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ABSTRACT. Due to the many applications in Magnetic Resonance Imaging (MRI), Nuclear Magnetic Resonance
(NMR), radio interferometry, helium atom scattering etc., the theory of compressed sensing with Fourier trans-
form measurements has reached a mature level. However, for binary measurements via the Walsh transform, the
theory has been merely non-existent, despite the large number of applications such as fluorescence microscopy,
single pixel cameras, lensless cameras, compressive holography, laser-based failure-analysis etc. Binary mea-
surements are a mainstay in signal and image processing and can be modelled by the Walsh transform and Walsh
series that are binary cousins of the respective Fourier counterparts. We help bridging the theoretical gap by pro-
viding non-uniform recovery guarantees for infinite-dimensional compressed sensing with Walsh samples and
wavelet reconstruction. The theoretical results demonstrate that compressed sensing with Walsh samples, as long
as the sampling strategy is highly structured and follows the structured sparsity of the signal, is as effective as
in the Fourier case. However, there is a fundamental difference in the asymptotic results when the smoothness
and vanishing moments of the wavelet increase. In the Fourier case, this changes the optimal sampling patterns,
whereas this is not the case in the Walsh setting.

1. INTRODUCTION

Since Shannon’s classical sampling theorem [50, 54], sampling theory has been a widely studied field
in signal and image processing. Infinite-dimensional compressed sensing [4, 9, 18, 36, 37, 48, 49] is part
of this rich theory and offers a method that allows for infinite-dimensional signals to be recovered from
undersampled linear measurements. This gives a non-linear alternative to other methods like generalized
sampling [2, 5, 6, 8, 32, 34, 41] and the Parametrized-Background Data-Weak (PBDW)-method [13, 14, 24,
42–44] that reconstruct infinite-dimensional objects from linear measurement. However, these methods do
not allow for subsampling, and hence are dependent on consecutive samples of, for example, the Fourier
transform. Infinite-dimensional compressed sensing, on the other hand, is similar to generalized sampling
and the PBDW-method, but utilises an `1 optimisation problem that allows for subsampling.

Beside the typical flagship of modern compressed sensing, namely MRI [31,40], there is also a myriad of
other applications, like fluorescence microscopy [47,51], single pixel cameras [29], medical imaging devices
like computer tomography [19], electron microscopy [38], lensless cameras [35], compressive holography
[20] and laser-based failure-analysis [52] among others. The applications divide themselves in three different
groups: those that are modelled by Fourier measurements, those that are based on the Radon transform, and
those that are represented by binary measurements. For Fourier measurements there exists a large history of
research, however for Radon and binary measurements, the theoretical results are scarce. In this paper we
consider binary measurements and provide the first non-uniform recovery guarantees for infinite-dimensional
compressed sensing.

The setup of infinite-dimensional compressed sensing is as follows. We consider an orthonormal basis
{ϕj}j∈N of a Hilbert spaceH and an element

f = ∑
j∈N

xjϕj ∈H, xj ∈ C,
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to be recovered from linear measurements. That is, we have another orthonormal basis {ωi}i∈N ofH and we
can access the linear measurements given by li(f) = ⟨f,ωi⟩. Although the Hilbert space can be arbitrary,
we will in applications mostly consider function spaces. Hence, we will often refer to the object f as well as
the basis elements as functions. We call the functions ωi, i ∈ N sampling functions and the space spanned by
them S = span{ωi ∶ i ∈ N} sampling space. Accordingly, ϕj , j ∈ N are called reconstruction functions and
R = span{ϕj ∶ j ∈ N} reconstruction space. Generalized sampling [2–4] and the PBDW-method [44] use the
change of basis matrix U = {ui,j}i,j∈N ∈ B(`2(N)) with ui,j = ⟨ϕi, ωj⟩ to find a solution to the problem of
reconstructing coefficients in the reconstruction space from measurements in the sampling space. This is also
the case in infinite-dimensional compressed sensing. In particular, we consider the following reconstruction
problem. For a fixed signal f = ∑j xjϕj and the measurements g = PΩUf + z, where Ω ⊂ {0,1, . . . ,Nr}

is the subsampling set, PΩ the orthogonal projection onto the elements indexed by Ω and ∣∣z∣∣2 ≤ δ some
additional noise. The reconstruction problem is to find a minimiser of

(1.1) min
ξ∈`2(N)

∥ξ∥1 subject to ∥PΩUξ − g∥2 ≤ δ.

2. PRELIMINARIES

2.1. Setting and Definitions. In this section we recall the settings from [9] that are needed to establish the
main results. First, note that we will use a ≲ b to describe that a is smaller b modulo a constant, i.e. there
exists some C > 0 such that a ≤ Cb. Moreover, for a set Ω ⊂ N the orthogonal projection corresponding to
the elements of the canonical bases of `2(N) with the indices of Ω is denoted by PΩ. Similar, for N ∈ N
the orthogonal projection onto the first N elements of the canonical basis of `2(N) is represented by PN .
Finally, P ba stands for the orthogonal projection onto the basis vectors related to the indices {a + 1, . . . , b}.

Note that (1.1) is an infinite-dimensional optimisation problem, however, in practice (1.1) is replaced by

min
ξ∈`2(N)

∥ξ∥1 subject to ∥PΩUPNξ − g∥2 ≤ δ.

As N →∞ one recovers minimisers of (1.1) (see [4] for details).
X-lets such as wavelets [45], Shearlets [22, 23] and Curvelets [15–17] yield a specific sparsity structure

according to their level structure. To describe this phenomena the notation of (s,M)-sparsity is introduced
instead of pure sparsity.

