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ABSTRACT. Undersampled inverse problems occur everywhere in the sciences including medical imaging,
radar, astronomy etc., yielding underdetermined linear or non-linear reconstruction problems. There are now
a myriad of techniques to design decoders that can tackle such problems, ranging from optimization based ap-
proaches, such as compressed sensing, to deep learning (DL), and variants in between the two techniques. The
variety of methods begs for a unifying approach to determine the existence of optimal decoders and funda-
mental accuracy bounds, in order to facilitate a theoretical and empirical understanding of the performance of
existing and future methods. Such a theory must allow for both single-valued and multi-valued decoders, as
underdetermined inverse problems typically have multiple solutions. Indeed, multi-valued decoders arise due to
non-uniqueness of minimizers in optimisation problems, such as in compressed sensing, and for DL based de-
coders in generative adversarial models, such as diffusion models and ensemble models. In this work we provide
a framework for assessing the lowest possible reconstruction accuracy in terms of worst- and average-case errors.
The universal bounds bounds only depend on the measurement model F , the model class M1 Ď X and the
noise model E . For linear F these bounds depend on its kernel, and in the non-linear case the concept of kernel
is generalized for undersampled settings. Additionally, we provide multi-valued variational solutions that obtain
the lowest possible reconstruction error.

1. INTRODUCTION

Finite dimensional inverse problems are ubiquitous in the computational sciences as they naturally appear
in a plethora of applications. An incomplete list of examples includes most types of computational imaging
[2, 14, 25], matrix completion [28], parametric PDEs/system identification [1], phase retrieval [30, 46, 86],
quantized sampling [24] etc. Most often, we can express these problems using the following general model:

Given noisy measurements y “ F px, eq of x P M1 Ă CN and e P E Ă Ck, recover x. (1)

Here x represents the signal of interest, while e represents the noise. The sets M1 and E describe the signals
of interest and the potential noise, respectively. The function F : X ˆ E Ñ Cm models the forward process,
and is deliberately kept general to encompass many known models. Examples include

y “ Gpxq ` e, (additive noise) (2)

y “ Gpxq d e, (multiplicative noise) (3)

y “ Gpxq d e1 ` e2, (mixture of multiplicative and additive noise) (4)

where G : CN Ñ Cm is a linear or non-linear forward map, and the dimension of the set E depends on the
considered model in such a way that the point-wise multiplication d is defined.

In most instances of interest, the problem of recovering x given y is ill-posed or undersampled, unless
further assumptions are made. That is, the forward model F is either poorly conditioned or dimensionality
reducing. A standard assumption for making the problem (1) tractable is to assume that the noiseless forward
model is injective when restricted to the model class M1. This assumption is a cornerstone for models with
additive noise, as it allows for accurate reconstruction up to the noise level in both the linear [26, 51, 93]
and non-linear [65] setting. Traditionally, the set M1 has been given a precise mathematical description and
reconstruction methods have been designed for the given choice of M1. Examples of sets M1 include sparse
vectors [29], union of subspaces [22], manifolds [13], sparsity in a given basis [3] or frame [83], matrices
with low rank [31, 62], etc.
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More recently, data-driven approaches [11, 61] have emerged as an alternative to many of these standard
methods, often promising superior performance [101]. Methods based on data typically do not specify the
solution set M1, but aim to learn the reconstruction mapping Ψ: Cm Ñ M1 given a finite number of
training data T Ă M1 and access to the forward model F . This approach has the advantage that the learned
set M1 might provide a better approximation of the underlying data stemming from a real-world process,
rather than a potentially simplistic abstract mathematical modelling of the set M1. However, the challenge
with these methods is that the learned mapping Ψ tends to produce accurate reconstructions of all elements
in T , regardless of whether the noiseless problem is injective on M1 or not. This has made these methods
susceptible to both hallucinations [77] and instabilities [9].

The purpose of this work is to develop a mathematical framework which provides a notion of optimality
when F is not necessarily injective on M1, and to provide variational expression for the optimal mappings
in this setting. Our main contributions are the following:

(I) We provide a framework which allows for the classification of the lowest achievable reconstruction
accuracy for (1). Note that many such frameworks exist in the literature. For example, Gelfand
widths in the noiseless linear setting [81], best k-term approximation [35], and to obtain the worst-
case bounds set-valued decoders on Banach spaces have been considered in [10] and then extended
to metric spaces in [73], and when noise is included one has the notion of optimal learning [21] and
generalized instance optimality [26]. See also [75] for a survey of early works on optimal recovery.
In many of these works, the underlying spaces are infinite or finite dimensional Banach spaces, and
the reconstruction error is measured by the given norm. A contribution of this work is to consider the
general setting of metric spaces, to allow for set-valued decoders which naturally arise as solutions
of undersampled inverse problems, and to extend previous studies on worst-case scenarios to the
average error scenario.

(II) We derive explicit formulas for set-valued reconstruction mappings which achieve the lowest pos-
sible reconstruction error, both in a worst-case sense and in a probabilistic sense. Finding and
analyzing reconstruction mappings which achieve optimal or near-optimal recovery – given some
notion of optimality – is an essential question in inverse problems, and many mappings exists
[21, 26, 51, 82, 93]. In this work, we provide explicit formulas for possibly set-valued reconstruc-
tion mappings that achieve the lowest possible reconstruction error. Moreover, a contribution of this
work is to prove that the optimal mappings in the average error scenario are measurable, compact
valued and admits a measurable single-valued selector by utilising the Measurable Maximum The-
orem, [5, Thm. 18.19] and Hausdorff distance. As such, this work provides a first and necessary
step, before any numerical procedure can provide statistical approximations to these mappings.

(III) We provide lower and upper bounds on the lowest achievable reconstruction accuracy described
in (I). The bounds solely depend on the forward operator, signal and noise class of the inverse
problem, and not on the method or decoder used to solve (1). Hence, the performance of any
– possibly set-valued – method can be evaluated with respect to the problem’s intrinsic optimal
accuracy. However, there is a trade-off for obtaining lower bounds compared to other approximation
error bounds, such as in Compressed Sensing (CS) that only provides upper bounds. We refer to [51]
for a comprehensive treatment in CS and the work of [26] as an extension thereof. The key point
in order to obtain lower bounds on reconstruction accuracy is to consider worst-case and average
errors instead of point-wise approximation errors. Such worst-case error bounds can be related to the
Chebycheff radius, as in [21], and analogous worst- and average- case error bounds are established
in [82] in the case of normed spaces and single-valued decoders .

Remark 1.1. Extending previous work from normed spaces to metric spaces is of particular relevance in
imaging applications. In fact, the ℓ2 or ℓ1 norm are not the only candidates considered for image quality
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assessment. A prominent example is the structural similarity index (SSI), firstly proposed to assess image
quality in [97], does not constitute a norm but can rather be related to a metric [27].

Remark 1.2 (Multi-valued decoders, computability and randomised algorithms). Many of the decoders
provided in theory will not be computable, as the phenomenon of generalised hardness of approximation [8,
16,39,47,54] – within the Solvability Complexity Index (SCI) hierarchy [18,19,37,38,56] – happen in many
inverse problems. This includes a wide range of neural network decoders, as well as compressed sensing
decoders. Typically, they can only be computed to a certain accuracy ϵ0 ą 0, referred to as the approximation
threshold, and it is the size of the approximation threshold that determines if the decoder can be used in
practice. However, as demonstrated in [16], when the decoder is multi-valued, randomised algorithms may
actually help mitigating the non-computability. This is only possible for multi-valued decoders, as single-
valued decoders that are non-computable will have no help from randomised algorithms [16, 42].

2. PRELIMINARIES

2.1. The forward map and the model class. In the following we introduce the main assumptions and setup.
Let X , Y and Z be non-empt sets. Furthermore, consider subsets M1 Ă X and E Ă Z , referred to as the
model class and the noise class, respectively. As outlined in the introduction, we consider inverse problems
with a given forward map F : X ˆ Z Ñ Y , and we seek to solve the problem:

Given noisy measurements y “ F px, eq of x P M1 and e P E , recover x, (5)

where e represents noise and x is the signal of interest. The goal of solving the inverse problem is to produce
an approximation x̂ of the true solution x. In order to quantify the error of the approximation x̂ P X to the
sample signal x P M1, it is common to assume [35, 51, 81] that X is a normed space, or even a Banach or
Hilbert space. In the current work, we extend the scope to the more general setting of metric spaces. The
use of metrics – rather than norms – allows for a more general theory, in which normed vector spaces are a
special case. Thus, we equip the sets X , Y and Z with metrics dX , dY and dZ , respectively, and on each set
we consider the topology induced by the respective metric.

To avoid certain pathological cases for metric spaces, we make assumptions on the choice of metrics
involved. Our first assumption is the following.

Assumption 1.

(i) We assume that the metrics dX , dY , dZ are chosen so that the topologies induced by the metrics are
second countable (they admit a countable base).

(ii) We assume that the metrics dX and dZ satisfy the Heine-Borel property, i.e., that all closed and
bounded sets are compact.

Here, the first assumption ensures that the topologies induced by the metrics are separable, which is a
convenient assumption for both theoretical and practical purposes. In particular, this assumption excludes
metrics such as the discrete metric over an uncountable set, as one cannot find a countable base for an
uncountable set using this metric.

For the second assumption, we recall that in metric spaces, a compact subset is automatically closed
and bounded; however, the converse does not necessarily hold, unless the metrics satisfy the Heine-Borel
property. Note that this (ii) is not implied by (i), as for example the bounded metric dX px, yq “ mint}x ´

y}ℓ2 , 1u on X “ CN satisfies assumption (i) (since dX induces the same topology as the Euclidean topology,
which is second countable), but not assumption (ii) (since CN is closed and bounded but not compact with
respect to dX ). Finally, note that the Heine-Borel property implies in particular that X is a complete separable
metric space, usually referred to as a Polish space.
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2.2. Multivalued reconstruction maps. Now that the preliminaries have been clarified, we return to the
problem of solving the inverse problem in (5). Let

ME
2 “ F pM1 ˆ Eq “ ty P Y : Dpx, eq P M1 ˆ E s.t. y “ F px, equ

denote the image of F : X ˆ Z Ñ Y on the class M1 ˆ E . A reconstruction mapping for (5) is a mapping
that takes a measurement y “ F px, eq and returns one or many approximations x̂ to the acquired signal x.
That is, a reconstruction mapping is a multi-valued function φ : ME

2 Ñ 2X , where 2X denotes the power set
of the set X . Note that it is necessary to consider set-valued maps, as model-based methods often write the
reconstruction mapping as an optimization problem. These problems might not have unique solutions, see
e.g., [39, SI, Sec. 3.B] for a few standard examples. Finally, we mention that given a multivalued mapping
φ : ME

2 Ñ 2X , we call a function f : ME
2 Ñ X a selector for φ if it satisfies fpyq P φpyq for each y P ME

2 .
Distances between sets in X will be measured via the Hasudorff distance. Given subsets A,B Ď X , their

Hasudorff distance is

dHX pA,Bq :“ max
!

sup
aPA

inf
bPB

dX pa, bq, sup
bPB

inf
aPA

dX pa, bq
)

.

