ‖y‖l2 and hence CFP(ΞP1

,Ω) ≤ 1. To bound the final
condition number, first note that if ρj , ρ′j ≤ 1, then

‖ρ− ρ′‖l2 ≤

∥∥∥∥∥∥
N∑
j=1

(
1

ρj
− 1

ρ′j

)
ej

∥∥∥∥∥∥
l2

.

Let (A(γ1; ρ), 1) ∈ Ω1, then if (A(γ1; ρ′), 1) ∈ Ω1 with

∆(ρ, ρ′) := γ1

∥∥∥∥∥∥
N∑
j=1

(
1

ρj
− 1

ρ′j

)
ej

∥∥∥∥∥∥
l2
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sufficiently small, then we must have that

dist(ΞP1(A(γ1; ρ′), 1),ΞP1(A(γ1; ρ), 1)) ≤ 1− ε
γ1
‖ρ− ρ′‖l2 .

It follows that

lim
β↓0

sup
(A(γ1;ρ′),1)∈Ω1

∆(ρ,ρ′)≤β

dist(ΞP1
(A(γ1; ρ′), 1),ΞP1

(A(γ1; ρ), 1))

∆(ρ, ρ′)
≤ 1− ε

γ2
1

< 1.

A similar argument holds for (A(γ2; ρ), 1) ∈ Ω2, and hence Cond(ΞP1
,Ω) ≤ 1.

We now prove the positive parts of (ii) and (iii). We begin with (ii) and describe the algorithm informally,
noting that the output of the algorithm, which we denote by Γ(A), gives rise to a NN which maps y = 1

to Γ(A) ∈ CN . Given an input (A, y) ∈ Ω, the algorithm first tests the size of A1,1 to determine whether
(A, y) ∈ Ω1 or (A, y) ∈ Ω2. Explicitly, we note that A1,1 is positive and bounded away from 0. Hence, with
one sample from TA,S we can determineA1,1 to an accuracy of at least 0.01·A1,1 and such that, simultaneously,
the corresponding approximation of A−1

1,1 is accurate to at least 10−K . Note that if (A, y) ∈ Ω1, then A1,1 ∈
γ1 · [1, 2] whereas if (A, y) ∈ Ω2, then A1,1 ∈ γ2 · [1, 2]. Since γ2 = γ1/10, this level of accuracy is enough
to determine whether (A, y) ∈ Ω1 or (A, y) ∈ Ω2. Next, if the algorithm determines (A, y) ∈ Ω1, it outputs
the corresponding approximation of

(1− ε)A−1
1,1e1 =

1− ε
γ1

ρ1e1

correct to 10−K in the l2-norm from the sample. Since

sup
ρj ,ρk∈[1−2δ,1−δ],j 6=k

‖ρjej − ρkek‖l2 = 3 · 10−K · γ1

1− ε
,

it follows that

inf
x∗∈ΞP1

(A,y)
‖Γ(A)− x∗‖l2 ≤ 4 · 10−K < 10−K+1.

On the other hand, if the algorithm determines (A, y) = (A(γ2; ρ), y) ∈ Ω2, then we know that all of the ρj
are distinct. The algorithm continues to sample TA,S until we determine j such that ρj = mink ρk. It then
outputs an approximation of

(1− ε)A−1
1,jej = ΞP1

(A, y)

correct to 10−K in the l2-norm. Such as approximation can be computed using TA,S . It then follows that

‖Γ(A)− ΞP1
(A, y)‖l2 ≤ 10−K < 10−K+1

and this finishes the proof of (ii). Finally, to prove (iii), note that the arguments above show that, given an
input (A, y) ∈ Ω, we can use one sample (L = 1) of TA,S to compute an approximation of A−1

1,1 with error
bounded by 10−K . We simply set Γ(A) to be (1− ε) multiplied by this approximation. Using (8.5) and (8.8),
it follows that

inf
x∗∈ΞP1

(A,y)
‖Γ(A)− x∗‖l2 ≤ 3 · 10−K+1 + 10−K < 10−K+2.

Step 2: Proof for (P2). This is almost identical step 1 with replacing Lemma 8.11 with Lemma 8.12. The
other changes are replacing ε with the suitable ρi/2 in the solution of each LASSO problem, including the
additional scale λ in the definition of the matrices (see Lemma 8.12) and choosing γ1λ > 10 and δ ∈ (0, 1/4)

such that (recall that λ ≤ 1)

sup
ρj ,ρk∈[1−2δ,1−δ],j 6=k

1

λγ1
· ‖ρj(1− ρj/2)ej − ρk(1− ρk/2)ek‖l2 = 3 · 10−K (8.10)

inf
ρj ,ρk∈[1−2δ,1−δ],j 6=k

1

λγ1
· ‖ρj(1− ρj/2)ej − ρk(1− ρk/2)ek‖l2 > 2 · 10−K . (8.11)
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Let f(x) = (1− x/2)x, then for x ∈ [0, 1], |f ′(x)| ≤ 1. It follows that∥∥∥∥∥∥
N∑
j=1

(
ρj(1− ρj/2)− ρ′j(1− ρ′j/2)

)
ej

∥∥∥∥∥∥
l2

≤

∥∥∥∥∥∥
N∑
j=1

(
1

ρj
− 1

ρ′j

)
ej

∥∥∥∥∥∥
l2

.

Hence, for sufficiently small δ, for any (A(γ1; ρ), 1) ∈ Ω1 (recall the additional factor of λ) and ρ′ sufficiently
close to ρ with (A(γ1; ρ′), 1) ∈ Ω1,

dist(ΞP2
(A(γ1; ρ′), 1),ΞP2

(A(γ1; ρ), 1))

γ1λ
∥∥∥∑N

j=1

(
1
ρj
− 1

ρ′j

)
ej

∥∥∥
l2

≤ 1

γ2
1λ

2
< 1,

with the same bound holding for Ω2. It follows that Cond(ΞP2
,Ω) ≤ 1.

Step 3: Proof for (P3). This is almost identical step 2 with replacing Lemma 8.12 with Lemma 8.13, and
deleting the corresponding factors of 1− ρj/2. �

9. PROOF OF THEOREM 5.5

A roadmap for the proof is as follows. We consider the problem (P3) and unroll iterations of Chambolle and
Pock’s primal-dual algorithm [47, 48, 82]. These iterations are approximated by NNs in Theorem 9.5, where
we obtain bounds on a rescaled version of the objective function in (9.9). The assumption of weighted rNSPL
then allows us to relate the bounds proven in Theorem 9.5 to bounds on the distance of the output of the NN
to the wanted vector and also, simultaneously, prove stability. This also allows the acceleration to exponential
convergence through a restart scheme (with a reweighting at each restart).

We begin with the proof of Lemma 5.4, which allows us to consider the approximation matrices Al in the
construction of the NNs. We also state some results from compressed sensing that are needed in our proofs.
We then discuss preliminary results on unrolling iterative algorithms for (P3), which are used in the proof of
Theorem 5.5. When writing out NNs in the proofs, we will use NL−−→ arrows to denote the non-linear maps and
L−→ arrows to denote the affine maps.