Definition 2.1 ( [9]). Let x ∈ `2(N). For r ∈ N let M = (M1, . . . ,Mr) ∈ N with 1 ≤ M1 < . . . < Mr and
s = (s1, . . . , sr) ∈ Nr, with sk ≤Mk −Mk−1, k = 1, . . . , r where M0 = 0. We say that x is (s,M)-sparse if,
for each k = 1, . . . , r,

∆k ∶= supp(x) ∩ {Mk−1 + 1, . . . ,Mk} ,

satisfies ∣∆k ∣ ≤ sk. We denote the set of (s,M)- sparse vectors by Σs,M.

The majority of natural signals is not perfectly sparse but instead has a small tail in the representation
system. Hence, in a large number of applications it is unlikely to ask for sparsity but compressibility.

Definition 2.2 ( [9]). Let f = ∑j∈N xjϕj , where x = (xj)j∈N ∈ `2(N). We say that f is (s,M)- compressible
with respect to {ϕj}j∈N if σs,M(f) is small, where

σs,M(f) = min
η∈Σs,M

∣∣x − η∣∣1.

In terms of this more detailed description of the signal instead of classical sparsity it is possible to adapt the
sampling scheme accordingly. Complete random sampling will be substituted by the setting of multilevel
random sampling. This allows us later to treat the different levels separately. Moreover, this represents
sampling schemes that are used in practice.
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Definition 2.3 ( [9]). Let r ∈ N,N = (N1, . . . ,Nr) ∈ Nr with 1 ≤ N1 < . . . < Nr, m = (m1, . . . ,mr) ∈ Nr,
with mk ≤ Nk −Nk−1, k = 1, . . . , r, and suppose that

Ωk ⊂ {Nk−1 + 1, . . . ,Nk} , ∣Ωk ∣ =mk, k = 1, . . . , r,

are chosen uniformly at random, where N0 = 0. We refer to the set

Ω = ΩN,m = Ω1 ∪ . . . ∪Ωr

as an (N,m)- multilevel sampling scheme.

Remark 2.4. To avoid pathological examples we assume as in [9] that we have for the total sparsity s =

s1 + . . . sr ≥ 3. This results in the fact that log(s) ≥ 1 and therefore also mk ≥ 1 for all k = 1, . . . , r.

3. MAIN RESULTS: NON-UNIFORM RECOVERY FOR THE WALSH-WAVELET CASE

In this paper we focus on the reconstruction from binary measurements. This arises naturally in examples
like those mentioned in the introduction and applications where the sampling is performed with an apparatus
that has an ”on-off”-behaviour. We focus on the setting of recovering data in L2([0,1]), however the theory
builds on general results for Hilbert spaces as presented in §2. Linear measurements are typically represented
by inner products between sampling functions and the data of interest. Binary measurements can be repre-
sented with functions that take values in {0,1}, or, after a well known and convenient trick of subtracting
constant one measurements, with functions that take values in {−1,1}. For practical reasons it is sensible to
consider functions that provide fast transforms. Additionally, the function system should correspond well to
the reconstruction space. For the reconstruction with wavelets, Walsh functions have proven to be a sensible
choice, and are discussed in more detail in §3.2.1. Sampling from binary measurements has been analysed
for the linear case in [12, 33, 53] and in the non-linear case in [1, 46]. We extend this results to the non-
uniform recovery guarantees in the non-linear case. By filling this gap we gain broad knowledge about linear
and non-linear reconstruction for two of the three main measurement systems: Fourier and binary.

Let

(3.1) U = {ui,j}i,j∈N ∈ B(`2(N)), ui,j = ⟨ϕi, ωj⟩,

where {ϕj}j∈N denotes the Walsh functions on [0,1] as described in §3.2.1, and {ωi}i∈N demotes the Daube-
cies boundary wavelets on [0,1] described in §3.2.2. We are now able to state the recovery guarantees for
the Walsh-wavelet case.

Theorem 3.1 (Main theorem). Given the notation above, let N = (N0, . . . ,Nr) define the sampling levels
as in (3.7) and M = (M0, . . . ,Mr) represent the levels of the reconstruction space as in (3.6). Consider U
as in (3.1) , ε > 0 and let Ω = ΩN,m be a multilevel sampling scheme such that the following holds:

(1) Let N = Nr, K = maxk=1,...,r {
Nk−Nk−1

mk
}, M =Mr, s = s1 + . . . + sr such that

(3.2) N ≳M2
⋅ log2(4MK

√
s).

(2) For each k = 1, . . . , r,

mk ≳ log(ε−1
) log (K3s3/2N) ⋅

Nk −Nk−1

Nk−1
⋅ (

r

∑
l=1

2−∣k−l∣/2sl)(3.3)

Then with probability exceeding 1 − sε, any minimizer ξ ∈ `1(N) of (1.1) satisfies

∥ξ − x∥2 ≤ c ⋅ (δ
√
K(1 +L

√
s) + σs,M(f)) ,

for some constant c, where L = c ⋅ (1 +
√

log2(6ε−1)
log2(4KM

√
s)). If mk = Nk −Nk−1 for 1 ≤ k ≤ r then this holds with

probability 1.
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This results allows one to exploit the asymptotic sparsity structure of most natural images under the
wavelet transform. It was observed in [9] that the ratio of non-zero coefficients per level decreases very fast
with increasing level and at the same time the level size increases. Hence, most images are not that sparse
in the first levels and sampling patterns should adapt to that. However, they are very sparse in the higher
levels. Therefore, we get that the number of measurements depends mainly on the sparsity in this level and
the influence of the sparsity in the other levels decays exponentially.

Remark 3.2. For awareness of potential extensions of this work to higher dimensions or other reconstruction
and sampling spaces we kept the factor (Nk −Nk−1)/Nk−1 in (3.3). However, for the Walsh-wavelet case in
one dimension this factor reduces to 1, when the values from Equation (3.7) are used. Hence, the Equation
(3.3) can be further simplified to

mk ≳ log(ε−1
) log (K3s3/2N) ⋅ (

r

∑
l=1

2−∣k−l∣/2sl) ,

however, in general one needs the factor (Nk −Nk−1)/Nk−1.