The Hausdorff distance satisfies all the properties of a metric only when restricted to the subsets of X that
are bounded (which ensures dHX is finite) and closed (which ensures that dHX pA,Bq “ 0 only if A “ B).
With a slight abuse of notation, we will denote dHX ptau, Bq by dHX pa,Bq. The Hausdorff distance between
a point and a set should not be confused with the usual distance between a point and a set, distX pa,Bq :“

infbPB dX pa, bq. Indeed, note that distX pa,Bq “ infbPB dX pa, bq ď supbPB dX pa, bq “ dHX pa,Bq.
We require an extra assumption that relates the forward map F and the model class M1. In particular, we

require that for every y, the set of possible true solutions x’s is bounded. Throughout the text, we denote by
π1 : X ˆ Z Ñ X , px, eq ÞÑ x the projection on the first component.

Assumption 2. We assume that for every y P ME
2 the feasible set

Fy :“ π1pF´1pyqq X M1 “ tx P M1 : De P E s.t. F px, eq “ yu (6)

is bounded.

The feasible set Fy consists of all the candidate solutions x’s that are consistent with the measurement y,
for some realisation of the noise e.

The previous condition is satisfied, for example, if the model class M1 is compact, as assumed in e.g.,
[21].

Finally, we clarify our notation for objects in a metric space pX, dq. We denote by Bdpx, rq the closed
ball of center x P X and radius r ě 0. If A Ď X , then the closed ball around A of radius r ě 0 is

BpA, rq “ tx P X : distdpx,Aq ď ru “
ď

xPA

Bpx, rq

where we recall that distdpx,Aq “ infaPA dpx, aq. Finally, the diameter of A Ď X is diamdpAq :“

suptdpa, a1q : a, a1 P Au.

3. MAIN RESULTS

In this section we describe the considered framework. The section is divided into two subsections that
both introduce the notion of an optimal mapping and the kernel size, but for different measures of accuracy.
In particular, Section 3.1 presents an analysis based on the worst-case error, whereas Section 3.2 considers
a probabilistic model class, where an average error is analyzed. Theorems 3.4 and 3.9 contain the main
results, in Section 3.1 and 3.2, respectively. These theorems bound the so-called optimality constant of
a optimal mapping in terms of the kernel size of the problem, and provide an explicit expression for an
optimal reconstruction mapping. Finally, in Section 4 we elaborate on how these quantities relate to common
frameworks in the literature. The proofs of the main results are referred to Section 7.
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3.1. Worstcase optimality bounds and a optimal map with worst-case noise. What is the best possible
reconstruction error one can achieve for a given model class M1? This is an old question [75], that has
been asked many times, and in different settings [21, 26, 35, 44, 50, 65, 93, 94]. In the definition below, we
investigate this question for measurements contaminated by worst-case noise. This definition has appeared
in [44,50] for the linear model with additive noise in a normed vector space, and is here generalized to metric
spaces.

Definition 3.1 (Optimality constant with worst-case noise). The optimality constant with worst-case noise
of the inverse problem (1) is

cw
optpF,M1, Eq “ inf

φ : ME
2 ÑX

sup
xPM1

sup
ePE

dHX px, φpF px, eqqq.

A mapping φ : ME
2 Ñ X that attains such an infimum is called an optimal map with worst-case noise.

Given the optimality constant with worst-case noise of an inverse problem (1), the question arises on how
to upper and lower bound such optimality constant. As shown in Theorem 3.4, the upper and lower bounds
can be obtained by referring to a constant intrinsic to the problem, its kernel size with worst-case noise, as
defined below.

Definition 3.2 (Kernel size with worst-case noise). The kernel size with worst-case noise of the problem (1)
is

kersizew
pF,M1, Eq “ sup

px,eq,px1,e1
qPM1ˆE s.t.

F px,eq“F px1,e1
q

dX px, x1q. (7)

Remark 3.3. The kernel size with worst-case noise has been considered under different names in previous
work. This includes, but is not limited to, the supremum taken over the measurements y of diameter of the
Chebycheff balls of the feasible sets Fy , similar to [21], or the diameter of information in [82]. However,
as this work focuses on characterizing accuracy bounds for undersampled inverse problems, we opt for
referring to the above defined constant as kernel size. In Example 1 in Section 4, more details on this relation
are presented.

The kernel size with worst-case noise gives the maximum distance between any two points x, x1 P M1

with identical measurement y “ F px, eq “ F px1, e1q for some noise vectors e, e1 P E . It is worth observing
that the optimality constant and the kernel size with worst-case noise also can be expressed as follows.

cw
optpF,M1, Eq “ inf

φ : ME
2 ÑX

sup
yPME

2

sup
xPFy

dHX px, φpyqq

kersizew
pF,M1, Eq “ sup

yPME
2

diamdX pFyq.

This should clarify the connection with the feasible sets Fy . In our first theorem, we provide an upper and
lower bound on the optimality constant in terms of the kernel size with worst-case noise. Moreover, we
provide a variational expression for an optimal map with worst-case noise.

Theorem 3.4 (Worst case optimality bounds). Under Assumptions 1 and 2, the following holds.

(i) We have that

kersizew
pF,M1, Eq{2 ď cw

optpF,M1, Eq ď kersizew
pF,M1, Eq. (8)

(ii) The map

Ψpyq “ argmin
zPX

sup
px,eqPFy

dX px, zq “ argmin
zPX

dHX pz, Fyq, (9)

has non-empty, compact values and it is an optimal map with worst-case noise.
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The previous theorem illustrates a fundamental limit for the inverse problem (5). Indeed, for (5) one
would hope to find a solution whose error is as close to zero as possible. However, the lower bound in (8)
shows that there is a fundamental constant intrinsic to the problem – the kernel size with worst-case noise –
such that no worst-case reconstruction error can be made smaller than this constant for all possible choices
of x P M1.

Remark 3.5. Note that analogous bounds as in (8) under slightly different assumptions have been obtained in
a variety of previous works, including but not limited to [10,21,73,82]. However, to the best of our knowledge
the characterisation of the multi-valued optimal map (9) as compact-valued has not been considered under
the same assumptions.

3.2. Average optimality bounds and optimal map with average error. The previous theorem provides
fundamental limits when performance is assessed by considering worst-case reconstruction error for a given
inverse problem of the form (5). Such bounds naturally lead to very pessimistic estimates of performance.
This motivates the need for model that considers the average error of a reconstruction mapping, given a
probabilistic model of the data. Below, we will adapt the worst-case setup considered in the previous section
to a probabilistic model. Note, that in the machine learning literature, this notion of average error is often
referred to as the risk of a given reconstruction mapping [85, Ch. 3] [49, Ch. 1].

We start by introducing the notation. For a topological space pX, τq, the Borel σ-algebra of X , denoted
by BpXq, is the σ-algebra generated by the family τ of open sets. Elements of BpXq are called Borel sets.
If X is a metric space, then BpXq is the smallest family of sets containing all the open sets that are closed
under countable intersections and countable disjoint unions. See, e.g., [5, Cor. 4.16] for further reference.
A Borel measure on X is a measure defined on the Borel σ-algebra BpXq. Borel measurable functions are
defined analogously.

Assumption 3. We consider the measure spaces pX ˆ Z,BpX ˆ Zqq, pY,BpYqq and assume that F : X ˆ

Z Ñ Y is Borel measurable. We equip X ˆ Z with a finite Borel measure µ supported on M1 ˆ E , and we
equip Y with the pushforward measure F˚µ given by pF˚µqpEq “ µpF´1pEqq for every E P BpYq.

Next, we need to define conditional probabilities on M1 ˆ E for the considered measure µ for different
values of y P ME

2 . To compute such conditional probabilities, we consider a disintegration of the measure
µ. Intuitively, a disintegration of the measure µ given the mapping F , is a family of probability measures
tµyuyPME

2
such that for each y P ME

2 , µy is concentrated on the set F´1pyq, and which allows to reconstruct
the original measure µ by integration. Note that these set tF´1pyquyPME

2
might have measure zero with

respect to µ. The concept of disintegration is presented the following definition, which is taken from [34]
and adapted to our Assumption 3. See also [23, Ch. 10] or [64, Ch. 1] for more on disintegration. Moreover,
note that in [82] a similar tool – that of a regular conditional probability density – is used in order to prove
analogous bounds when restricted to normed spaces and single-valued decoders.

Definition 3.6. A disintegration of the measure µ along the measurable function F is a family tµyuyPME
2

of
probability measures on M1 ˆ E such that

(i) for F˚µ-almost every y P ME
2 , µy is a probability measure concentrated on F´1pyq, i.e., µypM1 ˆ

EzF´1pyqq “ 0 for F˚µ-almost all y P ME
2 .

and such that, for each non-negative Borel measurable function f on M1 ˆ E ,

(ii) the function

y ÞÑ

ż

M1ˆE
fpx, eq dµypx, eq, with y P ME

2 ,

is Borel measurable,
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(iii) and
ż

M1ˆE
fpx, eq dµpx, eq “

ż

ME
2

˜

ż

F´1pyq

fpx, eq dµypx, eq

¸

dpF˚µqpyq.

Note that while we assume that µ is a finite measure (and not necessarily a probability measure), the
definition above require that µy’s are probability measures. In section 7.1 we show that a disintegration of µ
always exists and that it is essentially unique in our setting given Assumption 4, stated below.

Assumption 4. We assume that M1 is compact and we assume that E is a Borel set.