9.1. Some results from compressed sensing.

Proof of Lemma 5.4. Let ∆ be a (s,M) support set and x ∈ CN , then we have

‖x∆‖l2 ≤
ρ‖x∆c‖l1w√

ξ
+ γ‖Ax‖l2

≤
ρ‖x∆c‖l1w√

ξ
+ γ‖Âx‖l2 + γ‖Â−A‖‖x‖l2 . (9.1)

Note that

min
k=1,...,r

w2
(k)

∑
j∈∆c

|xj |2 ≤

∑
j∈∆c

|xj |wj

2

= ‖x∆c‖2l1w .

Hence, (9.1) implies that

‖x∆‖l2 ≤
ρ‖x∆c‖l1w√

ξ
+ γ‖Âx‖l2 + γ‖Â−A‖

(
‖x∆‖l2 +

‖x∆c‖l1w
mink=1,...,r w(k)

)
.

Rearranging now gives the result. �

The following results are taken from the compressed sensing literature. Lemma 9.1 is Lemma 5.2 from [2]
and Lemma 9.2 is Lemma 5.3 from [2].

Lemma 9.1 (rNSPL implies l1w distance bound). Suppose that A has the weighted rNSPL of order (s,M)

with constants 0 < ρ < 1 and γ > 0. Let x, z ∈ CN , then

‖z − x‖l1w ≤
1 + ρ

1− ρ
(
2σs,M(x)l1w + ‖z‖l1w − ‖x‖l1w

)
+

2γ

1− ρ
√
ξ‖A(z − x)‖l2 . (9.2)
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Lemma 9.2 (rNSPL implies l2 distance bound). Suppose that A has the weighted rNSPL of order (s,M)

with constants 0 < ρ < 1 and γ > 0. Let x, z ∈ CN , then

‖z − x‖l2 ≤
(
ρ+

(1 + ρ)κ1/4

2

) ‖z − x‖l1w√
ξ

+

(
1 +

κ1/4

2

)
γ‖A(z − x)‖l2 . (9.3)

9.2. Preliminary constructions of neural networks. When constructing NNs, we will make use of the fol-
lowing maps from CM to itself, defined for various M ∈ N and β ∈ Q>0 by

ψ0
β(x) = max

{
0, 1− β

‖x‖l2

}
x, ψ1(x) = min

{
1,

1

‖x‖l2

}
x.

Lemma 9.3. Let M ∈ N, β ∈ Q>0 and θ ∈ Q>0. Then there exists neural networks φ0
β,θ, φ

1
θ ∈ ND,3,2 with

D = (M, 2M,M + 1,M) such that∥∥φ0
β,θ(x)− ψ0

β(x)
∥∥
l2
≤ θ,

∥∥φ1
θ(x)− ψ1(x)

∥∥
l2
≤ θ, ∀x ∈ CM ,

and such that the non-linear maps can be computed from sqrtθ and finitely many arithmetic operations and
comparisons.

Proof. We deal only with the case of ψ0
β since the case of ψ1 is nearly identical. Consider the maps

φ0
β,θ : x

L−→

(
x

x

)
NL−−→



|x1|2

|x2|2
...

|xM |2

x


L−→

(∑M
j=1 |xj |2

x

)
NL−−→

(
0

max
{

0, 1− β
sqrtθ(‖x‖2

l2
)

}
x

)

L−→ max

{
0, 1− β

sqrtθ(‖x‖2l2)

}
x.

The first, third and final arrows are simple affine maps. The second arrow applies pointwise modulus squaring,
which can be done using finitely many arithmetic operations. The penultimate arrow applies a non-linear map
which can be computed from one application of sqrtθ and finitely many arithmetic operations and comparisons.
The bound ∥∥∥∥max

{
0, 1− β

‖x‖l2

}
x− φ0

β,θ(x)

∥∥∥∥
l2
≤ θ,

follows from a simple case by case analysis. �

The final piece of machinery needed will be the approximation, via a NN, of applying a pointwise version
of ψ0

β .

Lemma 9.4. Let s, θ ∈ Q>0, w ∈ QN>0 and for x̂ ∈ CN consider the minimisation problem

argminx∈CN ‖x‖l1w + s‖x− x̂‖2l2 . (9.4)

Let x̃s(x̂) denote the solution of (9.4). Then, there exists φs,θ ∈ ND,2,1 such that

‖φs,θ(x̂)− x̃s(x̂)‖l2 ≤ θ‖w‖l2 , ∀x̂ ∈ CN (9.5)

and D = (N,N,N). Each affine map in the neural network is linear and is an arithmetic function of w.
Moreover, the non-linear maps used can be computed from sqrtθ and finitely many arithmetic operations and
comparisons.

Proof. Let B = diag(w1, ..., wN ) ∈ QN×N and consider the function

F (y) =
1

2s
‖By‖l1 =

1

2s
‖y‖l1w .

Then we can write the minimisation problem (9.4) as proxF (x̂). Given y ∈ CN , we identify y = (y1, y2)T ∈
R2N .
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First, for β > 0 and x ∈ Rn we recall that the proximal operator of (a multiple of) the l2-norm can be
written as

proxβ‖·‖l2 (x) = max

{
0, 1− β

‖x‖l2

}
x. (9.6)

Thus, for β > 0 we define
ϕβ(y) = (v(y, β) ∗ y1, v(y, β) ∗ y2)T ,

where ∗ denotes pointwise multiplication and for j = 1, ..., N we have

v(y, β)j = max

0, 1− β√
y2

1,j + y2
2,j

 .

The function ϕβ simply corresponds to a proximity map of the l2-norm applied component-wise to the com-
plexified version of y. Using (9.6), we have

proxF (y) = argminz∈CN
1

2s
‖Bz‖l1 +

1

2
‖z − y‖2l2

= argminz∈CN

N∑
j=1

(
Bjj
2s

√
z2

1,j + z2
2,j +

1

2

(
(z1,j − y1,j)

2 + (z2,j − y2,j)
2
))

It follows that (in complex vector form)

[proxF (y)]j = max

{
0, 1− Bjj/(2s)

|yj |

}
yj , for j = 1, . . . , N.

We can therefore write
proxF (y) = Bϕ(2s)−1(B−1y).

We then unroll the computation of proxF (x̂) via:

x̂
L−→ B−1x̂

NL−−→ ϕ(2s)−1(B−1x̂)
L−→ Bϕ(2s)−1(B−1y).

The first arrow is a simple linear map, the second applies ϕ(2s)−1 and the third is a linear map. We approximate
this by replacing v(y, β)jyj with φ0

β,θ(y1,j + y2,ji) (denoting the replacement of ϕ(2s)−1 by ϕθ(2s)−1 ) where
φ0
β,θ is the NN from Lemma 9.3 with M = 1. This clearly gives φs,θ ∈ ND,2,1, so we need to only bound the

error. From Lemma 9.3 we have∥∥∥proxF (x̂)−Bϕθ(2s)−1(B−1x̂)
∥∥∥
l2

=
∥∥∥B (ϕ(2s)−1(B−1x̂)− ϕθ(2s)−1(B−1x̂)

)∥∥∥
l2

≤ θ‖w‖l2 .

The bound 9.5 now follows. �

The following theorem proves that one can construct NNs with objective function bounds. The proof
constructs approximations of unrolled iterations of Chambolle and Pock’s primal-dual algorithm [47, 48, 82].
We have used b to denote part of the inputs of the NNs, instead of y, to avoid a clash of notation with the usual
notation for primal-dual iterations (y is used to denote a dual variable). The bounds in part 2 of Theorem 9.5
will be combined with results from §9.1 to construct the families of NNs in Theorem 5.5.