Remark 3.3. We would like to highlight the differences to the Fourier-wavelet case, i.e. to Theorem 6.2.
in [9]. The most striking difference is the squared factor in (3.2). In the Fourier-wavelet case this is dependent
on the smoothness of the wavelet and shown to be N ≳ M1+1/(2α−1) ⋅ (log2(4MK

√
s))1/(2α−1), where α

denotes the decay rate under the Fourier transform, i.e. the smoothness of the wavelet. For very smooth
wavelets this can be improved to

N ≳M ⋅ (log2(4MK
√
s))1/(4α−2).

Hence, for very smooth wavelets we get the optimal linear relation, beside log terms. However, for non-
smooth wavelets like the Haar wavelet, we get a squared relation instead of linear. The reason why we do
not observe a similar dependence on the smoothness in terms of the sampling relation is that smoothness of
a wavelet does not relate to a faster decay under the Walsh transform. This is also related to the fact that for
Fourier measurements (3.3) become

mk ≳ log(ε−1
) ⋅ log(Ñ) ⋅

Nk −Nk−1

Nk−1
⋅
⎛

⎝
ŝk +

k−2

∑
l=1

sl ⋅ 2
−(α−1/2)Ak,l +

r

∑
l=k+2

sl ⋅ 2
−vBk,l

⎞

⎠
,(3.4)

where Ak,l and Bk,l are positive numbers, Ñ = (K
√
s)1+1/vN , where v denotes the number of vanishing

moments, and ŝk = max{sk−1, sk, sk+1}. In particular, smoothness and vanishing moments of the wavelet
does have an impact in the Fourier case, but not in the Walsh case. This is also confirmed in Figure 1, where
we have plotted the absolute values of sections of U , where U is the infinite matrix from (3.1). As can be
seen in Figure 1, the matrix U gets more block diagonal in the Fourier case with more vanishing moments
confirming the dependence of α and v in (3.4). Note that for a completely block diagonal matrix U the mk

in (3.4) will only depend on sk and not any of the sl when l ≠ k. In contrast this effect is not visible in the
Walsh situation suggesting that the estimate in (3.3) captures the correct behaviour by not depending on α
and v. The reason why is that a function needs to be smooth in the dyadic sense to have a faster decay rate
under the Walsh transform. However, this is not related to classical smoothness. Finally, numerical examples
in §5 suggest that the squared relation in (3.2) is not sharp and is also possible to reconstruct images with a
reduced relation between the maximal sample and the maximal reconstructed coefficient.

3.1. Connection to related work. Reconstruction methods are mainly divided in two major classes of lin-
ear and non-linear methods. For the linear case generalized sampling [2] and the PBDW-method [44] are
prominent examples. Preceding to the first one consistent sampling was investigated by Aldroubi, Eldar,
Unser and others [11, 25–28, 55]. Then generalized sampling has been studied by Adcock, Hansen, Hrycak,
Gröchenig, Kutyniok, Ma, Poon, Shadrin in [2, 5, 6, 8, 32, 34, 41]. The PBDW-method evolved from the
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(A) Haar wavelets (Walsh) (B) 2 vanish. mom. (Walsh) (C) 8 vanish. mom. (Walsh)

(D) Haar wavelets (Fourier) (E) 2 vanish. mom. (Fourier) (F) 8 vanish. mom. (Fourier)

FIGURE 1. Absolute values of PNUPN with N = 256, where U is the infinite matrix
from (3.1), with Daubechies wavelets with different numbers of vanishing moments, and
Walsh (upper row) and Fourier measurements (lower row). In the Fourier case, U becomes
more block diagonal as smoothness and the number of vanishing moments increase. This
is not the case in the Walsh setting, suggesting that the non-dependence of smoothness and
vanishing moments in the estimate (3.3) is correct.

work of Maday, Patera, Penn and Yano in [43] first under the name generalized empirical interpolation
method. This was then further analysed and extended to the PBDW-method by Binev, Cohen, Dahmen, De-
Vore, Petrova, and Wojtaszczyk [13, 14, 24, 42, 44]. The stability and accuracy of both methods is secured
by the stable sampling rate (SSR) which controls the number of samples needed for a stable and accurate
reconstruction of a certain number of coefficients in the reconstruction space. It was shown that the SSR is
linear for the Fourier-wavelet [7], Fourier-shearlet [41] and Walsh-wavelet case [33]. However, this is not
always the case as for the Fourier-polynomial situation [34]. In the non-linear setting the most prominent
reconstruction technique is infinite-dimensional compressed sensing [18] as analysed in the Fourier case by
Adcock, Hansen, Kutyniok, Lim, Poon and Roman [4, 9, 37, 48, 49]. There exists wide spread knowledge in
this area. For the Fourier wavelet case we know uniform recovery guarantees [39] and non-uniform recovery
guarantees [9, 10]. For Walsh measurements we have uniform recovery guarantees from Adcock, Antun
and Hansen [1] and an analysis for variable and multilevel density sampling strategies for the Walsh-Haar
case and finite-dimensional signals by Moshtaghpour, Dias and Jacques in [46]. In this paper we present the
non-uniform results for the Walsh-wavelet case as has been studied for the Fourier case in [9, 10].

3.2. Sampling and Reconstruction space.

3.2.1. Sampling Space. We start with the sampling space. To model binary measurements Walsh functions
have proven to be a good choice. They behave similar to Fourier measurements with the difference that they
work in the dyadic rather than the decimal analysis. They also have an increasing number of zero crossing.
This leads to the fact that the change of basis matrix gets a block diagonal structure, as can be seen in Figure
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1. One can exploit the asymptotic sparsity and incoherence. However, the fact that they are defined in the
dyadic analysis leads to some difficulties and specialities in the proof.