Note that Assumption 4 implies Assumption 2, which will therefore be omitted from now on. Next, let

rφ : M1 ˆ E Ñ r0,`8s, rφpx, eq “ dHX px, φpF px, eqq

denote the residual map of a given reconstruction mapping φ : ME
2 Ñ X and let

C :“ tφ : ME
2 Ñ X : rφ is Borel measurableu. (10)

denote the set of all reconstruction mappings with a Borel measurable residual map. For p P r1,8s and a
given a reconstruction map φ : ME

2 Ñ X , we denote its pth order error by

Errapφ, pq “

$

’

’

&

’

’

%

˜

ş

M1ˆE d
H
X

´

x, φpF px, eqq

¯p

dµpx, eq

¸
1
p

for 1 ď p ă 8

essuppx,eqPM1ˆE dHX px, φpF px, eqqq for p “ 8

(11)

where the essential supremum for p “ 8 is taken with respect to the measure µ. Concretely, for p P r1,8s

this quantity is the LppM1 ˆ E , µq norm of the residual function rφ.
This definition of reconstruction error generalizes the usual Lp-norms to include a set-valued mapping

and a metric dX that is not necessarily induced by a norm in the single-valued case. However, the proposed
setup includes many standard expectations as special cases. Indeed, let φ be a single-valued map and let dX
be given by an ℓq norm. Then, if we choose p “ q “ 1, we recover the expected absolute error, whereas
for p “ q “ 2 we find the expected root squared error. Moreover, for p “ 8, the choice of metric dX
corresponds to the choice of the loss function in a machine learning setting [85, Ch. 3] [49, Ch. 1]. One
can also, view the case where p “ 8, as a weak form of worst-case error where all irregularities on sets of
measure zero are ignored.

With the error term in (11) defined, we can now establish the notion of optimality constant with average
error and kernel constant with average error.

Definition 3.7 (Optimality constant with average error). For p P r1,8s the optimality constant with average
error of order p for the inverse problem (5) is

ca
optpF,M1, E , pq “ inf

φPC
Errapφ, pq. (12)

A map φ P C attaining the infimum in (12) for a given p is called an optimal map with average error of order
p.

Definition 3.8 (Average kernel size). The average kernel size of the inverse problem (1) for p P r1,8q is
given by

kersizea
pF,M1, E , pq “

˜

ż

ME
2

ż

Fy

ż

Fy

dX px, x1qp dµypx, eq dµypx1, e1q dpF˚µqpyq

¸
1
p

,

and for p “ 8 it is

kersizea
pF,M1, E ,8q “ essup

yPME
2

essup
px,eqPFy

px1,e1
qPFy

dX px, x1q, (13)
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where the left and right essential suprema are taken with respect to F˚µ on ME
2 and µy on Fy , respectively.

Intuitively, the average kernel size measures the average distance between the x-components of px, eq, px1, e1q P

M1 ˆ E that have the same measurement F px, eq “ F px1, e1q “ y in the case of p P r1,8q, and the max-
imum of such distances (up to negligible sets) when p “ 8.

Our main theorem in this section is stated below. It bounds the average optimality constant in terms of
the average kernel size. It also ensures the existence of an optimal map, provides a variational expression for
one such map and establishes some regularity properties of this mapping.

Theorem 3.9. Under Assumptions 1, 3, 4, the following holds for every p P r1,8s,

(i) We have that

kersizea
pF,M1, E , pq{2 ď ca

optpF,M1, E , pq ď kersizea
pF,M1, E , pq.

(ii) Consider p P r1,8q, and let Ψ: ME
2 Ñ X be given by

Ψpyq “ argmin
zPX

ż

Fy

dX px, zqp dµypx, eq. (14)

Then we have the following: Ψ has compact values, it is measurable and it admits a measurable
selector. Moreover, Ψ is an optimal map with average error of order p.

(iii) Consider p “ 8, and let Ψ: ME
2 Ñ X be given by

Ψpyq “ argmin
zPX

essup
px,eqPFy

dX px, zq. (15)

Then we have the following: Ψ has compact values, it is measurable and it admits a measurable
selector. Moreover, Ψ is an optimal map with average error of order p.

Remark 3.10 (Measurability of multi-valued mappings). There exist several notions of measurability for
multi-valued mappings. The precise definition of the term used in the theorem above can be found in Defin-
ition 7.6.

A key finding in Theorem 3.9 is that the possibly multi-valued Ψ admits a measurable selector, i.e. a
single-valued function ψ : ME

2 Ñ X which is Borel measurable and such that ψpyq P Ψpyq for every y.
Thus, Theorem 3.9 not only provides fundamental limits for the reconstruction error of an inverse problem,
but also gives a (variational) expression for a mapping that is optimal. Moreover, such a reconstruction
mapping satisfies some regularity properties, which one usually hopes for when solving an inverse problem.
One can argue that measurability is still a weak condition, but in order to obtain stronger conditions (such as
continuity of the reconstruction), one would need to impose stronger assumptions on the problem.

4. EXAMPLES AND APPLICATIONS

Example 1: Linear inverse problems with the robust null-space property. The robust null space property
was first introduced as a necessary condition for uniform recovery of sparse vectors from linear measure-
ments. See [51] for a historical overview. Later it has been extended to a wide range of model classes
M1, including low-rank [62] and sparsity in levels [15] models. The most general version of the property
appeared in [26] which considers general sets M1. We now recall a specialized version of the property
from [26], and we wi ll see how this relates to the notion of worst-case kernel size.

Let X ,Y and Z be vector spaces, with Y “ Z , and let A : X Ñ Y be a linear mapping that is onto Y .
We consider the additive linear model F px, eq “ Ax ` e. Let |||¨|||1 and |||¨|||2 be norms on X , and let |||¨|||3

be a norm on Y (slightly weaker conditions are used in [26]). Furthermore, let M1 ´ M1 denote the set
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tx ´ x1 : x, x1 P M1u, and let dist2ph,M1 ´ M1q “ infzPM1´M1
|||z ´ h|||2. Then the linear mapping A

is said to satisfy the robust null-space property with constants D1, D2 ą 0, if

|||h|||1 ď D1dist2ph,M1 ´ M1q `D2|||Aphq|||3 for all h P X . (16)

We note that this condition implies that A is injective on M1. Indeed, suppose that x, x1 P M1 are such that
Ax “ Ax1 then applying (16) with h – x ´ x1 leads to |||x´ x1|||1 ď D1dist2px ´ x1,M1 ´ M1q “ 0,
which implies that h “ x´ x1 “ 0. Hence A is injective on M1.

Next, assume for simplicity that Assumption 4 holds, i.e., that M1 is compact. For linear inverse prob-
lems, this assumption is often used on the noise level, whereas the set M1 is often an unbounded set (sparse
vector, matrices with low rank etc.). However, when modelling any practical application it is not unreason-
able to assume that the set of interest is closed and bounded.

Now let diamd3
pEq “ η. We want to show that worst-case kernel size with metrics induced by |||¨|||1 and

|||¨|||3 and under the assumptions above is bounded by

kersizewpF,M1, Eq ď D2η. (17)

To this end let x, x1 P M1 and e, e1 P E be such that Ax` e “ Ax1 ` e1. From (16) we then have that
ˇ

ˇ

ˇ

ˇ

ˇ

ˇx´ x1
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

1
ď D1distd1

px´ x1,M1 ´ M1q `D2

ˇ

ˇ

ˇ

ˇ

ˇ

ˇApx´ x1q
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

3
“ D2

ˇ

ˇ

ˇ

ˇ

ˇ

ˇe´ e1
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

3
ď D2η.

Taking supremum over the quantities above yields the bound in (17). Note in particular, that if we take η “ 0,
i.e., the noiseless model E “ t0u, we have that kersizewpF,M1, Eq “ 0.

Example 2: Optimal learning, Chebyschev centers and Gelfand widths. Recently the notion of optimal
learning was introduced in [21]. Herein, one considers the setting in which the set X is a Banach space with
norm } ¨ }X and M1 is a compact subset of X . To sample an element x P M1, one uses m linear functionals
λ1, . . . , λm P X ˚ from the dual space of X . Now, for a given x P M1, let y “ pλ1pxq, . . . , λmpxqq P Cm

and let
Ky “ tx P M1 : λipxq “ yi, i P t1, . . . ,muu

denote the set of solutions which are data-consistent. The above measurement model is noiseless, so define
for convenience M2 “ ty “ pλ1pxq, . . . , λmpxqq : x P M1u as the set of noiseless measurements.

Now, let BX pz, rq denote the closed ball in X with center z and radius r. For a compact set S Ă X , the
Chebyshev radius of S is given by

RX pSq :“ inftr ą 0 : S Ă BX pz, rq for some z P X u.

In [21] the quantity RX pKyq is defined as the optimal recovery rate for a given x P M1, with y “

pλ1pxq, . . . , λmpyqq. This quantity is zero if Ky is a singleton, however, here we follow [21] and focus on
the cases for which RX pKyq ą 0.

While the framework developed in this paper does not extend to general Banach spaces, it does cover the
special cases of CN with metric induced by a norm } ¨ }X . Indeed, by letting A P CmˆN be the matrix given
by the linear functionals λi, taking E “ t0u, and using the linear additive model F px, eq “ Ax ` e, it is
straightforward to see that RXpKyq “ 1

2diamXpFyq, i.e., if we take the supremum over all y P M2 we
recover the worst case kernel size. To further analyze the noisy setting, we refer to [21]

The framework proposed in this work is closely related to the concept of Chebychev centers. In fact, the
optimal maps Ψ defined in (9) and (14) correspond to the problem of finding the Chebychev center or the
p-center (see [79]) of the set Fy of candidate solutions. The setting proposed in this paper guarantees that
such centres exist, so that the optimal maps are well-defined; however, Chebychev centers may not exist
in general, and other sufficient and necessary conditions for their existence can be found in the literature
(see [7], [6], [98], [84]).

In this work, we have kept the forward model F fixed. However, in the special case of a linear forward
model, it is reasonable to also consider the question of how well we can perform given a fixed budget of m
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linear functionals. Fortunately, this question is well studied in the literature [81], and is given by the Gelfand
width of M1,

wmpM1q :“ inf
APCmˆN

sup
xPM1

RX pKAxq.

We note that this presents an lower bound for cwoptpA,M1, t0uq in the noiseless setting. We do not consider
the question of what the optimal forward model would be any further in this work, but remark that it is an
interesting question worth investigating.

Example 3: Bayesian Inverse Problems. Bayesian inverse problems [11,90] take a probabilisitc approach.
Instead of using a measurement y to output a single candidate solution x, the goal of a Bayesian approach is
to use a measurement y to output a distribution on the possible solutions x’s.