Theorem 9.5. Let A ∈ Q[i]m×N and θ ∈ Q>0. Suppose also that LA ∈ Q≥1 is an upper bound for ‖A‖, and
that τ, σ ∈ Q>0 are such that τσL2

A < 1. Let λ ∈ Q>0, w ∈ QN>0 and consider the resulting optimisation

problem (P3). Then there exists an algorithm that constructs a sequence of neural networks
{
φAn,λ, θ

}
with

the following properties:

(1) (Size) Each φAn,λ : Cm+N → CN takes as input data b ∈ Cm and an initial guess x0 ∈ CN , both of
which are completely general. Also, φAn,λ ∈ NDn,3n+1,3 with

Dn = (m+N, 2N +m, 2(N +m), 2N +m+ 1︸ ︷︷ ︸
repeated n times

, N).
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(2) (O(n−1 + nθ) Error Control) Let

C = (1 + ‖w‖l2 + 2σ‖A‖‖w‖l2)

√
τ + σ

1− τσL2
A

√
τ + σ

τσ
, (9.7)

then for any inputs b ∈ Cm and x0 ∈ CN , there exists a vector ψn(b, x0) ∈ CN with

∥∥ψn(b, x0)− φAn,λ(b, x0)
∥∥
l2
≤ nθC (9.8)

such that for any x ∈ CN and η ∈ [0, 1], it holds that

λ‖ψn(b, x0)‖l1w − λ‖x‖l1w + η‖Aψn(b, x0)− b‖l2 − ‖Ax− b‖l2 ≤
1

n

(
‖x− x0‖2l2

τ
+
η2

σ

)
. (9.9)

Proof. We will use the notation b ∈ Cm to denote an input vector for our NNs throughout the proof and
reserve y to denote dual vectors, consistent with the literature on primal-dual iterative optimisation algorithms
for saddle point problems.

Step 1: The first step is to consider an equivalent optimisation problem over R instead of C, and rewrite
the problem as a saddle point problem. For x ∈ CN , let x1 = real(x) and x2 = imag(x) and consider
x = (x1, x2)T as a vector in R2N (and likewise for the dual variables). With an abuse of notation, we will
use the same notation for complex x ∈ CN and the corresponding vector in R2N , though it will be clear from
the context whether we refer to the complex vector or it’s real counterpart. We let c = (real(b), imag(b))T .
Define the matrices

K1 =

(
real(A) −imag(A)

imag(A) real(A)

)
∈ R2m×2N , K2 =

(
real(B) −imag(B)

imag(B) real(B)

)
∈ R2N×2N ,

which simply correspond to multiplication by the matrices A and B := diag(w1, ..., wN ) respectively. Let
F̃1 : R2N → R be defined by

F̃1(x) =

N∑
j=1

√
(K2x)2

j + (K2x)2
j+N .

and set F̃3(x) = λF̃1(x). Then the primal problem (P3) is equivalent to

min
x∈R2N

F̃3(x) + ‖K1x− c‖l2 .

It is also straightforward to check that LA is an upper bound for ‖K1‖. The saddle point formulation of the
problem is given by

min
x∈R2N

max
y∈R2m

L(x, y) := 〈K1x, y〉+ F̃3(x)− f∗3 (y), (9.10)

where f∗3 (y) = χB1(0)(y) + 〈c, y〉, and χS denotes the indicator function of a set S, taking the value 0 on S
and +∞ otherwise, and B1(0) denotes the l2 closed unit ball.

Step 2: We will solve (9.10) by approximating Chambolle and Pock’s primal-dual algorithm [47] with a
NN. As well as this, we will use an additional shift of updates (considered in [48, 82]) in comparison with the
original paper [47]. We will write the iteration as an instance of the proximal point algorithm [120] and gain a
non-expansive map in a norm which we relate to the standard Euclidean norm.

We start by setting x0 = x0 (one of the inputs of the NN) and y0 = 0. Recall that for a convex function h,
we have that x = proxh(z) if and only if z ∈ x + ∂h(x), where ∂h denotes the subdifferential of h, see, for
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example, [68, Prop. B.23]. Letting g = F̃3 and f∗ = f∗3 , the exact iterates can be written as

xk+1 = argminx∈R2N g(x) + 〈K1x, y
k〉+

1

2τ
‖x− xk‖2l2

= argminx∈R2N g(x) +
1

2τ
‖x− (xk − τK∗1yk)‖2l2

= (I + τ∂g)−1(xk − τK∗1yk)

yk+1 = argminy∈R2m f∗(y)− 〈K1(2xk+1 − xk), y〉+
1

2σ
‖y − yk‖2l2

= argminy∈R2m f∗(y) +
1

2σ
‖y − (yk + σK1(2xk+1 − xk)‖2l2

= (I + σ∂f∗)−1
[
yk + σK1(2xk+1 − xk)

]
.

(9.11)

Note that the solutions of these proximal mappings are given by Lemmas 9.3 and 9.4 and their proofs, as we
describe explicitly below in step 4. The function f∗ also depends on the input data b.

Let z = (x, y)T and define the matrix

Mτσ =

(
1
τ I −K∗1
−K1

1
σ I

)
∈ R2(m+N)×2(m+N),

which is positive definite by the assumption τσL2
A < 1 and hence induces a norm denoted by ‖ · ‖τσ. We can

write the iterations as (see, for example, [48, Sec. 3])

0 ∈M−1
τσ

(
∂g K∗1
−K1 ∂f∗

)
zk+1 + (zk+1 − zk)⇒ zk+1 =

[
I +M−1

τσ

(
∂g K∗1
−K1 ∂f∗

)]−1

zk.

The multi-valued operator

M−1
τσ

(
∂g K∗1
−K1 ∂f∗

)
is maximal monotone with respect to the inner product induced by Mτσ [120] and hence the iterates are
non-expansive in the norm ‖ · ‖τσ. We also have that

‖(x, y)T ‖2τσ ≤
‖x‖2l2
τ

+
‖y‖2l2
σ

+ 2LA‖x‖l2‖y‖l2

≤
(
LA
ν

+ τ−1

)
‖x‖2l2 +

(
LAν + σ−1

)
‖y‖2l2 ,

for any ν > 0 by the generalised AM–GM inequality. Choosing ν = σLA and using τσL2
A < 1, we have that

‖(x, y)T ‖2τσ ≤ (τ−1 + σ−1)‖(x, y)T ‖2l2 . (9.12)

A similar calculation yields that

‖(x, y)T ‖2l2 ≤
τ + σ

1− τσL2
A

‖(x, y)T ‖2τσ. (9.13)

We shall need these inequalities in Step 5.
Step 3: Next, we use convergence guarantees proven in [48] to obtain inequalities that closely resemble

(9.9). Define the ergodic averages

Xk =
1

k

k∑
j=1

xj , Y k =
1

k

k∑
j=1

yj .