Let us now define the Walsh functions, which form the kernel of the Hadamard matrix. Then we proceed
with their properties and the definition of the Walsh transform.

Definition 3.4 (Walsh function). Let n = ∑i∈Z ni2
i−1 with ni ∈ {0,1} be the dyadic expansion of n ∈ R+.

Analogously, let x = ∑i∈Z xi2
i−1 with xi ∈ {0,1}. The generalized Walsh functions in L2([0,1]) are given

by

Wal(n,x) = (−1)∑i∈Z(ni+ni+1)x−i−1 .

This definition can also be extended to negative inputs by Wal(−n,x) = Wal(n,−x) = −Wal(n,x).
Walsh functions are one-periodic in the second input if the first one is an integer. Moreover, the definition is
extended to arbitrary inputs n ∈ R instead of the more classical definition for n ∈ N. We would like to make
the reader aware of different orderings of the Walsh functions. The one presented here is the Walsh-Kaczmarz
ordering. It is ordered in terms of increasing number of zero crossings. This has the advantage that it relates
nicely with the scaling of wavelets. Two other possible orderings are Walsh-Paley and Walsh-Kronecker.
Both have the drawback that the number of zero crossings is not increasing. Therefore, we are not able to get
the block diagonal structure in the change of basis matrix. The Walsh Kronecker ordering is also not often
used in practice because one has to predefine the largest input of n and dependent on this value the ordering
is changing, i.e. there is a third input nmax which also leads to changes.

For the sampling pattern we divide the sequency parameter n into blocks of size 2j with j ∈ N. This
results in an insightful relationship between the wavelets and the Walsh functions. Additionally, it is directly
related to the block structure observed in numerical experiments.

After the small excursion on orderings we now define the sampling space in one dimension by

S = span{Wal(n, ⋅), n ∈ N} .

In general it is not possible to acquire or save an infinite number of samples. Therefore, we restrict ourselves
to the sampling space according to ΩN,m, i.e.

SΩN,m
= span{Wal(n, ⋅), n ∈ ΩN,m} .

The Walsh functions obey some interesting properties: the scaling property, i.e. Wal(2jn,x) = Wal(n,2jx)

for all j ∈ N and n,x ∈ R and the multiplicative identity, i.e. Wal(n,x)Wal(n, y) = Wal(n,x ⊕ y), where
⊕ is the dyadic addition. With the Walsh functions we are able to define the continuous Walsh transform
almost everywhere:

f
⋀W

(n) = ⟨f(⋅),Wal(n, ⋅)⟩ = ∫
[0,1]

f(x)Wal(n,x)dx, n ∈ R.

The properties from the Walsh functions are easily transferred to the Walsh transform. We state now some
more statements about the Walsh functions and the Walsh transform, which are necessary for the main proof.

Lemma 3.5 ( [33]). Let t ∈ N and x ∈ [0,1), then the following holds:

W {f(x + t)} (s) =W {f(x)} (s)Wal(t, s).

Remark that this only holds because x and t do not have non-zero elements in their dyadic representation
at the same spot and therefore the dyadic addition equals the decimal addition. Next, we consider Walsh
polynomials and see how we can relate the sum of squares of the polynomial to the sum of squares of its
coefficients.
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Definition 3.6 ( [33]). Let A,B ∈ Z such that A ≤ B and αj ∈ R. Then for z ∈ R+ we define the Walsh
polynomial of order n = ∣B∣ by Φ(z) = ∑

B
j=A αj Wal(j, z). The set of all Walsh polynomials up to degree n

is given by

WPn =

⎧⎪⎪
⎨
⎪⎪⎩

B

∑
j=A

αj Wal(j, z), αj ∈ R,A,B ∈ Z, ∣B∣ ≤ n

⎫⎪⎪
⎬
⎪⎪⎭

.

Lemma 3.7 ( [33]). LetA,B ∈ Z such thatA ≤ B and consider the Walsh polynomial Φ(z) = ∑
B
j=A αj Wal(j, z)

for z ∈ R+. If L = 2n, n ∈ N such that 2L ≥ B −A + 1, then

2L−1

∑
j=0

1

2L
∣Φ(

j

2L
)∣

2

=
B

∑
j=A

∣αj ∣
2.

In the proof we will combine the shifts in the wavelet in a Walsh polynomial. With this lemma at hand
this is then easily bounded.

3.2.2. Reconstruction Space. Next, we define the reconstruction space. As we are mainly interested in the
reconstruction of images and audio signals, we use Daubechies wavelets. They provide good smoothness
and support properties. Moreover, they obey the Multi-resolution analysis (MRA). The wavelet space is
described by the wavelet ψ at different levels and shifts ψj,m(x) = 2j/2ψ(2jx −m) for j,m ∈ N, i.e. we
have the wavelet space at level j

Wj ∶= span{ψj,m,m ∈ N} .

They build a representation system for L2(R), i.e. ⋃j∈NWj = L2(R). For the MRA we define also the
sampling function φ and the according sampling space

Vj = span{φj,m,m ∈ N} ,

where φj,m(x) = 2j/2φ(2jx−m). We then have that Vj = Vj−1⊕Wj−1 andL2(R) = closure{VJ ⊕⋃j≥JWj}.
The Daubechies scaling function and wavelet have the same smoothness properties. This allows us to deal
with them interchangeably, as we only need the decay rate under the Walsh transform for the analysis.

However, the classical definition of Daubechies wavelets has a large drawback for our setting. Normally,
they are defined on the whole line R. Due to the fact that Walsh functions are defined on [0,1] it is necessary
to restrict the wavelets also to [0,1]. Otherwise there will be elements in the reconstruction space which
are not in the sampling space and therefore the solution could not be unique. Hence, we are using boundary
corrected wavelets (§4 [21]). In [33] this problem of the relation between the reconstruction and sampling
space is discussed in more length and we refer the interested reader.