Typically, a Bayesian inverse problem setting assumes that the measurements are realisations of a random
variable Y „ µY |X“x distributed according to a measure conditional on the value of the true solution x;
moreover, the unknown x itself is assumed to be the realisation of a random variable X „ µX distributed
according to some prior distribution µX on X . The goal of Bayesian inverse problem is to use an observed
measurement y to update the prior µX distribution into a posterior distribution µX|Y “y . Tools from probab-
ility and statistics can then be implemented to analyse the posterior distribution, such as computing its mean,
its mode(s), variance, quantiles, and other quantities of interest.

A typical setting for Bayesian inverse problems involves a model of the form Y “ GpXq ` E, where
the unknown X is a random variable, and G : X Ñ Y is the ‘ideal’ forward model which is corrupted by
some random noise E „ µE in Y (often assumed independent from X). For a fixed a realisation x of X , the
randomness on Y is induced by the noise E: for example, when µE admits a probability density function fE
defined on Y , then the conditional density of Y |X “ x can be espressed as fY |X“x “ fEp¨ ´ Gpxqq.

Our proposed framework encompasses the general case of Bayesian inverse problems. In fact, we interpret
the measure µ on X ˆ Z as being the joint law of a random variable pX,Eq that models both the unkown x
and the noise e, so that µ “ µpX,Eq. We consider the random variable Y – F pX,Eq, whose law is precisely
µY “ F˚µ. While the Bayesian prior and posterior distributions are measures on X , in our framework both
µ and the disintegrations tµyuyPY are measures on the product X ˆZ; it turns out that it is sufficient to take
the pushforward along the projection π1 : X ˆ Z Ñ X to recover the familiar distributions of the Bayesian
approach. Moreover, it also turns out that the optimal map in (14) coincides with the Bayesian estimator of
the posterior mean in a typical setting. These claims are summarised in the following result.

Proposition 4.1. In our setting as described above, it holds that:

(1) the Bayesian prior distribution of X is µX – π1˚ µ;
(2) the Bayesian posteriors tµX|Y “yuyPY can be obtained via the disintegration as

µX|Y “y “ π1˚ µ
y.

(3) In the case where pX , dq “ pRN , d}¨}2q is an Euclidean space and p “ 2, the posterior mean is an
optimal map according to (12), as defined in (14). Explicitly, for every y P Y it holds that

Ψpyq “ EµX|Y “y
rXs.

Example 4: Worst- vs. average-case: a simple comparison. Consider the problem of recovering a point
x “ px1, x2q P R2 from its first coordinate x1. Equip X “ R2 and Y “ R with the Euclidean metric, and as-
sume a noiseless model Z “ E “ t0u. The forward map is explicitly F ppx1, x2q, eq “ x1. Consider a model
class of two points aligned vertically and at distance 1 from each other, such as M1 “ tp0, 0q, p0, 1qu Ď R2.
The space of all possible measurements is is ME

2 “ t0u Ď R.

(1) In the worst-case setting, we have

kersizewpF,M1, Eq “ 1, coptpF,M1, Eq “
1

2
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and the optimal map is given by the midpoint Ψp0q “ p0, 12 q.

(2) Now equip the space M1 ˆ E – M1 with the probability measure

µ “ µα :“ αδp0,0q ` p1 ´ αqδp0,1q

depending on the parameter α P r0, 1s. The parameter α acts as a weight that associates increasingly
importance to one of the two points, in this case p0, 0q. In this case, we have for p P r0,`8q

kersizea
pF,M1, E , pqp “ 2αp1 ´ αq

and for p “ 8 it is

kersizea
pF,M1, E ,8q “

$

&

%

0 if α P t0, 1u

1 if α P p0, 1q.
(18)

For example, for p “ 2 the optimal map is given by

Ψp0q “ p0, 1 ´ αq.

So that the optimality constant for p “ 2 is

caoptpF,M1, Eq2 “ αp1 ´ αq.

This can be interpreted in the following way: if both points in M1 are assumed to have the same importance,
it is most appropriate to consider the worst-case optimality constant. Then, the optimum reconstruction is
the mid point. However, if one point is more important than the other, then the average optimality constant
is more pertinent. In this case, the optimum is not the mid-point, but a point closer to the more important
point. The average case presented here is the simplest toy example for what happens in Deep Learning (DL):
a learning procedure, that optimizes the Euclidian distance as in the example, tends to stay closer to the most
important points.

5. RELATION TO PREVIOUS WORK

As an ongoing topic of research in many areas of mathematics, undersampled inverse problems have
been studied in many different areas. As a non-extensive list of examples, they have been studied from a
theoretical standpoint [43] and using a statistical perspective [80], or by using iterative deep neural networks
[4], regularization [40] and in more applied fields such as radio tomography of the ionosphere [52]. Different
moise models have been studied, and while an assumption of additive noise appears ubiquitously [20,59,63],
often multiplicative noise models can be of interest in applications [12,60,87,100]. To the best of the authors’
knowledge fundamental accuracy bounds for undersampled inverse problems with multiplicative noise have
not been produced, and the framework presented in the current work also encompasses this case as a special
case. Moreover, despite this extensive amount of research, there is little to be found on fundamental accuracy
bounds of approximate multi-valued solutions to undersampled inverse problems.

Accuracy bounds in approximation theory: Fundamental accuracy bounds, the Gelfand Widths, have
been established by A. Pinkus [81], in the noiseless linear setting. A framework for obtaining the best k-
term approximation and corresponding accuracy bounds is established in the work of A. Cohen, W. Dahmen
and R. DeVore [35]. In [36] A. Cohen, R. DeVore, G. Petrova and P. Wojtaszczyk propose a framework to
measure the optimal performance for nonlinear methods of approximation. The notion of optimal learning
in a noisy setting and upper worst-case accuracy bounds based on the Chebycheff radius are presented by P.
Binev et al. in [21]. B. Adcock et al. [3] propose a framework for accuracy bounds extending the classical
assumption of Compressed Sensing (CS). Generalized instance optimality and the corresponding accuracy
bounds have been presented by A. Bourrier et al. [26]. Related to the CS framework, the Restricted Isometry
Property (RIP) is generalized by Y. Traonmilin and R. Gribonval in [93] and the null space property is
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generalized by H. Tran and C. Webster in [92]. Related to our work, analogous worst- and average- case
error bounds for normed spaces and single-valued decoders are established in [82].

Optimal (multi-valued) decoders for undersampled inverse problems: The study of optimal and near-
optimal recovery in inverse problem has always been a central question, and many single-valued near-optimal
mappings have been proposed and analyzed [21,26,51,82,93]. A survey of early works on optimal recovery
can be found in [75]. The case of multi-valued optimal decoders has been considered for obtaining the worst
case bounds on Banach spaces in [10] and extended to metric spaces in [73]. As presented in Example 3, the
Bayesian approach to inverse problems aims at recovering a distribution valued decoder [11,90]. There exist
some a posteriori accuracy bounds in the case of normed spaces [68, 69, 96].

(Multi-valued) Decoders arising in Deep Learning: In the recent work by I. Daubechies, R. DeVore,
S. Foucart et. al., [41], the ability of deep neural networks to nonlinearly approximate functions, and thus
also decoders, is investigated. A range of results on how the resulting decoder may be constituted is presen-
ted by M. Unser in [95]. From an application-based perspective, a detailed overview of deep learning in
inverse problems and stability of robustness for deep learning is given by M. McCann et al. in [74] and the
review [11, 72]. However, compared to standard methods, data-driven approaches using deep learning for
solving inverse problems (1) have reported superior accuracy in different applications [17,89,101]. This can
potentially lead to instabilities, which is also highlighted by V. Antun et al. in [9] and N. M. Gottschling et
al. in [55]. In fact, there is a variety of research that has established that artificial intelligence techniques
based on deep learning are unstable, firstly in image classification [45,66,76,78,91], and later in applications
ranging from audio and speech recognition [32, 33, 99] to natural language processing [70] and automatic
diagnosis in medicine [48]. Instabilities, such as false positives, false negatives, and especially AI hallucin-
ations, have been an issue in the fastMRI challenge, [77] and also in microscopy [17, 58]. To the best of our
knowledge there do not exist fundamental performance and accuracy limits for data-driven approaches using
deep learning for solving the inverse problems. Moreover, many DL based approaches implicity include
multi-valued functions, where examples include, but are not limited to, deep ensembles [67] or model-based
probabilistic conditional diffusion models as in [71]. In fact, any probabilistic DL model used to an inverse
problem that uses sampling – see the work of J. Gawlikowski [53] for an introduction – can be considered to
be a multi-valued decoder.

6. CONCLUSION

The proposed theoretical framework for undersampled inverse problems can be seen as a generalisation
of a variety previous frameworks to multi-valued decoders. Additionally, commonly used assumptions,
such as the convexity of the set M1 and a linear A and additive noise, as well as the condition pM1 ´

M1q X N pAq “ t0u, which is for example implied by the RIP, are extended or entirely obliterated. Under
general assumptions, our work provides relevant accuracy bounds for possible multi-valued decoders and a
variational expression for optimal decoders. Due to the generality of the assumptions, these bounds provide a
mean to bridge the gap between theory and practice, as the lower bounds can be used for assessing accuracy
and performance of a wide range of models, including ensemble models, diffusion models and sampling-
based approaches that have multi-valued solutions.

7. PROOFS

7.1. Existence and uniqueness of a disintegration of the measure µ given Assumptions 1, 3 and 4. In
this section we prove the following proposition, which ensures that our setting guarantees the existence of a
disintegration of the measure µ.

Proposition 7.1. Under Assumptions 1, 3 and 4, there exists a disintegration tµyuyPME
2

of the measure
µ along F . Moreover, such disintegration is essentially unique: if tµ̃yuyPME

2
is another family satisfying

piq ´ piiiq in Definition 3.6, then µ̃y “ µy for almost every y.
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The proof of Proposition 7.1 is a special case of what is found in [34]. Before jumping to the proof, in
this section we start by recalling some well known definitions for measures, and state the relevant theorems
from [34]. Let pX,BpXqq be the Borel measurable space associated with the topological spaceX . A measure
µ on pX,BpXqq is said to be a Radon measure (sometimes also called a regular measure [5]) if

(i) µpKq ă `8 for each compact K P BpXq,
(ii) µpBq “ inftµpV q : V P BpXq, V open, and B Ă V u, for every B P BpXq (µ is outer regular), and

(iii) µpBq “ suptµpKq : K P BpXq,K compact, and K Ă Bu, for every B P BpXq (µ is tight).