By convexity, the map from (x1, y1)T to (Xk, Y k)T is also non-expansive in the norm ‖ · ‖τσ. It also holds
(see [48] Theorem 1 and remarks) that

L(Xk, y)− L(x, Y k) ≤ 1

k

(
‖x− x0‖2l2

τ
+
‖y‖2l2
σ

)
, (9.14)
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for all x ∈ R2N and all y ∈ R2m. Let y be parallel to KXk − c such that ‖y‖l2 = η ≤ 1, and x be general in
(9.14). This gives

F̃3(Xk)− F̃3(x) + 〈K1X
k − c, y〉+ 〈c−K1x, Y

k〉 ≤ 1

k

(
‖x− x0‖2l2

τ
+
η2

σ

)
.

Since ‖Y k‖l2 ≤ 1 (otherwise we gain a contradiction in that the left-hand side of (9.14) is infinite), this implies

F̃3(Xk)− F̃3(x) + η‖K1X
k − c‖l2 − ‖K1x− c‖l2 ≤

1

k

(
‖x− x0‖2l2

τ
+
η2

σ

)
. (9.15)

Step 4: The next step is to unroll the iterations in (9.11) as (complex-valued) NNs that approximate the
Xk. We unroll via the following steps:Xk

xk

yk

 L−→

 Xk

xk − τA∗yk

yk − σAxk

 NL−−→

 Xk

xk+1

yk − σAxk

 L−→

Xk+1

xk+1

uk

 NL−−→

Xk+1

xk+1

yk+1

 ,

with uk = yk + σA(2xk+1 − xk)− σb. The first arrow is a simple linear map, the second computes

xk+1 =
(
I + τλ∂FA1

)−1
(xk − τA∗yk)

The third is an affine map and the final arrow applies ψ1 to uk. We now define the approximations Z̃k and
z̃k (of Zk = (Xk, Y k)T and zk = (xk, yk)T respectively) defined by replacing ψ1 with φ1

θ (Lemma 9.3) and
the computation of (I + τλ∂FA1 )−1(xk − τA∗yk) with φ(2τλ)−1,θ(x̃

k − τA∗ỹk) (Lemma 9.4). We initialise
the network with x̃0 = x0 and y0 = 0. Since the composition of two affine maps is affine, it follows that the
mapping from (b, x0) to X̃n can be realised by φAn,λ ∈ NDn,3n+1,3 with

Dn = (m+N, 2N +m, 2(N +m), 2N +m+ 1︸ ︷︷ ︸
repeated n times

, N).

Clearly, the sequence of NNs are NNs in the sense of §5.1 and can be constructed by an algorithm (see §8.1).
Step 5: Finally, we bound the difference between Zk and Z̃k to deduce (9.8), and the error bound in the

objective function using the inequalities in Step 3. We write

x̃k = xk + ek1 , ỹk = yk + ek2

and clearly have that e0
1 = 0 and e0

2 = 0. We can write

x̃k+1 = φ(2τλ)−1(x̃k − τA∗ỹk) + ek+1
3 ,

with ‖ek+1
3 ‖l2 ≤ θ‖w‖l2 by Lemma 9.4. We also have that

ỹk+1 = ψ1(ỹk + σA(2x̃k+1 − x̃k)− σb) + ek+1
4 ,

with ‖ek+1
4 ‖l2 ≤ θ by Lemma 9.3. Since ψ1 is non-expansive, it follows that

ỹk+1 = ψ1(ỹk + σA(2(x̃k+1 − ek+1
3 )− x̃k)− σb) + ek+1

5 ,

with ‖ek+1
5 ‖l2 ≤ θ(1 + 2σ ‖A‖ ‖w‖l2). We can then use the fact that the iterates applied with the exact

proximal maps are non-expansive in the norm ‖ · ‖τσ, along with (9.13) and (9.12), to conclude that

‖Xn − X̃n‖l2 ≤
√

τ + σ

1− τσL2
A

‖Zn − Z̃n‖τσ

≤
√

τ + σ

1− τσL2
A

[
‖Zn−1 − Z̃n−1‖τσ + θ

√
τ + σ

τσ

(
1 + ‖w‖l2 + 2σ‖A‖‖w‖l2)

)]

≤ nθ(1 + ‖w‖l2 + 2σ‖A‖‖w‖l2)

√
τ + σ

1− τσL2
A

√
τ + σ

τσ
.

It follows that (9.8) holds with ψn(b, x0) = Xn and then the complex version of (9.15) implies (9.9). �
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9.3. Proof of Theorem 5.5. Step 1: The first step is to derive a bound on the distance between vectors using
the square-root LASSO objective function and rNSPL. First, note that for any inputs A (more precisely, the
rational approximations {Al}), ρ and γ described in the theorem, we can compute, using Lemma 5.4, a positive
integer l in finitely many arithmetic operations and comparisons, such that Al ∈ Q[i]m×N satisfies the rNSPL
with constants (1 + ρ)/2 ∈ (0, 1), 2γ > 0. Lemmas 9.1 and 9.2 therefore imply that for any pair z1, z2 ∈ CN

we have

‖z1 − z2‖l1w ≤
3 + ρ

1− ρ
(
2σs,M(z2)l1w + ‖z1‖l1w − ‖z2‖l1w

)
+

8γ
√
ξ

1− ρ
‖Al(z1 − z2)‖l2 , (9.16)

and

‖z1 − z2‖l2 ≤
(

1 + ρ

2
+

(3 + ρ)κ1/4

4

) ‖z1 − z2‖l1w√
ξ

+
(

2 + κ1/4
)
γ‖Al(z1 − z2)‖l2 . (9.17)

Combining these two inequalities, we obtain the bound

‖z1 − z2‖l2 ≤
2C1√
ξ
σs,M(z2)l1w +

C1√
ξ

(
‖z1‖l1w − ‖z2‖l1w

)
+ C2‖Al(z1 − z2)‖l2

≤ 2C1√
ξ
σs,M(z2)l1w + 2C2‖Alz2 − y‖l2

+
C1

λ
√
ξ

(
λ‖z1‖l1w − λ‖z2‖l1w + ‖Alz1 − y‖l2 − ‖Alz2 − y‖l2

)
,

(9.18)

where the second inequality follows from the fact that ‖Al(z1 − z2)‖l2 ≤ ‖Alz1 − y‖l2 + ‖Alz2 − y‖l2 and
we chose a positive rational λ ≤ C1/(C2

√
ξ) (we will specify how small |λ−C1/(C2

√
ξ)| must be later, and

always assume λ ∼ C1/(C2

√
ξ)). For notational convenience, we define

G(z1, z2, y) := λ‖z1‖l1w − λ‖z2‖l1w + ‖Alz1 − y‖l2 − ‖Alz2 − y‖l2 , (9.19)

which is the difference between the values of the objective function FA3 for arguments z1 and z2. We also
define

c(z, y) :=
2C1

C2

√
ξ
· σs,M(z)l1w + 2‖Alz − y‖l2 . (9.20)

It follows from (9.18) and λ ≤ C1/(C2

√
ξ) that

‖z1 − z2‖l2 ≤
C1

λ
√
ξ

(c(z2, y) +G(z1, z2, y)) , (9.21)

which also implies the bound

G(z1, z2, y) ≥ −c(z2, y). (9.22)

Note that these bounds hold for completely general z1, z2 and y.
Step 2: The second step is to apply Theorem 9.5 using a suitable scaling to define a family of parametrised