For the definition of boundary wavelets we have to correct those that intersect with the boundary. We start
with the definition of the scaling space and continue with the wavelet space. Let φ be the scaling function of
order p with support in [−p + 1, p]. First consider the lowest level J0 such that the scaling functions do only
intersect with one boundary 0 or 1, i.e. 2J0 ≥ 2p − 1. Then we can keep the interior scaling functions. The
exterior ones are changed according to [21] and are denoted by

φbJ0,m(x) =

⎧⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎩

φJ0,m(x) m = p, . . . ,2j − p − 1

φleft
J0,m

(x) m = 0, . . . , p − 1

φright
J0,m

(x) m = 2j − p, . . .2j − 1.

The left and right functions still have the same smoothness properties and staggered support, such that the
new system has the same properties as before. Additionally, it was proved in [21] that Vj can be spanned by
the scaling function and it translates and the reflected version φ#(x) = φ(−x + 1), i.e.

Vj = span{φbj,m,m = 0, . . . ,2j − p − 1, φ#
j,m,m = 2j − p, . . . ,2j − 1} .
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The new system still obeys the MRA hence the boundary wavelets can be deduced from the boundary cor-
rected scaling functions. Fortunately, we only need the smoothness properties of the wavelet. The boundary
wavelet will be denoted by ψb and ψbj,m(x) = 2j/2ψb(2jx−m). Because the smoothness properties are also
kept after the boundary correction, we do not get into the details about the construction of the wavelet. The
interested reader should seek out for [21] for a detailed analysis.

With this information at hand we can now have a look at the reconstruction space. To analyse L2([0,1])

we represent the low frequency part by the scaling space at J0 and the higher frequency with the wavelet
spaces with j ≥ J0. Hence, the reconstruction space is given by

R = {φbJ0,m,m = 0, . . . ,2J0 − p − 1, φ#
J0,m

,m = 2J0 − p, . . . ,2J0 − 1,(3.5)

ψbj,m, j ≥ J0,m = 0, . . . ,2j − 1} .

In the finite-dimensional setting we only consider wavelets up to a certain scale R = log(N) we denote the
space of the first N = 2R elements by

RN = {φJ0,m,m = 0, . . . ,2J0 − p − 1, φ#
J0,m

,m = 2J0 − p, . . . ,2J0 − 1,

ψbj,m, j = J0, . . .R − 1,m = 0, . . . ,2j − 1} .

Remark 3.8. We consider here only the case of Daubechies wavelets of order p ≥ 3. The theory also holds
for the case for order p = 1,2. Nevertheless, we get unpleasant exponents α depending on the wavelet and
different cases to consider. For the Haar wavelet, we can get even better estimates due to the perfect block
structure of the change of basis matrix in that case. A detailed analysis of the relation between Haar wavelets
and Walsh functions can be found in [53] and we discuss the recovery guarantees for this special case in
§4.4.

For the future analysis we want to get the shift in the wavelets transferred to the Walsh function. For this
sake we use Lemma 3.5. However, in the assumptions we have that t ∈ N and x ∈ [0,1]. Due to the larger
support of the wavelets this does not hold true, i.e.

2−R(n+p)

∫

2−R(n−p+1)

2R/2φ(2Rx − n)Wal(k, x)dx = 2−R/2
p

∫
−p+1

φ(x)Wal(k,2−R(x + n))dx

≠ 2−R/2
p

∫
−p+1

φ(x)Wal(k,2−R(x⊕ n))dx.

Therefore, we have to separate the wavelets into parts which have support in [0,1]. Remark that this is not
a contradiction to the construction of the boundary wavelets. They are indeed supported in [0,1]. However,
only from the beginning of the scaling J0 and not the mother scaling function. Therefore, we represent the
mother scaling function as follows

φ(x) =
p

∑
i=−p+2

φi(x − i + 1) with φi(x) = φ(x + i − 1)X[0,1](x)

and

φR,n = 2R/2
p

∑
i=−p+2

φi(2
Rx − i + 1 − n).

This can also be done accordingly for the reflected function φ#. More detailed information about this
problem can be found in [33].



9

(A) Cancelation by
the wavelet

(B) Addition due to
the same frequency

(C) Cancelation
due to the Walsh
function

FIGURE 2. Intuition for block diagonal structure of the change of basis matrix

3.2.3. Ordering. We are now discussing the ordering of the sampling and reconstruction space. We order
the reconstruction space according to the levels, as in (3.5). With this we get the multilevel subsampling
scheme with the level structure. For this sake, we bring the scaling function at level J0 and the wavelet at
level J0 together into one block of size 2J0+1. The next level constitutes of the wavelets of order J0 + 1 of
size 2J0+1 and so forth. Therefore, we define

(3.6) M = (M0,M1, . . . ,Mr) = (0,2J0+1,2J0+2, . . . ,2J0+r)

to represent the level structure of the reconstruction space. For the sampling space we use the same partition.
We only allow by the choice of q ≥ 0 oversampling. Let

(3.7) N = (N0,N1, . . . ,Nr−1,Nr) = (0,2J0+1,2J0+2, . . . ,2J0+r−1,2J0+r+q).

We then get for the reconstruction matrix U in (3.1) with ui,j = ⟨ϕi, ωj⟩ that ωj(x) = Wal(j, x) and for the
first block we have ϕi = φJ0,i for i = 0, . . . ,2J0 − p − 1 and ϕi = φ

#
J0,i

for i = 2J0 − p, . . . ,2J0 − 1. For the
next levels, i.e. for i ≥ 2J0 we get for l with 2l ≤ i < 2l+1 and m = i − 2l that ϕi = ψbl,m.