Moreover, a measure µ is said to dominate a measure ν if µpBq “ 0 implies νpBq “ 0 for every B P BpXq.
Suppose that X can be covered by at most countably many Borel measurable sets tBiuiPI , I Ă N, and that
µpBiq ă 8 for each i P I . Then, µ is said to be a σ-finite measure. In particular, every finite measure is
σ-finite. We also have the following results for finite measures, that are used in the proof of Proposition 7.1.

Theorem 7.2 ( [5, Thm. 12.7]). A finite measure on a Polish space (i.e. a complete separable metric space)
is Radon.

In Definition 3.6 one may replace the measure F˚µ with another measure ρ, in which case tµyuy would
be called a pF, ρq disintegration of µ. We refer the reader to [34, Def. 1] for the detailed statement.

Theorem 7.3 ( [34, Thm. 1]). Let µ be a σ-finite Radon measure on a metric space X and let F be a
measurable map from pX,BpXqq to the measurable space pY,Σq. Let ρ be a σ-finite measure on Σ that
dominates the pushforward measure F˚µ. If Σ is countably generated and contains all the singleton sets
tyu, then µ has a pF, ρq-disintegration. The µy measures are uniquely determined up to an almost sure
equivalence: if tµy

˚u is another pF, ρq-disintegration then ρpty P Y : µy
˚ “ µyuq “ 0.

Theorem 7.4 ( [34, Thm. 2 (iii)]). Let µ have a pF, ρq-disintegration tµyu, with µ and ρ each σ-finite. Then,
the measures tµyu are probabilities for ρ-almost all y P Y if and only if ρ “ F˚µ.

Proof of Proposition 7.1. Let d :“ maxtdX , dZu be one of the standard metrics on the product X ˆZ . The
spaces pX , dX q and pZ, dZq are separable by Assumption 1, and complete by Assumption 1(ii), thus the
product space pX ˆ Z, dq is complete and separable, [88] (pg. 26, Invariance properties, Table 1). Thus,
pX ˆZ, dq is a Polish space. Since µ is a finite measure on the Polish space X ˆZ , Theorem 7.2 guarantees
that µ is Radon. Moreover, since µ is finite, it is in particular σ-finite. Taking ρ “ F˚µ, clearly ρ dominates
F˚µ trivially, as they are the same measure. By Assumption 1, pME

2 , dYq is second countable, hence its
topology is countably generated, and so is the corresponding Borel σ-algebra B “ BpME

2 q. Furthermore,
since singletons tyu Ď ME

2 are closed, the Borel σ-algebra contains all singletons. Lastly, the mapping F
is measurable by Assumption 3. Thus, all the conditions of Theorem 7.3 are satisfied. Hence, there exists a
disintegration of the measure µ along F . Such a disintegration is essentially unique in the sense of Theorem
7.3. Finally, since µ and ρ “ F˚µ are both finite and in particular σ-finite, Theorem 7.4 guarantees that
ρ “ F˚µ implies that the measures µy are probability measures for F˚µ-almost every y P ME

2 . □

7.2. Proof of Theorem 3.4.

Proof of Theorem 3.4. We begin with the proof of (ii). First, let us introduce some notation: for fixed y P

ME
2 , define the function

fy : X Ñ r0,`8s, fypzq “ sup
px,eqPFy

dX px, zq “ dHX pz, Fyq

and notice that fy appears in the definition of Ψ in (9). That is, we have the relation,

Ψpyq “ argmin
zPX

fypzq. (19)



14 NINA M. GOTTSCHLING, PAOLO CAMPODONICO, VEGARD ANTUN, AND ANDERS C. HANSEN

Furthermore, for each y P ME
2 let

ry “ sup
px,eqPFy

px1,e1
qPFy

dX px, x1q “ diamdX pFyq.

Next, we make a claim which, once it is established, we use to prove that Ψ has non-empty, compact values.
This ensures that Ψ is well-defined.

Claim. For every y P ME
2 , we have that,

(I) fy is continuous,
(II) for any x P Fy , we have that

argmin
zPX

fypzq “ argmin
zPBpx,ryq

fypzq,

(III) Ψpyq is closed.

We proceed to prove the claim and start by considering (I). We consider a general setting, and let pX, dq

be a metric space, A Ď X be a bounded subset and gpxq :“ dHpx,Aq “ supaPA dpx, aq. We claim that
|gpxq ´ gpyq| ď dpx, yq for all x, y P X . To see this, consider a, x, y P X and note that

dpx, aq ď dpx, yq ` dpy, aq ùñ sup
aPA

dpx, aq ď dpx, yq ` sup
aPA

dpy, aq.

Switching the roles of x and y, leads to the desired inequality. It follows that g is continuous. Moreover, Fy

is bounded by Assumption 2. Thus, letting pX, dq “ pX , dX q, A “ Fy , g “ fy above, proves (I).
To prove (II), we show that no point outside of the closed ball BdX px, ryq can be a minimiser of fy . First,

note that ry “ diamdX pπ1pFyqq ă 8 as π1pFyq is bounded. Moreover, by definition, we have that

ry “ sup
px,eqPFy

sup
px1,e1qPFy

dX px, x1q “ sup
px,eqPFy

fypxq,

which implies that ry ě fypxq for all x P Fy . Now, pick an x̂ P Fy . If z P X zBpx̂, ryq is a point outside of
the ball, then dX pz, x̂q ą ry , and

fypzq “ sup
px1e1qPFy

dX px1, zq ě dX px̂, zq ą ry ě fypx̂q.

It follows that any minimizer of fy must lie in the ball Bpx̂, ryq. This proves our claim in (II).
Part (III) of the claim follows directly from the continuity of fy . Indeed, let αy :“ min fy P r0,`8q.

Then, since tαyu Ă r0,8q is closed and fy is continuous, the preimage f´1
y ptαyuq “ Ψpyq is closed. This

proves (III), and concludes our proof of the claim.
Next, we prove the following properties of Ψ. These properties finalize the proof of statement (ii) of the

theorem.

(a) Ψ has non-empty and compact values;
(b) Ψ is an optimal map;

We start with the proof of (a). Let y P ME
2 and consider x inf Fy . From (II) and (19), we see that

Ψpyq “ argmin
zPX

fypzq “ argmin
zPBpx,ryq

fypzq. (20)

By Assumption 1(ii), dX satisfies the Heine-Borel property, which implies that the closed and bounded ball
Bpx, ryq is compact. Moreover, from (I) we know that the objective function fy is continuous. Thus, it
follows from the Extreme Value Theorem that fy attains it minimum in (20). This implies that Ψ has non-
empty values. To see that Ψ has compact values, observe that Ψpyq is closed by (III) and that Ψpyq Ď

Bpx, ryq, where Bpx, ryq is compact. Since a closed subset of a compact set is compact, we conclude that
Ψpyq is compact.
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Next, we prove (b). We will show that the minimum worst-case reconstruction error of Ψ equals the
optimality constant as given in Definition 3.1. To this end, let φ : ME

2 Ñ X and fix y P ME
2 . By construction

we have that

sup
px,eqPFy

dHX pΨpyq, xq ď sup
px,eqPFy

dX px, zq, for all z P φpyq.

It follows that

sup
px,eqPFy

dHX pΨpyq, xq ď sup
px,eqPFy

sup
zPφpyq

dX px, zq “ sup
px,eqPFy

dHX px, φpyqq.

By taking the supremum with respect to y P ME
2 on both sides, we obtain

sup
yPME

2

sup
px,eqPFy

dH1 pΨpyqq, xq ď sup
yPME

2

sup
px,eqPFy

dH1 pφpyq, xq.

As F : M1 ˆ E Ñ ME
2 is surjective, the previous inequality can be rewritten as

sup
px,eqPM1ˆE

dH1 pΨpF px, eqqq, xq ď sup
px,eqPM1ˆE

dH1 pφpF px, eqqq, xq.

Now, since φ : ME
2 Ñ X was arbitrary, the above inequality holds for any φ : ME

2 Ñ X . Taking the
infimum over all mappings on the right hand, side we obtain the optimality constant:

sup
px,eqPM1ˆE

dH1 pΨpF px, eqq, xq ď cw
optpF,M1, Eq.

The opposite inequality is trivial, since Ψ: ME
2 Ñ X is one of the reconstruction mappings over which the

infimum is taken. Therefore,

sup
px,eqPM1ˆE

dH1 pΨpF px, eqq, xq “ cw
optpF,M1, Eq,

and we conclude that Ψ is an optimal map. This concludes the proof of statement (ii) in the theorem.
We proceed with the proof of (i) and start with the lower bound in (8). Let φ : ME

2 Ñ X and y P ME
2 .

Then

diamdX pFyq “ sup
x,x1PFy

dX px, x1q ď sup
xPFy

2dHX px, φpyqq.

Now, taking the supremum over all y P ME
2 gives the inequality

kersizew
pF,M1, Eq ď sup

yPME
2

sup
xPFy

2dHX px, φpyqq. (21)

Finally, since φ was arbitrary, taking the infimum over all φ : ME
2 Ñ X in (21) gives

kersizew
pF,M1, Eq ď 2cw

optpF,M1, Eq.

which proves the lower bound in (8).
For proving the upper bound in (8), we will make use of the mapping Ψ in (9), which we know from

statement (ii) is an optimal map. Let y P ME
2 and x1 P Fy . Then by construction of Ψ, we have that

sup
xPFy

dHX pΨpyq, xq ď sup
xPFy

dX px, x1q ď diampFyq.

Taking the supremum over all y P ME
2 on both sides above, gives

sup
yPME

2

sup
xPFy

dHX pΨpyq, xq “ coptpF,M1, Eq ď kersizew
pF,M1, Eq,

where we used the fact that Ψ is an optimal map in the first equality. This establishes statement (i).
□

7.3. Preliminaries from measure theory. In order to prove Theorem 3.9 we need to establish some results
from measure theory.
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7.3.1. Carathéodory functions. Let pS,ΣSq, pX,ΣXq and pY,ΣY q be measurable spaces. For functions
f : S ˆ X Ñ Y , whose domain is a product of two measurable spaces, several notions of measurability
exist. The function f could be jointly measurable, i.e., measurable with respect to the product σ-algebra
ΣS b ΣX . For fixed s P S or x P X , the functions fs “ fps, ¨q : X Ñ Y and fx “ fp¨, xq : S Ñ Y ,
could be measurable with respect to ΣX and ΣS , respectively. A function f which is measurable in one
variable for each fixed s P S and for each fixed x P X is said to be separately measurable. In general, joint
measurability implies separate measurability, but the converse is not true [5, p. 152].