NNs, which we iterate later in the proof (this corresponds to restarting primal-dual iterations with different
parameters). Let σ = τ ∈ (4‖Al‖−1/5, 5‖Al‖−1/6) be positive rational numbers, and note that we can
compute such parameters by approximating ‖Al‖ via any standard algorithm that approximates the largest
singular value of a rectangular matrix using finitely many arithmetic operations and comparisons. We now
use Theorem 9.5 (with θ specified below) with input y/(pβ) and x0/(pβ) for a given p ∈ N, and β ∈ Q>0

(which we explicitly define below). Given φAlp,λ(y/(pβ), x0/(pβ)), Theorem 9.5 ensures the existence of a
vector ψp = ψp(y/(pβ), x0/(pβ)) satisfying∥∥∥ψp ( y

pβ ,
x0

pβ

)
− φAp,λ

(
y
pβ ,

x0

pβ

)∥∥∥
l2
≤ pCθ

where C is given in (9.7) and

λ‖ψp‖l1w − λ
∥∥∥∥ xpβ

∥∥∥∥
l1w

+

∥∥∥∥Aψp − y

pβ

∥∥∥∥
l2
− 1

pβ
‖Ax− y‖l2 ≤

1

p

(
‖x(pβ)−1 − x0(pβ)−1‖2l2

τ
+

1

σ

)
(9.23)
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for any x ∈ CN (and we have taken η = 1 in (9.9)). Define the map Hβ
p : Cm × CN → CN by

Hβ
p (y, x0) = pβφAlp,λ

(
y

pβ
,
x0

pβ

)
.

The additional scaling factors can be incorporated so that Hβ
p ∈ NDp,3p+1,3. Rescaling (9.23) yields the

existence of a vector ψ̂p(y, x0) ∈ CN (where the ·̂ denotes an appropriate rescaling by multiplying by pβ)
such that

G
(
ψ̂p(y, x0), x, y

)
≤ 5

4

(
‖Al‖
p2β
‖x− x0‖2l2 + ‖Al‖β

)
, (9.24)

where we have used the fact that τ−1 = σ−1 ≤ 5‖Al‖/4. Moreover, the constantC in Theorem 9.5 is bounded
by

C = (1 + ‖w‖l2 + 2σ‖Al‖‖w‖l2)

√
τ + σ

1− τσL2
A

√
τ + σ

τσ
≤ Ĉ1(1 + ‖w‖l2), (9.25)

for a constant Ĉ1 that we can explicitly compute. Hence, upon rescaling (9.8), we arrive at∥∥∥ψ̂p(y, x0)−Hβ
p (y, x0)

∥∥∥
l2
≤ p2θβĈ1(1 + ‖w‖l2).

Using Hölder’s inequality, this also implies that∥∥∥ψ̂p(y, x0)−Hβ
p (y, x0)

∥∥∥
l1w

≤ p2θβĈ1(1 + ‖w‖l2)‖w‖l2 .

It follows from the reverse triangle inequality that

G
(
Hβ
p (y, x0), x, y

)
≤ G

(
ψ̂p(y, x0), x, y

)
+ p2θβĈ1(1 + ‖w‖l2) (‖Al‖+ λ‖w‖l2) . (9.26)

Using this bound in (9.24), and the fact that λ . (γ
√
ξ)−1, we can choose θ ∈ Q>0 such that

θ−1 . p2(1 + ‖w‖l2) max

{
1,
λ‖w‖l2
‖Al‖

}
. p2(1 + ‖w‖l2) max

{
1,
‖w‖l2
‖A‖γ

√
ξ

}
,

and, simultaneously,

G
(
Hβ
p (y, x0), x, y

)
≤ 4

3

(
‖Al‖
p2β
‖x− x0‖2l2 + ‖Al‖β

)
.

Combining this with (9.21), we obtain the key inequality

G
(
Hβ
p (y, x0), x, y

)
≤ 4C2

1‖Al‖
3p2βλ2ξ

[c(x, y) +G(x0, x, y)]
2

+
4

3
‖Al‖β. (9.27)

Step 3: In this step, we specify the choice of p and β. So far, we have not used any information regarding
the vectors x and y. Recall that for our recovery theorem, we restricted to pairs (x, y) such that

2C1

C2

√
ξ
· σs,M(x)l1w + 2‖Ax− y‖l2 ≤ δ, ‖x‖l2 ≤ b1, ‖y‖l2 ≤ b2.

Using this, we can choose l larger if necessary such that for any such (x, y), we have the bound

c(x, y) ≤ 2C1

C2

√
ξ
· σs,M(x)l1w + 2‖Ax− y‖l2 + 2‖A−Al‖‖x‖l2 ≤ 2δ.

The following lemma shows how to choose β and p to gain a decrease in G by a factor of υ ∈ (0, 1), up to
small controllable error terms.

Lemma 9.6. Let υ ∈ (0, 1) ∩ Q>0, ε0 ∈ Q>0 and choose β ∈ Q>0 such that 8‖Al‖β = 3υ0υ(ε0 + 2δ) for

some υ0 ∈ [1, 2). Then for any x0 with G(x0, x, y) ≤ ε0 and positive integer p ≥
⌈

8C1‖Al‖
3υλ
√
ξ
√

(2−υ0)υ0

⌉
the

following bound holds

G
(
Hβ
p (y, x0), x, y

)
≤ υ (2δ + ε0) . (9.28)
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Proof. The choice of β ensures that
4

3
‖Al‖β ≤

υ0υ

2
(2δ + ε0).

Using (9.27), and the fact that 0 ≤ c(x, y) +G(x0, x, y) ≤ 2δ + ε0, the bound (9.28) therefore holds if

32C2
1‖Al‖2

9p2υ0υλ2ξ
(2δ + ε0) ≤ (2− υ0)υ

2
(2δ + ε0)

rearranging and taking the square root now gives the result, where we use the ceiling function to ensure p is an
integer. �

We denote the choice of β in Lemma 9.6 by β(υ, ε0). Since 8/3 < 3, we can, by taking l larger and by
making λ closer to C1/(C2

√
ξ) if necessary, and through an appropriate choice of υ0, ensure that we can

compute (using finitely many arithmetic operations and comparisons) a choice

p(υ) ≤
⌈

3C2‖A‖
υ

⌉
.

such that the conclusion of the lemma holds.
Step 4: We are now ready to construct our NNs. Note first that

G(0, x, y) ≤ ‖y‖l2 ≤ b2,

for any y in our desired input. Given n ∈ N, we set ε0 = b2 and for j = 2, ..., n set

εj = υ (2δ + εj−1) .

By summing a geometric series, this implies

εn ≤
2υδ

1− υ
+ υnb2.

We define φn(y) iteratively as follows. We set

φ1(y) = H
β(υ,ε0)
p(υ) (y, 0)

and for j = 2, ..., n we set

φj(y) = H
β(υ,εj−1)

p(υ) (y, φj−1(y))

Clearly this algorithmically constructs a NN φn. We can concatenate (by combining affine maps) the NNs
corresponding to the Hβ

p maps to see that φn ∈ ND(n,p),3np+1,3. Moreover, Lemma 9.6 implies the bound

G (φn(y), x, y) ≤ εn ≤
2υδ

1− υ
+ υnb2. (9.29)

Combining this with (9.18), we obtain

‖φn(y)− x‖l2 ≤
2C1√
ξ
σs,M(x)l1w + 2C2‖Ax− y‖l2 + 2C2‖A−Al‖l2b1 +

C1

λ
√
ξ

(
2υδ

1− υ
+ υnb2

)
, (9.30)

Again, we can apriori choose l and λ to ensure that

2C2‖A−Al‖l2b1 +
C1

λ
√
ξ

(
2υδ

1− υ
+ υnb2

)
≤ C2

(
2υδ

1− υ
+ δ + υnb2

)
.