The proof of the main theorem relies mainly on the analysis of the change of basis matrix. Numerical
examples and rigour mathematics [53] show that it is perfectly block diagonal for the Walsh-Haar case.
And it is also close to block diagonality for other Daubechies wavelets, which can be seen in Figure 1.
An intuition about this phenomena is given in Figure 2. We plotted Haar wavelets at different scales with
Walsh functions at different sequencies. In 2a the scaling of the Haar wavelet is higher than the sequency of
the Walsh function. Therefore, the Walsh function does not change the wavelet on its support and hence it
integrates to zero. The next one 2b shows a wavelet and Walsh function at similar scale and sequency which
relates to parts of the change of basis function in the inner block. Here the two functions add up nicely to get
a non-zero output. Last, we have in 2c that the Walsh functions oscillate faster then the wavelet and hence
the Walsh function is not disturbed by the wavelet and can integrate to zero.

4. PROOF OF THE MAIN RESULT

4.1. Preliminaries. It is important to make sure that the uneven finite sections of the change of basis matrix
are close to an isometry. In the finite-dimensional setting this is assured by the stable sampling rate. Detailed
analysis about the stable sampling rate for Walsh functions can be found in [33]. The analysis for Fourier
measurements is conducted in [7, 30, 41]. For the infinite case the balancing property controls the relation
between the number of samples and reconstructed coefficients, such that the matrix PNUPM is close to an
isometry.
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Definition 4.1 ( [4]). Let U ∈ B(`2(N)) be an isometry. Then N ∈ N and K ≥ 1 satisfy the strong balancing
property with respect to U,M ∈ N and s ∈ N if

∣∣PMU
∗PNUPM − PM ∣∣`∞→`∞ ≤

1

8
(log

1/2
2 (4

√
sKM))

−1
,

∣∣P ⊥MU
∗PNUPM ∣∣`∞→`∞ ≤

1

8
,

where ∣∣ ⋅ ∣∣`∞→`∞ is the norm on B(`∞(N)).

In this setting we use the notation as in [9]. Let

M̃ = min{i ∈ N ∶ max
k≥i

∣∣PNUek ∣∣2 ≤
1

32K
√
s
} .

In the rest of the analysis we are interested in the number of samples needed for stable and accurate
recovery. This value depends besides known values on the local coherence and the relative sparsity which
are defined next. We start with the (global) coherence.

Definition 4.2 ( [9]). Let U = (ui,j)
N
i,j=1 ∈ CN×N be an isometry. The coherence of U is

µ(U) = max
i,j=1,...,N

∣ui,j ∣
2

With this it is possible to define the local coherence for every level band.

Definition 4.3 ( [9]). Let U ∈ B(`2(N)) be an isometry. The (k, l)th local coherence of U with respect to
M,N is given by

(4.1) µN,M(k, l) =
√

µ(PNk−1
Nk

UPMl−1
Ml

) ⋅ µ(PNk−1
Nk

U), k, l = 1, . . . , r.

We also define

(4.2) µN,M(k,∞) =

√

µ(PNk−1
Nk

UP ⊥Mr−1) ⋅ µ(P
Nk−1
Nk

U).

Definition 4.4 ( [9]). Let U ∈ B(`2(N)) be an isometry and s = (s1, . . . , sr) ∈ Nr and 1 ≤ k ≤ r the kth

relative sparsity is given by

Sk = Sk(N,M, s) = max
η∈Θ

∣∣PNk−1
Nk

Uη∣∣2,

with

Θ = {η ∶ ∣∣η∣∣∞ ≤ 1, ∣ supp(PMl−1
Ml

η)∣ = sl, l = 1, . . . r} .

After clarifying the notation and settings we are now able to state the main theorem from [9].

Theorem 4.5 ( [9]). Let U ∈ B(`2(N)) be an isometry and x ∈ `1(N). Suppose that Ω = ΩN,m is a
multilevel sampling scheme, where N = (N1, . . . ,Nr) ∈ Nr and m = (m1, . . . ,mr) ∈ Nr. Let (s,M), where
M = (M1, . . . ,Mr) ∈ Nr, M1 < . . . < Mr and s = (s1, . . . , sr) ∈ Nr, be any pair such that the following
holds:

(1) The parameters

N = Nr, K = max
k=1,...,r

{
Nk −Nk−1

mk
} ,

satisfy the strong balancing property with respect to U,M ∶=Mr and s ∶= s1 + . . . + sr;
(2) For ε ∈ (0, e−1] and 1 ≤ k ≤ r,

(4.3) 1 ≳
Nk −Nk−1

mk
⋅ log(ε−1

)(
r

∑
l=1

µN,M(k, l)sl) ⋅ log(KM̃
√
s),
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(with µN,M(k, r) replaced by µN,M(k,∞)) and mk ≳ m̂k log(ε−1) log(KM̃
√
s), where m̂k is

such that

(4.4) 1 ≳
r

∑
k=1

(
Nk −Nk−1

m̂k
− 1) ⋅ µN,M(k, l)s̃k,

for all l = 1, . . . , r and all s̃1, . . . , s̃r ∈ (0,∞) satisfying

s̃1 + . . . + s̃r = s1 + . . . + sr, s̃k ≤ Sk(N,N, s).

Suppose that ξ ∈ `1(N) is a minimizer of (1.1). Then, with probability exceeding 1 − sε ,

∣∣ξ − x∣∣2 ≤ c ⋅ (δ ⋅
√
K ⋅ (1 +L ⋅

√
s) + σs,M(f))

for some constant c and L = c ⋅ (1 +
√

log2(6ε−1)
log2(4KM

√
s)). If mk = Nk −Nk−1 for 1 ≤ k ≤ r then this holds with

probability 1.

It is a mathematical justification to use structured sampling schemes in contrast to the first compressed
sensing results which promoted the use of random sampling masks.

4.2. Key estimates. In this chapter we discuss the important estimates that are needed for the proof of
Theorem 3.1. They are also interesting for themselves and allow a deeper understanding of the relation
between Walsh functions and wavelets.