A class of functions which are jointly measurable in many important cases are Carathéodory functions.

Definition 7.5 ( [5, Def. 4.50]). Let pS,Σq be a measurable space, and let X and Y be topological spaces.
A function f : S ˆX Ñ Y is a Carathéodory function if:

(i) for each x P X , the function fx “ fp¨, xq : S Ñ Y is pΣ,BpY qq-measurable, and
(ii) for each s P S, the function fs “ fps, ¨q : X Ñ Y is continuous.

In particular, if X is a separable metric space and Y is a metric space, then every Carathéodory function
f : S ˆ X Ñ Y is jointly measurable [5, Lem. 4.51]. It is also straightforward to see that if f is continuous
in both arguments separately, then f is a Carathéodory function.

7.3.2. Measurability of multi-valued functions. For a single-valued function f : Y Ñ X the inverse image
of a setA Ă X is f´1pAq :“ ty P Y : fpyq P Au. For a multi-valued function φ : Y Ñ X there are different
ways to generalize the concept of an inverse image: Given a set A Ă X , we say that the upper inverse of A
is φupAq :“ ty P Y : φpyq Ă Au and we say that the lower inverse of A is

φℓpAq :“ ty P Y : φpyq XA ‰ Hu.

Naturally, the notion of continuity of multi-valued mappings between topological spaces depends on the
definition of inverse. Interested readers are referred to [5, Ch. 17]. In this work we shall be most concerned
with the lower inverse of a multi-valued mapping, since this notion of inverse allows us to pick a measurable
selector. Next, we define two different notions of measurability for multi-valued mappings based on the
concept of lower inverse.

Definition 7.6 ( [5, Def. 18.1]). Let pY,Σq be a measurable space and X a topological space. We say that a
multi-valued mapping φ : Y Ñ X is:

‚ weakly measurable, if φℓpV q P Σ for each open subset V of X ,
‚ measurable, if φℓpAq P Σ for each closed subset A of X .

Note that if the topology of X above is induced by a metric, then every multi-valued measurable mapping
is also weakly measurable [5, Lem. 18.2]. Our main tool for proving Theorem 3.9 is the following result.

Theorem 7.7 (Measurable Maximum Theorem, [5, Thm. 18.19]). Let X be a separable metrisable space
and pS,Σq a measurable space. Let φ : S Ñ X be weakly measurable with non-empty compact values, and
suppose f : S ˆX Ñ R is a Carathéodory function. Define the value function m : S Ñ R by

mpsq “ max
xPφpsq

fps, xq,

and the correspondence Φ: S Ñ X of maximisers by

Φpsq “ tx P φpsq : fps, xq “ mpsqu “ argmax
xPφpsq

fps, xq.

Thenm is measurable, Φ has non-empty and compact values, and Φ is measurable and admits a measurable
selector.
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The Measurable Maximum Theorem will be applied in two ways. The first can be found in Proposition
7.8, which gives sufficient conditions for a map ϕ : ME

2 Ñ X to be in the set C given by (10). The second
use of the theorem above is found in the proof of part (ii) and (iii) of Theorem 3.9.

Proposition 7.8. If ϕ : ME
2 Ñ X is measurable and has non-empty compact values, then ϕ P C.

Proof. By definition of C, we need to prove that the function

rϕ : M1 ˆ E Ñ R, rϕpx, eq “ dHpx, ϕpF px, eqqq “ sup
zPϕpF px,eqq

dX px, zq

is measurable. Denote S :“ M1 ˆ E , X :“ X , and

φ :“ ϕ ˝ F : M1 ˆ E Ñ X , φpx, eq “ ϕpF px, eqq,

f :“ dX ˝ pπ1, idX q : pM1 ˆ Eq ˆ X Ñ R, fppx, eq, zq “ dX px, zq.

The function φ is measurable, since it is the composition of the measurable functions F and ϕ. Now, since
X is a metric space, φ is also weakly measurable [5, Lem. 18.2]. Moreover, φ has non-empty compact
values because ϕ has non-empty compact values by assumption. Finally, the function f is continuous in both
arguments and hence Carathéodory. Thus, the assumptions in Theorem 7.7 are satisfied, and its application
implies that the value function m : M1 ˆ E Ñ R

mpx, eq “ max
zPϕpF px,eqq

dX px, zq

is measurable. It is immediate to notice that m “ rϕ, so we conclude that rϕ is measurable. Hence we have
proven that ϕ P C. □

7.3.3. Disintegration of measures. Next we prove a useful proposition that will be applied in the proof of
Theorem 3.9. For completeness, we start by recalling that every time we write an expression of the form

essup
px,eqPM1ˆE

fpx, eq, essup
px,eqPFy

fpx, eq, essup
yPME

2

fpyq.

It is implicit that we are taking the essential supremum with respect to µ on M1 ˆ E , with respect to µy on
Fy , and with respect to F˚µ on ME

2 .
We also recall that π1 : X ˆ Z Ñ X refers to the projection on the first component π1px, eq “ x.

Proposition 7.9. Given Assumptions 1, 3 and 4, we have the following:

(i) For A P BpM1 ˆ Eq, µpAq “ 0 if and only if µypAq “ 0 for almost every y P ME
2 .

(ii) Let f : M1 ˆ E Ñ r0,`8q be Borel measurable. Then the function

m : ME
2 Ñ R, mpyq “ essup

px,eqPFy

fpx, eq

is Borel measurable.
(iii) Let f : M1 ˆ E Ñ r0,`8q be Borel measurable. Then

essup
px,eqPM1ˆE

fpx, eq “ essup
yPME

2

essup
px,eqPFy

fpx, eq.

(iv) Let g : M1 Ñ r0,`8q be Borel measurable. Then
ż

Fy

gpπ1px, eqqdµypx, eq “

ż

Fy

gpxqd
`

pπ1q˚µ
y
˘

pxq,

and

essup
px,eqPFy

gpπ1px, eqq “ essup
xPFy

gpxq.
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Proof. We start with piq. Let 1A denote the indicator function on A P BpM1 ˆ Eq. Suppose that µpAq “ 0,
then by (iii) in Definition 3.6, we have that

0 “ µpAq “

ż

M1ˆE
1A dµ “

ż

ME
2

˜

ż

Fy

1A dµy

¸

dpF˚µqpyq.

The integral of a positive function with respect to a positive measure is zero if and only if the integrand
function is zero almost-everywhere, so the previous equality is equivalent to

ż

Fy

1A dµy “ µypAq “ 0 for almost every y P ME
2 .

The reverse argument can be made with the same steps.
Let us now prove piiq. Since the Borel σ-algebra on R is generated by sets of form pa,`8q, we proceed

to show that m´1ppa,`8qq is Borel measurable for any a P R. We have

m´1ppa,`8qq “ ty P ME
2 : mpyq ą au

“ ty P ME
2 : µyptpx, eq P M1 ˆ E : fpx, eq ą auq ą 0u

“ ty P ME
2 :

ż

M1ˆE
1f´1ppa,8qq dµ

y ą 0u

“ ty P ME
2 : hapyq ą 0u “ h´1

a pp0,`8qq,

where hapyq “
ş

M1ˆE 1f´1ppa,8qq dµ
y . In particular, since f is Borel measurable, f´1ppa,8qq is a meas-

urable set and hence 1f´1ppa,8qq is a measurable function on M1 ˆ E . Now, from (ii) in Definition 3.6
we know that the function y ÞÑ hapyq “

ş

M1ˆE 1g´1ppa,8qq dµ
y is measurable and so h´1

a pp0,`8qq “

m´1ppa,`8qq is a measurable subset of Y . As a P R was arbitrary, this proves that m is Borel-measurable.
This concludes piiq.

Next we consider piiiq, and let m be as in (ii). We start by showing that

essup
px,eqPM1ˆE

fpx, eq ě essup
yPME

2

mpyq. (22)

Let K “ essupM1ˆE f . By definition we have µptpx, eq P M1 ˆ E : fpx, eq ą Kuq “ 0. Hence, by piq

and the fact that µy is concentrated on Fy , we have

0 “ µyptpx, eq P M1 ˆ E : fpx, eq ą Kuq “ µyptpx, eq P Fy : fpx, eq ą Kuq

for almost every y P ME
2 . So mpyq “ essuppx,eqPFy

fpx, eq ď K “ essupM1ˆE f for almost every
y P ME

2 . This proves (22).
Next, we consider the reverse inequality. By definition of essupME

2
m, we have

mpyq “ essup
px,eqPFy

fpx, eq ď essup
ME

2

m

for almost every y P ME
2 . Hence,

µyptpx, eq P Fy : fpx, eq ą essup
ME

2

muq “ µyptpx, eq P M1 ˆ E : fpx, eq ą essup
ME

2

muq “ 0

for almost every y P ME
2 . By piq, this is equivalent to µtpx, eq P M1 ˆ E : fpx, eq ą essupME

2
mu “ 0,

which implies essuppx,eqPM1ˆE fpx, eq ď essupyPME
2
mpyq, as desired. This concludes the proof of piiiq.

Finally, let us prove pivq. Equality between integrals
ż

Fy

pg ˝ π1q dµy “

ż

Fy

gdpπ1q˚µ
y

comes directly from the definition of pushforward measure, and can be found in detail [5, Theorem 13.46].
To see the equality between essential suprema, take M P r0,`8q, then note that

ppπ1q˚µ
yq

`

g´1pM,`8q
˘

“ µypπ´1
1 pg´1pM,`8qqq “ µyppg ˝ π1q´1pM,`8qq.
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TakingM “ essupFy
pg ˝π1q, then the definition of essential supremum gives µyppg ˝π1q´1pM,`8qq “ 0,

which by the previous chain of equalities implies that 0 “ ppπ1q˚µ
yqptx P Fy : gpxq ą essupFy

pg˝π1quq, so
that gpxq ď essupFy

pg˝π1q for pπ1q˚µ
y-almost every x P Fy . This gives essupxPFy

gpxq ď essupFy
pg˝π1q,

By taking instead M “ essupxPFy
gpxq, the same reasoning proves the reverse inequality between essential

suprema. Hence equality is proven, concluding the proof of pivq. □

7.4. Proof of Theorem 3.9. Having established the above preliminares, we now proceed to proving The-
orem 3.9. In order to do so, we will split the Theorem up into two results, Proposition 7.10 and Proposition
7.11 and prove these. These results combined provide the proof of Theorem 3.9.