Applying this bound to (9.30) yields (5.3).
Finally, we argue for the error in the weighted l1w-norm. Note that since ρ < 1, the choice of λ ensures that

8γ
√
ξ

1− ρ
<

3 + ρ

1− ρ
1

λ
.

It follows from (9.16), using the same argument for the l2 case, that

‖φn(y)− x‖l1w ≤
3 + ρ

1− ρ

(
2σs,M(x)l1w +

2

λ
‖Alx− y‖l2 +

1

λ
G (φn(y), x, y)

)
, (9.31)
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Again, we can apriori adjust l and λ as necessary to obtain the bound

‖φn(y)− x‖l1w ≤
3 + ρ

1− ρ

(
2σs,M(x)l1w +

2C2

√
ξ

C1
‖Ax− y‖l2 +

C2

√
ξ

C1

(
2υδ

1− υ
+ υnb2

)
+ δ

C2

√
ξ

C1

)
,

where the final term in brackets corresponds to this final approximation. Simplifying this expression yields
(5.4) and completes the proof of the theorem. �

To end this section, we provide a brief proof sketch of the bounds in Remark 5.7. The argument is similar
to the proof of Theorem 5.5. We set

φ̂n(y, x0) = βφAln,λ

(
y

β
,
x0

β

)
,

and the arguments in Theorem 5.5 show that we can choose τ, σ, l and θn with θ−1
n = O(n2) such that for any

x, x0 ∈ CN and y ∈ Cm,

G
(
φ̂n(y, x0), x, y

)
≤ 3

2

‖A‖
n

(
‖x− x0‖2l2

β
+ β

)
.

If ‖x‖l2 ≤ b1, then we can choose l such that 2‖A − Al‖b2 ≤ ‖A‖β/(2n) min{C1/(C2λ
√
ξ), 1} and hence

(5.5) follows from (9.18). Similarly, we can use the corresponding bound (9.31) to show (5.6).

10. PROOF OF THEOREM 5.10

For the benefit of the reader, we first recall the definition of the orthonormal bases used. We then provide
coherence estimates which are used to obtain bounds on the number of samples needed, and end this section
with the proof of Theorem 5.10. It will be convenient to sometimes enumerate the vector or tensor elements
starting from 0, or negative numbers. That is for x ∈ CN with d = 1 we might denote its elements as
x = (x(0), . . . , x(N − 1)), or x = (x(−N/2 + 1), . . . , x(N/2)) and for d > 1 its k = (k1, . . . , kd)’th
element is written as x(k). It will always be clear from the context, which range of indices we consider.
Furthermore, recall from §5.3 that we let N = Kd and K = 2r for r ∈ Z≥0. This is assumed throughout this
section.

10.1. Setup: the relevant orthonormal bases.

Discrete Fourier transform. For a d-dimensional signal x = {x(t)}K−1
t1,...,td=0 ∈ CK×···×K we denote its

Fourier transform by

[Fx](ω) =
1

N1/2

K−1∑
t1,...,td=0

x(t) exp

(
2πiω · t
K

)
, ω ∈ Rd.

For discrete computations, it is customary to consider this transform at the integers ω ∈ {−K/2+1, . . . ,K/2}d

and let F (d) ∈ CKd×Kd

denote the corresponding matrix so that

F (d)vec(x) = {[Fx](ω)}ω∈{−K/2+1,...,K/2}d

for a suitable vectorisation vec(x) of x and ordering of the ω’s. Let

ϑω =
{
N−1/2 exp

(
−2πiK−1ω · t

)
: t ∈ {0, . . . ,K − 1}d

}
⊂ CK×···×K .

Then it is well known that {
vec(ϑω) : ω ∈ {−K/2 + 1, . . . ,K/2}d

}
(10.1)

is an orthonormal basis for CKd

= CN . Furthermore, recall from §5.3, that we divide the different frequencies
into dyadic bands. For d = 1 we let B1 = {0, 1} and

Bk =
{
−2k−1 + 1, ...,−2k−2

}
∪
{

2k−2 + 1, ..., 2k−1
}
, k = 2, ..., r.

In the general d-dimensional case we set

B
(d)
k = Bk1

× ...×Bkd , k = (k1, ..., kd) ∈ Nd.
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Walsh transform.

Definition 10.1 (see, for example, [21]). The (sequentially-ordered) Walsh functions vn : [0, 1) → {+1,−1}
are defined by

vω(z) = (−1)
∑∞
j=1(ω(j)+ω(j+1))z(j)

, z ∈ [0, 1), ω ∈ Z≥0, (10.2)

where (z(i))i∈N denotes the binary expansion of z (terminating if z is a dyadic rational) and we write ω =∑∞
j=1 ω

(j)2j−1 for ω(j) ∈ {0, 1}. For z ∈ [0, 1)d and ω ∈ Zd≥0, we let

vω(z) = vω1
(z1) · · · vωd(zd)

be the tensor product of these functions.

For x ∈ CK×···×K and K = 2r we let its d-dimensional Walsh transform be denoted by

[Wx](ω) =
1

N1/2

K−1∑
t1,...,td=0

x(t)vω(t/K), ω ∈ {0, . . . , 2r − 1}d.

As in the Fourier case, we let W (d) ∈ CN×N denote the corresponding matrix, so that

W (d)vec(x) = {[Wx](ω)}ω∈{0,...,K−1}d

for a suitable vectorisation of x and ordering of the ω’s. We let

%ω =
{
N−1/2vω(t/K) : t ∈ {0, . . . ,K − 1}d

}
⊂CK×···×K

and note that also {
vec(%ω) : ω ∈ {0, . . . ,K − 1}d

}
(10.3)

is an orthonormal basis for CN . As in the Fourier case we recall the definition of the frequency bands we
introduced in §5.3. We let B1 = {0, 1} and Bk = {2k−1, . . . , 2k−1} for k = 2, . . . , r in the one-dimensional
case, and

B
(d)
k = Bk1

× ...×Bkd , k = (k1, ..., kd) ∈ Nd.

Whether we mean the Walsh or Fourier frequency bands will always be clear from the context.

Haar-wavelet transform. On CK the Haar wavelet vectors are defined as

ψj,p(i) =


2
j−r

2 , p2r−j ≤ i <
(
p+

1

2

)
2r−j

−2
j−r

2 ,

(
p+

1

2

)
2r−j ≤ i < (p+ 1)2r−j

0, otherwise.

For j = 0, ..., r − 1 and p = 0, ..., 2j − 1, and we can define the corresponding scaling vectors as ϕj,p(i) =

|ψj,p(i)|. To simplify the notation we set

ψ
(0)
j,k = ϕj,k, ψ

(1)
j,k = ψj,k

For d > 1 and q = (q1, ..., qd) ∈ {0, 1}d, p= (p1, . . . , pd) ∈ Zd≥0 define the tensor product

ψq
j,p = ψ

(q1)
j,p1
⊗ ...⊗ ψ(qd)

j,pd
.