4.2.1. Local coherence estimate. We start with restating the results about the decay rate of wavelets under
the Walsh transform.

Lemma 4.6 ( [12]). Let f be a Hölder continuous function of order α ≥ 1. Then the constant Cf =

supt∈[0,1] ∣f
′(t)∣ exists and we have that

∣f
⋀W

(n)∣ ≤
Cf

n
.

This leads directly to the following estimate of the decay rate of wavelets under the Walsh transform.

Corollary 4.7. Let φ be the mother scaling function of order p ≥ 3 and φ# be its reflected version. Moreover,
let ψ be the corresponding mother wavelet. Then we have that

∣φi
⋀W

(n)∣ ≤
Cφ

n
, ∣φ#

i

⋀W

(n)∣ ≤
Cφ#

n
and ∣ψ

⋀W

(n)∣ ≤
Cψ

n
.

We denote by Cφ,ψ the maximum of {Cφ,Cφ# ,Cψ,}.

Proof. The corollary follows directly from the Hölder continuity of the wavelet. �

This decay rate is important in a lot of the following proofs. Next, we use it to estimate µ(PNk−1
Nk

U).

Lemma 4.8. LetU be the change of basis matrix for the boundary Daubechies wavelets and Walsh functions.
Moreover, let M and N be defined by (3.6) and (3.7). Then we have that

µ(PNk−1
Nk

U) ≤
C2
φ,ψ

2Nk−1
.

Proof. The proof follows the lines in [9] and uses the decay estimates in Corollary 4.7. First, we have that

µ(PNk−1
Nk

U) ≤ µ(P ⊥Nk−1U).

Then we get using the arguments in Theorem 7.15 (ii) in [9] and the tensor product structure

µ(P ⊥NU) ≤ max
k≥N

max
ϕ∈R

∣⟨ϕ,Wal(k, ⋅)⟩∣2 ≤ max
k≥N

max
R∈N0

C2
φ,ψ

2R(1 + k/2R)2

≤ max
R∈N0

C2
φ,ψ

2R(1 +N/2R)2
≤
C2
φ,ψ

2N
.

This gives together with the first estimate the desired result. �
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Now, we recall the result from [12] about the local coherence. Note that the local coherence has a different
definition in [9] and [12].

Theorem 4.9 ( [12]). Let U be the change of basis matrix for Walsh functions and boundary wavelets of
order p ≥ 3 and minimal wavelet decomposition J0. Moreover, let M and N as in (3.6) and (3.7). Then let

µ̃N,M(k, l) ∶= max{∣uij ∣
2
∶ i = Nk−1 + 1, . . .Nk, j =Ml−1 + 1, . . . ,Ml}

= µ(PNk−1
Nk

UPMl−1
Ml

).

We have that

µ̃N,M(k, l) ≤

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

Cµ̃2−J0−2k+l+1 k ≥ l

Cµ̃2−J0−l+1 k ≤ l

for the constant Cµ̃ = 2p Cφ,ψ > 0 independent of k, l.

With this two theorems at hand we can now give an estimate for the local coherence.

Corollary 4.10. Let µN,M(k, l) be as in (4.1). Then,

µN,M(k, l) ≤ C1/2
µ 2−(J0+k−1)

⋅Cφ,ψ2−1/22−∣k−l∣/2.

Proof. First, we have that

µ(PNk−1
Nk

UPMl−1
Ml

) = µ̃N,M(k, l).

Let l ≤ k then

µ(PNk−1
Nk

UPMl−1
Ml

) = µ̃N,M(k, l) ≤ Cµ̃2(−J0−2k−l+1).

and similar for l > k

µ(PNk−1
Nk

UPMl−1
Ml

) = µ̃N,M(k, l) ≤ Cµ̃2−(J0+l−1).

Combining this with the result in Lemma 4.8 we get again first for l ≤ k

µN,M(k, l) ≤ (Cµ̃2(−J0−2k−l+1))
1/2

(C2
φ,ψ2−12−(J0+k−1))

1/2
= C

1/2
µ̃ 2−(J0+k−1)Cφ,ψ2−1/22−∣k−l∣/2.

and

µN,M(k, l) ≤ (Cµ̃2(−J0−l+1))
1/2

(C2
φ,ψ2−12−(J0+k−1))

1/2
= C

1/2
µ̃ 2−(J0+k−1)Cφ,ψ2−1/22−∣k−l∣/2.

�

Because of the infinite-dimensional setting we also have to estimate µN,M(k,∞) from (4.2). This is done
in the following Corollary.

Corollary 4.11. Let µN,M(k,∞) as in (4.2). Then,

µN,M(k,∞) ≤ C
1/2
µ̃ ⋅ 2−(J0+k−1)Cφ,ψ2−1/22−(r−k)/2.

Proof. We have that

µN,M(k,∞) =

√

µ(PNk−1
Nk

UP ⊥Mr−1) ⋅ µ(P
Nk−1
Nk

U).

We know from Lemma 4.8 that µ(PNk−1
Nk

U) ≤ C/Nk−1 moreover, we have with Theorem 4.9 that

µ(PNk−1
Nk

UP ⊥Mr−1) = max
j≥Mr−1

∣ui,j ∣
2

≤ µ̃N,M(k, r) ≤ Cµ̃ ⋅ 2
−(J0+r−1).
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Hence, we get

µN,M(k,∞) =

√

µ(PNk−1
Nk

UP ⊥Mr−1) ⋅ µ(P
Nk−1
Nk

U)

=

√

µ(PNk−1
Nk

UP ⊥Mr−1) ⋅

√

µ(PNk−1
Nk

U)

≤ C
1/2
µ̃ ⋅ 2−(J0+r−1)/2Cφ,ψ2−1/22−(J0+k−1)/2

= C
1/2
µ̃ Cφ,ψ2−1/2

⋅ 2−(J0+k−1)2−(r−k)/2.