Proposition 7.10 (Lower bound of part piq, Theorem 3.9). Given the assumptions in Theorem 3.9, then the
following holds for every p P r1,8s:

kersizea
pF,M1, E , pq ď 2ca

optpF,M1, E , pq.

Proof of Proposition 7.10. Let φ : ME
2 Ñ X be an arbitrary reconstruction mapping. Fix y P ME

2 and
consider px, eq, px1, e1q P M1 ˆ E such that F px, eq “ F px1, e1q “ y. Then, by the triangle inequality, we
deduce

dX px, x1q ď dHX px, φpF px, eqqq ` dHX px1, φpF px1, e1qqq. (23)

Let us now distinguish the two cases where p “ 8 and p P r1,8q. The structure of the proof will be very
similar in the two cases, with the main difference that the case p “ 8 involves essential suprema, while the
case p P r1,`8q involves integrals. We we will fully prove the case p P r1,8q and provide a sketch of the
proof of the case p “ 8, as it is virtually identical. In both cases, however, equation (23) will play a crucial
role. To ensure that the essential suprema and integrals are well-defined we assume that φ P C.

Case p P r1,8q; integrating (23) twice with respect to µy and using that pa ` bqp ď 2ppap ` bpq for
a, b ě 0, we obtain

ż

Fy

ż

Fy

dX px, x1qp dµypx, eq dµypx1, e1q

ď

ż

Fy

ż

Fy

´

dHX px, φpF px, eqqq ` dHX px1, φpF px1, e1qqq

¯p

dµypx, eq dµypx1, e1q

“2p
ż

Fy

dHX px, φpF px, eqqqp dµypx, eq

where in the last step we also used the fact that µy is a probability measure. Now, integrating the above
inequality with respect to F˚µ on ME

2 and raising to the power 1
p gives that

kersizea
pF,M1, E , pq “

˜

ż

ME
2

ż

Fy

ż

Fy

dX px, x1qp dµypx, eq dµypx1, e1q dpF˚µqpyq

¸
1
p

ď

ď

˜

2p
ż

ME
2

ż

Fy

dHX px, φpF px, eqqqp dµypx, eq dpF˚µqpyq

¸
1
p

“ 2

˜

ż

M1ˆE
dHX px, φpF px, eqqqp dµpx, eq

¸
1
p

.

Since φ P C was arbitrary, by taking the infimum over φ P C we obtain:

kersizea
pF,M1, E , pq ď 2 inf

φPC

˜

ż

M1ˆE
dHX px, φpF px, eqqqp dµpx, eq

¸
1
p

“ 2ca
optpF,M1, E , pq.

The proposition is therefore also proven in the case p P r1,`8q.
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Case p “ 8; the proof follows the basic structure of the case p P r1,8q. In (23) instead of integrating
we take the essential supremum respect to the measure µy . Then in the next step, instead of integrating, we
take essential supremum in y with respect to the measure F˚µ on ME

2 and apply Proposition 7.9. Finally, as
φ : ME

2 Ñ X was arbitrary, taking the infimum over φ P C concludes the proof.
□

Proposition 7.11 (Part piiq and piiq and upper bound in (i) of Theorem 3.9). The following holds for every
p P r1,8s:

ca
optpF,M1, E , pq ď kersizea

pF,M1, E , pq,

and the map Ψ: ME
2 Ñ X given by,

Ψpyq “ argmin
zPX

essup
px,eqPFy

dX px, zq pp “ 8q (24)

Ψpyq “ argmin
zPX

ż

Fy

dX px, zqp dµypx, eq pp P r1,8qq (25)

is an optimal map with average error of order p. Moreover, Ψ has non-empty compact values, is measurable
and it admits a measurable selector.

Proof of Proposition 7.11. We distinguish the cases p “ 8 and p P r1,8q. In both cases, the structure of
the proof consists in proving the following steps:

(a) Ψ, defined either by (24) or (25), has non-empty values;
(b) Ψ is measurable, has compact values and admits a measurable selector;
(c) Ψ P C “ tφ : ME

2 Ñ X : px, eq ÞÑ dHX px, φpF px, eqq is measurableu;
(d) Ψ is an optimal map with average error of order p;
(e) Upper bound: ca

optpF,M1, E , pq ď kersizea
pF,M1, E , pq with p “ 8 or p P r1,`8q.

First we consider the case p P r1,8q. Again, let us first introduce some notation, similar to above. Fix
y P ME

2 . Define fy : X Ñ r0,8q,

fypzq “

ż

Fy

dX px, zqp dµypx, eq

for z P X . Define also

ry “ essup
px,eqPFy

px1,e1
qPFy

dX px, x1q,

Ex,e “ tpx1, e1q P Fy : dX px, x1q ą ryu,

Gy “ tpx, eq P Fy : µypEx,eq “ 0u.

Claim. We claim that the following holds: for every y P ME
2

(I) fy is continuous,
(II) argmin

X
fy “ argmin

Bpx,2ryq

fy for µy-almost every px, eq P Fy .

We proceed to prove the claim and start by considering (I). We consider a general setting, and let pX, dq

be a metric space equipped with a probability measure ν concentrated on a bounded subset A Ď X , and
define

gpxq :“
´

ż

A

dpx, aqp dνpaq

¯
1
p

“ }dpx, ¨q}LppX,νq.

We claim that |gpxq ´ gpzq| ď dpx, zq for all x, y P X . To see this, consider a, x, z P X and note that by
the triangle inequality dpx, aq ď dpx, zq ` dpz, aq. Taking LppX, νq-norms in the variable a and applying
Minkowski’s inequality gives

gpxq “ }dpx, ¨q}p ď }dpx, zq ` dpz, ¨q}p ď }dpx, zq}p ` }dpz, ¨q}p “ dpx, zq ` gpzq,
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where in the last passage we used that ν is a probability measure. Switching the roles of x and z, leads to the
desired inequality. It follows that g is continuous.

By assumption 4, since M1 is compact and Fy Ď M1, then Fy is bounded. Thus, letting pX, dq “

pX , dX q, ν “ pπ1q˚µ
y , A “ Fy above, and recalling Proposition 7.9, (iv), then gp “ fy , which proves (I).

To prove (II) we will show that for µy-almost every px, eq P F´1y we have

Ψpyq “ argmin
zPX

ż

Fy

dX px1, zqp dµypx1, e1q “ argmin
zPBdX px,2ryq

fypzq. (26)

Fix px, eq P Gy . If z P X zBdX px, 2ryq, then for µy-almost every px1, e1q P Fy ,

dX pz, x1q ě dX pz, xq ´ dX px, x1q ą 2ry ´ ry “ ry.

Thus,

fypzq “

ż

Fy

dX pz, x1qp dµypx1, e1q

ą

ż

Fy

rpy dµ
ypx1, e1q “ rpy .

The previous inequality holds for any z P X zBdX px, 2ryq. On the other hand,

fypxq “

ż

Fy

dX px, x1qp dµypx1, e1q

ď

ż

Fy

rpy dµ
ypx1, e1q “ rpy .

Therefore fypzq ą fypxq whenever z R Bpx, 2ryq, which implies that points z outside of such ball cannot
be minimisers, hence proving (26). This concludes part (II) of the claim.

Armed with the claim, we can prove the required (a)-(e) properties of Ψ. First, let us prove (a), namely
that Ψ in (25) has non-empty values. By the Heine-Borel property of the metric dX , the setBdX px, 2ryq Ă X
is compact, since it is a closed ball with respect to the metric dX . Hence, the function fy is continuous by
(I) and its minimisers are by (II) restricted to the compact set BdX px, 2ryq. Therefore, the minimum in (25)
is attained by the Extreme Value Theorem. This shows that the argmin is non-empty, and hence that Ψ has
non-empty values on ME

2 .
We now proceed to prove (b), namely that Ψ is measurable and has compact values. We will apply the

Maximum Measurable Theorem, 7.7, with S “ ME
2 , X “ X ,

φ : ME
2 Ñ X , φpyq “ BdX pM1, 2diampM1qq,

f : ME
2 ˆ X Ñ R, fpy, zq “ fypzq “

ż

Fy

dX px, zqp dµypx, eq.

In order to apply the theorem, we need to verify that the assumptions are satisfied. We start by proving that φ
is weakly-measurable with non-empty compact values. Firstly, it is clear that, since φ is constant, then φ is
weakly measurable and has non-empty values. Moreover, the only value φ takes is BdX pM1, 2diampM1qq,
which we now prove to be compact. Note that, since M1 is compact by Assumption 4, then M1 is bounded
and hence BdX pM1, 2diampM1qq “ tx P X : distdX px,M1q ď 2diampM1qu is bounded too. Moreover,
since the function dp¨,M1q is continuous, the set BdX pM1, 2diampM1qq “ dp¨,M1q´1pr0, 2 diampM1qsq

is closed. Hence, we have proven thatBdX pM1, 2diampM1qq is closed and bounded, and by the Heine Borel
property of dX granted by Assumption 4 it follows thatBdX pM1, 2diampM1qq is compact. This proves that
φ is weakly-measurable with non-empty compact values. Secondly, to prove that f is Carathéodory, we
need to show that fpy, ¨q “ fy is continuous for every fixed y P ME

2 and that fp¨, zq is measurable for every
fixed z P M1. On the one hand, for every fixed y P ME

2 , the function fy is continuous on X as proven
in claim (I). On the other hand, for every fixed z, the function fp¨, zq : y ÞÑ

ş

Fy
dX px, zqp dµypx, eq is
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Borel measurable due to the definition of disintegration of measure 3.6. Then, by Theorem 7.7, the possibly
multi-valued function Φ : ME

2 Ñ X given by

Φpyq “ argmin
zPBdX pM1,2diampM1qq

ż

F´1y

dX px, zqp dµypx, eq

is measurable and has non-empty, compact values. Moreover, by combining (26) and the fact that for px, eq P

Gy , BdX px, 2ryq Ď BdX pM1, 2diampM1qq, we deduce that Φ “ Ψ. Hence, Ψ is measurable and has non-
empty, compact values.

We now prove (c), namely that Ψ P C. This follows directly from Proposition 7.8.
We now proceed to prove (d), namely that Ψ is an optimal map. Let φ P C. By the minimising definition

of Ψ,
ż

Fy

dHX pΨpyq, xqp dµypx, eq ď

ż

Fy

dX pz, xqp dµypx, eq

for every z P φpyq. In particular, taking the supremum with respect to z P φpyq, which coincides with
considering the Hausdorff distance, and using Fatou’s Lemma yields

ż

Fy

dHX pΨpyq, xqp dµypx, eq ď sup
zPφpyq

ż

Fy

dX pz, xqp dµypx, eq

ď

ż

Fy

sup
zPφpyq

dX pz, xqp dµypx, eq

ď

ż

Fy

dHX pφpyq, xqp dµypx, eq.