Splitting these tensors by scale

C1 = {vec(ψq
0,0) : q ∈ {0, 1}d},

Cj = {vec(ψq
j−1,p) : q ∈ {0, 1}d\{0}, pk = 0, ..., 2j−1 − 1},

for j = 2, ..., r, we get that C1 ∪ · · · ∪ Cr is an orthonormal basis for CN . Next, let the vectors in C1 ∪ · · · ∪
Cr, form the rows of a matrix Φ ∈ CN×N . The matrix Ψ is called the discrete wavelet transform (DWT)
matrix, and its inverse Ψ−1 is called the inverse discrete wavelet transform (IDWT) matrix. Notice that since
C1 ∪ · · · ∪ Cr is an orthonormal basis, we have the relation Ψ−1 = Ψ∗.
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10.2. Uniform recovery guarantees and coherence estimates. We express U in block form as

U =
[
U (k,j)

]‖k‖l∞≤r,r
k=1,j=1

,

where the entries in each Uk,j consist of the inner products 〈ϕ, ρω〉 for ϕ ∈ Cj and where ρω is an element in
either (10.1) or (10.3) with ω ∈ B(d)

k , depending on whether we consider Fourier or Walsh sampling. For this
decomposition we define local coherence as follows.

Definition 10.2. Let U =
[
U (k,j)]‖k‖l∞≤r,r

k=1,j=1
be defined as above. Then the (k, j)th local coherence of U is

µ(Uk,j) =
∣∣∣B(d)

k

∣∣∣max
p,q
|(Uk,j)pq|2

where
∣∣∣B(d)

k

∣∣∣ denotes the cardinality of the set B(d)
k .

Recall from Definition 3.1, that for an (s,M)-sparse vector, we let s = s1 + . . . + sr denote the total
sparsity. Furthermore, (as always) we let m =

∑‖k‖l∞≤r
k=1 mk denote the total number of samples in an

(N,m)-multilevel subsampling scheme. The following result appeared in [], and shows that in order to prove
Theorem 5.10 via Theorem 5.5, we need to bound the local coherences of U (we have stated the general result
for a scalarised indexing of the multilevel subsampling scheme with l levels).

Proposition 10.3 ( []). Let εP ∈ (0, 1), (s,M) be local sparsities and sparsity levels respectively with 2 ≤
s ≤ N , and consider the (N,m)-multilevel subsampling scheme to form a subsampled unitary matrix A as in
Definitions 5.8 and 5.9. Let

tj = min

{⌈
ξ(s,M, w)

w2
(j)

⌉
,Mj −Mj−1

}
, j = 1, ..., r, (10.4)

and suppose that

mk & L
′ ·

r∑
j=1

tjµ(Uk,j), k = 1, ..., l (10.5)

where
L′ = r · log(2m) · log2(t) · log(N) + log(ε−1

P ).

Then with probability at least 1 − εP, A satisfies the weighted rNSPL of order (s,M) with constants ρ = 1/2

and γ =
√

2.

The following lemmas bound the local coherences of U , withMF (s,k) andMW(s,k) defined in (5.7) and
(5.8) respectively.

Lemma 10.4 (Coherence bound for Fourier case). Consider the d-dimensional Fourier–Haar–wavelet ma-
trix with blocks Uk,j , then the local coherences satisfy

µ(Uk,j) . 2−2(j−‖k‖l∞ )+

d∏
i=1

2−|ki−j|, (10.6)

where for t ∈ R, t+ = max{0, t}. It follows that

r∑
j=1

sjµ(Uk,j) .
‖k‖l∞∑
j=1

sj

d∏
i=1

2−|ki−j| +

r∑
j=‖k‖l∞+1

sj2
−2(j−‖k‖l∞ )

d∏
i=1

2−|ki−j| =MF (s,k). (10.7)

Proof. From the one-dimensional case treated in [9, See proof of Lem. 1], we have∣∣∣[Fψ(1)
j,p

]
(ω)
∣∣∣2 . {2−k2−|k−j|, if j ≤ k,

2−k2−3|k−j|, otherwise
,

We proceed by showing that
∣∣∣[Fψ(0)

j,p

]
(ω)
∣∣∣2 . 2−k2−|k−j| in the one-dimensional case, before we consider

the d-dimensional case.
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Let ω 6= 0 correspond to a frequency in Bk, j ∈ {0, ..., r − 1} and p ∈ {0, ..., 2j − 1}. Then

[
Fψ(0)

j,p

]
(ω) = 2

j
2−re2πiωp2−j

2r−j−1∑
t=0

e2πiωt2−r

= 2
j
2−re21−jπiωp 1− e2πiω2−j

1− e2πiω2−r
.

A simple application of the double angle formula then yields∣∣∣[Fψ(0)
j,p

]
(ω)
∣∣∣ . 2

j
2−r

∣∣sin(πω2−j)
∣∣

|sin(πω2−r)|
=

2
j
2

|ω|
|ω2−r|

|sin(πω2−r)|
∣∣sin(πω2−j)

∣∣ . 2
j
2−k

∣∣sin(πω2−j)
∣∣ ,

where the second inequality follows from the fact that |ω2−r| ≤ 1/2 and 2k . |ω|. If k > j then this implies

that
∣∣∣[Fψ(0)

j,p

]
(ω)
∣∣∣2 . 2−k2−|k−j|. If k ≤ j, we use that | sin(πt)| ≤ π|t|, ∀t ∈ R to get∣∣sin(πω2−j)

∣∣ . 2k−j .

This implies ∣∣∣[Fψ(0)
j,p

]
(ω)
∣∣∣2 . 2j−2k22k−2j = 2−j = 2−k2−|k−j|.

If ω = 0 then directly from the definition we have
∣∣∣[Fψ(0)

j,p

]
(ω)
∣∣∣2 . 2−j = 2−k2−|k−j| and hence this bound

still holds.
We now consider the general d-dimensional case. The above computations give that

µ(U (k,1)) . 2
∑d
i=1 ki max

q∈{0,1}d

d∏
i=1

max
w∈Bki

∣∣∣[Fψ(qi)
0,0

]
(ω)
∣∣∣2 . d∏

i=1

2−|ki−1|.

Similarly for j > 1

µ(U (k,j)) . 2
∑d
i=1 ki max

q∈{0,1}d\{0}

d∏
i=1

max
w∈Bki

max
pi∈{0,...,2j−1−1}

∣∣∣[Fψ(qi)
j−1,pi

]
(ω)
∣∣∣2

. max
q∈{0,1}d\{0}

d∏
i=1

2−|ki−j|−2qi(j−ki)+ .

The maximum value of this estimate is obtained when the non-zero component of q corresponds to the maxi-
mum value of ki. This gives precisely (10.6). �

Before we proceed with the Walsh–Haar–wavelet case, we note the following lemma, which can be found
in, for example, [12]. For an in-depth treatment of different types of Walsh–Haar systems we refer the reader
to [111].

Lemma 10.5. Let ω and j ≥ 0 be integers so that 2j ≤ ω < 2j+1 and let

∆j
k = [k2−j , (k + 1)2−j), k∈ Z≥0.

Then vω is constant on each of the intervals ∆j+1
k , k ∈ {0, . . . , 2j+1 − 1}. Each of the intervals ∆j

k can be
decomposed into the intervals ∆j+1

2k and ∆j+1
2k+1, where vω is equal to 1 on exactly one of them and equal to

−1 on the other. When ω = 0, we have vω ≡ 1.

Lemma 10.6 (Coherence bound for Walsh case). Consider the d-dimensional Walsh–Haar–wavelet matrix
with blocks U (k,j), then the local coherences satisfy

µ(U (k,j)) .


d∏
i=1

2−|ki−j| if ki ≤ j for i = 1, ..., d with at least one equality,

0 otherwise

. (10.8)
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It follows that
r∑
j=1

sjµ(U (k,j)) . s‖k‖l∞

d∏
i=1

2−|ki−‖k‖l∞ | =MW(s,k). (10.9)

Proof. We begin with some computations in the one-dimensional case. Let Ij,p = {p2r−j , . . . , (p+ 1)2r−j −
1}. We recall that that supp(ψ

(0)
j,p ) = supp(ψ

(1)
j,p ) = Ij,p. Using Lemma 10.5 it is clear that for 2m ≤ ω <

2m+1, %ω is constant on Im+1,k, for k ∈ {0, . . . , 2m+1 − 1} and that for any pair Im+1,2t, Im+1,2t+1, %ω
changes sign. For ω = 0, we have that %ω is all constant. Keeping track of the supports gives the relations∣∣∣〈ψ(0)

j,p , %ω

〉∣∣∣ =

2−j/2 if ω < 2j

0 otherwise
, and

∣∣∣〈ψ(1)
j,p , %ω

〉∣∣∣ =

2−j/2 if 2j ≤ ω < 2j+1

0 otherwise
.

We notice in particular that we can rewrite this as |〈ψ(0)
j,p , %ω〉| = 2−j/2 = 2−k/22−(j−k)/2 if ω ∈ Bk, k ≤ j

and 0 otherwise, and that |〈ψ(1)
j,p , %ω〉| = 2−j/2 if ω ∈ Bj+1 and 0 otherwise.

Turning to the general d-dimensional case. The above computations immediately give that

µ(U (k,1)) .
d∏
i=1

δki,1

where δi,j is the Kronecker-delta. Similarly for j > 1

µ(U (k,j)) =
∣∣∣B(d)

k

∣∣∣ max
q∈{0,1}d\{0}

d∏
i=1

max
ωi∈Bki

max
pi∈{0,...,2j−1−1}

∣∣∣〈%ωi , ψ(qi)
j−1,pi

〉
∣∣∣2

. 2
∑d
i=1 ki max

q∈{0,1}d\{0}

d∏
i=1

(
δqi,0δki<j2

−ki−|ki−j| + δqi,1δki,j2
−ki
)

. max
q∈{0,1}d\{0}

d∏
i=1

(
δqi,0δki<j2

−|ki−j| + δqi,1δki,j

)
.

This estimate is zero unless ki ≤ j and at least one of the ki is equal to j. In this case the maximum corresponds
to qi = 1 if ki = j and qi = 0 otherwise. This gives precisely (10.8). �

10.3. Proof of Theorem 5.10. For the benefit of the reader, we recall that A = PIDVΨ. We apply Proposi-
tion 10.3, noting that the tj in (10.4) satisfy

tj .
ξ(s,M, w)

w2
(j)

≤ sj · κ(s,M, w), t . s · κ(s,M, w). (10.10)

It follows that
r∑
j=1

tjµ(Uk,j) . κ(s,M, w)

r∑
j=1

sjµ(Uk,j).

Combining with (10.10), it follows that the bound (10.5) is satisfied, if

mk & κ(s,M, w) ·

 r∑
j=1

sjµ(Uk,j)

 · L, (10.11)

where

L =
r · log(2m)

log(2)
·log2 (s · κ(s,M, w))·log(N)+log(ε−1

P ) = d·r2 ·log(2m)·log2 (s · κ(s,M, w))+log(ε−1
P ),

sinceN = 2r·d. In the Fourier sampling case, note that, by Lemma 10.4, (10.11) holds if (5.9) holds. Similarly,
in the Walsh sampling case, note that, by Lemma 10.6, (10.11) holds if (5.10) holds. By Proposition 10.3, with
probability at least 1 − εP, A satisfies the weighted rNSPL of order (s,M) with constants ρ = 1/2 and
γ =
√

2. The conclusion of Theorem 5.5 then holds for the uniform recovery of the Haar wavelet coefficients
x = Ψc ∈ CN .
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For the final part, we use the recovery result of Theorem 5.5. The only difference is that we have to compose
the NNs with (an approximation of) the matrix Ψ∗ to recover approximations of c from approximations of
x = Ψc. Recall that

Z = max

{
1,

maxj=1,...,r w(j)

√
(Mj −Mj−1)√

ξ(s,M, w)

}
and set

n0 =
⌈
log
(
δ−1Z

)
κ1/4Z

⌉
.

Let p be as in Theorem 5.5 and let n1 ∈ Z≥0 such that n0 = n1p+ n2 for n1 ∈ {0, ..., p− 1} (the n from the
statement of the theorem corresponds to n1p). Set

φ(y) = Ψ∗ [φn1
(y, 0)] ,

where φn1
denotes the NN from Theorem 5.5 with b1 = 1, b2 = ‖A‖+ δ and υ = e−1. Strictly speaking, we

need to approximate ‖A‖ and e−1, and also apply a rational approximation of the matrix Ψ∗ instead of Ψ∗, but
we have avoided this extra notational clutter (the associated approximation errors can be made smaller than
κ1/4δ since the vectors we apply the matrix to are uniformly bounded). Now suppose that y = PIDV c+ e ∈
J (δ, s,M, w), and notice that for ‖c‖l2 ≤ 1 we have that ‖y‖l2 ≤ ‖A‖+ ‖e‖l2 ≤ b2 since Ψ is an isometry.
Then, since C1, C2 ∼ κ1/4 (using that κ ≥ 1), (5.3) implies that

‖φ(y)− c‖l2 = ‖φn0
(y, 0)−Ψc‖l2 . κ

1/4δ + b2κ
1/4e−n1 .

The theorem follows if we can prove that b2e−n1 . δ.
Let t be as in (10.4) and let ∆1,∆2, ... be a partition of {1, ..., N} such that each support set is (t,M)-sparse.

We can choose such as partition with at most

max
j=1,...,r

⌈
Mj −Mj−1

tj

⌉
. max
j=1,...,r

⌈
Mj −Mj−1

min{ξ(s,M, w)/w2
(j),Mj −Mj−1}

⌉
sets. The proof of Proposition 10.3 shows that A satisfies the RIPL of order (t,M) and hence we have for any
x ∈ CN that

‖Ax‖l2 ≤
∑
i

‖A(x∆i)‖l2 .
∑
i

‖x∆i‖l2 . max
j=1,...,r

√√√√⌈ Mj −Mj−1

min{ξ(s,M, w)/w2
(j),Mj −Mj−1}

⌉
‖x‖l2 ,

where we have used Hölder’s inequality in the last step. It follows that ‖A‖ . Z and hence that p . κ1/4Z
and b2 . Z . This implies that

n1 & log
(
δ−1Z

)
and b2e

−n1 . δ

and completes the proof of the theorem. �
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