By integrating with respect to y P ME
2 , we obtain

ż

yPME
2

ż

Fy

dHX pΨpyq, xqp dµypx, eq dpF˚µqpyq ď

ż

yPME
2

ż

Fy

dHX pφpyq, xqp dµypx, eq dpF˚µqpyq.

Thanks to the disintegration of measure, this can be rewritten as
ż

px,eqPM1ˆE
dHX pΨpF px, eqq, xq dµpx, eq ď

ż

px,eqPM1ˆE
dHX pφpF px, eqq, xq dµpx, eq.

Now, as φ P C was arbitray and by raising both sides to the power 1
p , we obtain

˜

ż

px,eqPM1ˆE
dHX pΨpF px, eqq, xqp dµpx, eq

¸
1
p

ď ca
optpF,M1, E , pq.

The opposite inequality holds trivially, as Ψ P C. Therefore, Ψ is an optimal map.
Finally, we proceed to prove (e), namely the upper bound ca

optpF,M1, E , pq ď kersizea
pF,M1, E , pq. By

the minimisation property of Φ, hence also of Ψ, for every px1, e1q P Fy:
ż

F´1y

dHX px,Ψpyqqp dµypx, eq ď

ż

F´1y

dX px, x1qp dµypx, eq. (27)

Integrating (27) with respect to µy yields,
ż

Fy

dHX px,Ψpyqqp dµypx, eq ď

ż

Fy

ż

Fy

dX px, x1qp dµypx, eq dµypx1, e1q.

where we used that µy is a probability measure. Integrating both sides over y P ME
2 with respect to F˚µ we

obtain
ż

ME
2

ż

Fy

dHX px,Ψpyqqp dµypx, eq dpF˚µqpyq

ď

ż

ME
2

ż

Fy

ż

Fy

dX px, x1qp dµypx, eq dµypx1, e1q dpF˚µqpyq.
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Using the definition of disintegration of the measure µ on the left hand side of the above inequality yields
ż

M1ˆE
dHX px,ΨpF px, eqqqp dµpx, eq ď kersizea

pF,M1, E , pqp.

Then, raising both sides to the 1
p -th power, gives

˜

ż

M1ˆE
dHX px,ΨpF px, eqqqp dµpx, eq

¸
1
p

ď kersizea
pF,M1, E , pq.

And finally, since Ψ P C, we conclude

ca
optpF,M1, E , pq ď kersizea

pF,M1, E , pq.

This concludes the case p P r1,`8q. Hence the proof is complete.
Now we consider the case p “ 8. The proof only requires minor modifications to the case p P r1,8q,

that we will describe in the following. The objective function for y P ME
2 and z P X is

fypzq “ essup
px,eqPFy

dX px, zq.

where the essential supremum is taken with respect to µy . Then Ψpyq “ argminX fy . Define, as before,

ry “ essup
px,eqPFy

px1,e1
qPFy

dX px, x1q.

Claim. For every y P ME
2 :

(I) fy is continuous;
(II) argmin

X
fy “ argmin

Bpx,2ryq

fy for µy-almost every px, eq P Fy .

The claims are proven analogously to the case p P r1,8q, except that to prove (I), Minkowski’s inequality
is replaced by the following. We consider a general setting, and let pX, dq be a metric space, A Ď X be
a bounded subset, ν be a probability measure on X concentrated on A and gpxq :“ essupaPA dpx, aq. We
claim that |gpxq ´ gpzq| ď dpx, zq for all x, z P X . To see this, consider a, x, z P X and notice that

dpx, aq ď dpx, zq ` dpz, aq ùñ essup
aPA

dpx, aq ď dpx, zq ` essup
aPA

dpz, aq.

Switching the roles of x and z, leads to the desired inequality. It follows that g is continuous. Claim (II)
follows the same line of reasoning as in the case p P r1,8q by replacing the integration with the essential
supremum with respect to µy .

Armed with the claim, we can show the properties given by the list (a)-(e) stated at the beginning of the
proof, similiarly to the case p P r1,8q. For the sake of brevity, we provide a sketch of the proof.

Part (a) follows the same line of reasoning as in the case p P r1,8q. In part (b) we again apply the
Maximum Measurable Theorem 7.7 with fpy, zq “ fypzq :“ essuppx,eqPFy

dX px, zq and apply Proposition
7.9 to show that fp¨, zq : y ÞÑ essuppx,eqPFy

dX px, zq is Borel measurable. Part (c) is again a a direct
consequence of (b) and Proposition 7.8. Parts (d) and (e) follows the same line of reasoning as in the
case p P r1,8q by replacing the integration with the essential supremum. This concludes the proof of the
proposition in the case p “ 8.

□

7.5. Proof of Proposition 4.1.

Proof. (1) Starting from the joint random variable pX,Eq „ µpX,Eq “ µ consider the marginal X “

π1 ˝ pX,Eq with marginal distribution µX “ π1˚µpX,Eq “ π1˚µ “ PrX P ¨s. This is precisely the
Bayesian prior distribution of X .
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(2) By Proposition 7.1 applied to π1 : pX ˆ Z, µpX,Eqq Ñ pX , µXq, there exists a disintegration
tµx

pX,Eq
“ : µpx,EquxPX on X ˆZ , each of which concentrated on txuˆZ . It satisfies µpX,EqpAq “

ş

X µpx,EqpAqdµXpxq.
This disintegration can be pushed forward via F : recall that µY “ F˚ µpX,Eq, and define

µY |X“x – F˚ µpx,Eq for every x P X . Then it is immediate to notice that tµY |X“xuxPX is a
regular conditional distribution of Y given X . In fact, for every A P BpYq the defining property of
conditional distributions is verified:

µY pAq “ F˚ µpX,EqpAq “ µpX,EqpF´1pAqq “

ż

X
µpx,EqpF´1pAqqdµXpxq “

“

ż

X

´

F˚ µpx,EqpAq

¯

dµXpxq “

ż

X
µY |X“xpAqdµXpxq.

(3) In Bayesian terms, the Bayes posterior is a family of distributions tµX|Y “yuyPY that is uniquely
defined (up to µY -almost equivalence) by satisfying the condition

µXpAq “

ż

Y
µX|Y “ypAqdµY pyq.

Let us now prove that the family tπ1˚µ
yuyPY satisfies the previous condition.

For A P BpX q, we have

µXpAq “ pπ1˚µqpAq “ µpπ´1pAqq “

ż

XˆZ
1π´1pAqdµ “

ż

Y

´

ż

XˆZ
1π´1pAqdµ

y
¯

dµY pyq “ (28)

“

ż

Y
π1˚µ

ypAqdµY pyq “

ż

Y
µypπ´1pAqqdµY pyq. (29)

Therefore, the defining condition for the posterior is verified. By uniqueness of the posterior, we
conclude that π1˚µ

y “ µX|Y “y for every y P Y .
(4) Note that the following is a special case of section 3.3 in [11] using the work of [57]. Moreover,

the optimal map obtained in the following proof is not compact-valued, as we do not assume that
X is compact. For fixed y P Y , by Proposition 7.1 applied to π1 : pX ˆ Z, µyq Ñ pX , π1˚ µ

yq,
there exists a disintegration tµy,x

pX,Eq
“: µpx,Eq|Y “yuxPX on X ˆ Z , each of which concentrated on

txu ˆ Z . It satisfies for every A P BpX ˆ Zq that µypAq “
ş

X µ
y
px,Eq|Y “ypAqdpπ1˚ µ

yqpxq. More
generally, if f : X ˆ Z Ñ r0,`8s is a positive measurable function, it holds that

ż

XˆZ
fpx, eq dµypx, eq “

ż

X

´

ż

XˆZ
fpx, eq dµpx,Eq|Y “ypx, eq

¯

(.π1˚µ
yqpxq.

Notice in particular that, if f only depends on x, the previous condition simplifies to
ż

XˆZ
fpxq dµypxq “

ż

X
fpxq

´

ż

XˆZ
dµpx,Eq|Y “ypx, eq

¯

(.π1˚µ
yqpxq (30)

“

ż

X
fpxq(.π1˚µ

yqpxq (31)

where we used the fact that µpx,Eq|Y “y is a probability measure.
Therefore, the optimal map can be rewritten in terms of the posterior distribution in the following

way: for every y P Y , by (30) it holds that
ż

Fy

dX px, zqp dµypx, eq “

ż

X
dX px, zqp dpπ˚1 µ

yqpxq

since the noise e was not involved in the integrand function. Therefore, the optimal map can be
rewritten in terms of the posterior distribution in the following way:

Ψpyq – argmin
zPX

ż

Fy

dX px, zqp dµypx, eq “ argmin
zPX

ż

X
dX px, zqp dpπ˚1 µ

yqpxq.
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In the special case where X “ RN is an Euclidean space equipped with the Euclidean metric
dX “ d}¨}2 induced by the 2-norm } ¨ }2, and considering the exponent p “ 2, the optimal map
reduces to

Ψpyq “ argmin
zPRN

ż

RN

}x´ z}22 dµX|Y “ypxq

which is the Minimum Mean Squared Error (MMSE) for the posterior distribution µX|Y “y . It
is a well-known result that, for any distribution for which enough moments are finite (mean and
variance), the point that minimises the mean squared error is the expected value. In fact, by differ-
entiating the function g : RN Ñ r0,`8q

gpzq –

ż

RN

}z ´ x}22 dµX|Y “ypxq “

N
ÿ

i“1

ż

RN

pzi ´ xiq
2dµX|Y “ypxq

we obtain for any i P t1, . . . , Nu that
´

B

Bzi
g

¯

pzq “

ż

RN

2pzi ´ xiq dµX|Y “ypxq “

“ 2zi ´ 2

ż

RN

xi dµX|Y “ypxq

“ 2
`

zi ´ EµX|Y “y
rxis

˘

.

Therefore, imposing B
Bzi
g “ 0 for every i, we obtain that the minimiser of the optimal map is given

by

Φpyq “ z “ pz1, . . . , zN q “

´

EµX|Y “y
rx1s, . . . ,EµX|Y “y

rxN s

¯

“ EµX|Y “y
rXs.

□
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