�

Note that the same local coherence estimate was found for the Fourier-Haar case in [10].

4.2.2. Relative sparsity estimate. Now we want to estimate the relative sparsity of the change of basis matrix
U in the Walsh-wavelet case. To do so remember

√
Sk = max

η∈Θ
∣∣PNk−1

Nk
Uη∣∣2 ≤

r

∑
l=1

∣∣PNk−1
Nk

UPMl−1
Ml

∣∣2
√
sl.

Hence, we need to bound ∣∣PNk−1
Nk

UPMl−1
Ml

∣∣2. For this sake we first bound ∣∣P ⊥NUPM ∣∣2.

Lemma 4.12. Let U be the change of basis matrix for the Walsh measurements and boundary wavelets of
order p ≥ 3. Let the number of samples N be larger then the number of reconstructed coefficients M . Then
we have that

∣∣P ⊥NUPM ∣∣
2
2 ≤ Crs ⋅ (

M

N
) ,

where Crs = (8p − 8)2 max{C2
φ,C

2
φ#} is dependent on the wavelet.

Proof. We start with bounding ∣∣P ⊥NUPM ∣∣2. We rewrite it as follows

∣∣P ⊥NUPM ∣∣2 = sup
ϕ∈RM

∣∣P ⊥SN
ϕ∣∣2.

It is clear that this value gets smaller if N grows in relation to M . However, from a practical perspective it
is desirable to take as few samples N with in contrast a large number M . For the further analysis we define
the fraction of these two by S = M

N
.

We include for completeness the intermediate steps, which are similar to the proof of the main theorem
in [33]. However, we believe that this allows us to give a deeper understanding. Especially, the constant Crs
is interesting to understand and see what impacts its size.

We first use the MRA property to rewrite ϕ ∈RM as the sum of the elements in the related scaling space.
Take in mind at this point that we only consider values of M = 2R. Hence, we only jump from level to level.
We get for ϕ ∈RM with ∣∣ϕ∣∣2 = 1

ϕ =

2R−p−1

∑
l=0

αlφR,n +
2R−1

∑
l=2R−p

βlφ
#
R,n with

2R−p−1

∑
l=0

∣αn∣
2
+

2R−1

∑
l=2R−p

∣βn∣
2
= 1.

This reduces the problem of the sum of the inner products for the orthogonal projection from a lot of different
wavelets to shifted scaling function at the same level. We have

P ⊥SN
ϕ = ∑

k>N
⟨Wal(k, ⋅), ϕ⟩

= ∑
k>N

⟨Wal(k, ⋅),
2R−p−1

∑
l=0

αlφR,n +
2R−1

∑
l=2R−p

βlφ
#
R,n⟩

= ∑
k>N

2R−p−1

∑
l=0

αl⟨Wal(k, ⋅), φR,n⟩ + ∑
k>N

2R−1

∑
l=2R−p

βl⟨Wal(k, ⋅), φ#
R,n⟩.
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Hence, we start with controlling the inner product ⟨Wal(k, ⋅), φR,n⟩ and analogously ⟨Wal(k, ⋅), φ#
R,n⟩. Our

aim is to remove the scaling and the shift from the wavelet and get instead the product between the Walsh
transform of the original mother wavelet and a Walsh polynomial. For this we follow the ideas in [33].
Remember first, that the mother scaling function is divided into the sum of functions that are supported in

[0,1], i.e. φ(x) =
p

∑
i=−p+2

φi(x − i + 1) with φi(x) = φ(x + i − 1)X[0,1](x) and hence

⟨Wal(k, ⋅), φR,n⟩ =
p

∑
i=−p+2

⟨Wal(k, ⋅), φi,R,n⟩.

This allows us to only deal with ⟨Wal(k, ⋅), φi,R,n⟩. We get

⟨Wal(k, ⋅), φi,R,n⟩ = 2−R/2
2−R(n+i)

∫

2−R(n+i−1)

φi(2
Rx − n − i + 1)Wal(k, x)dx

= 2−R/2
1

∫
0

φi(x)Wal(k,2−R(x + n + i − 1))dx.

Next, we use Lemma 3.5 to get the shift out of the integral. We define pR ∶ Z → N to map z to the
the smallest integer with pR(z)2

R + z > 0. This allows us to use Lemma 3.5 because x ∈ [0,1] and
n + i − 1 + 2RpR(n + i − 1) ∈ N. We get

2−R/2
1

∫
0

φi(x)Wal(k,2−R(x + n + i − 1))dx

= 2−R/2 Wal(k,2−R(n + i − 1 + 2RpR(i − 1)))

1

∫
0

φi(x)Wal(k,2−Rx)dx

= 2−R/2 Wal(n + i − 1 + 2RpR(i − 1),
k

2R
)φi
⋀W

(
k

2R
).

With this we are able to represent the inner product of every shifted version of φi,R,n with the Walsh function
as product of the Walsh transform of φi and a Walsh function which contains the shift information. In the
following we want to rewrite the inner products such that we are left with a Walsh polynomial and the Walsh
transform of the mother scaling function. For this define

Φi(z) =
2R−p−1

∑
n=0

αnWal(n + i − 1 + 2RpR(i − 1), z) and

Φ#
i (z) =

2R−1

∑
n=2R−p

βnWal(n + i − 1 + 2RpR(i − 1), z).

We get

2R−p−1

∑
n=0

αn⟨φi,R,n,Wal(k, ⋅)⟩ = 2−R/2φi
⋀W

(
k

2R
)Φi(

k

2R
)

and

2R−1

∑
n=2R−p

βn⟨φ
#
i,R,n,Wal(k, x)⟩ = 2−R/2φ#

i

⋀W

(
k

2R
)Φ#

i (
k

2R
).
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After this evaluation we can go back to estimate the norm of ∣∣P ⊥NUPM ∣∣2. We have with the Cauchy-Schwarz
inequality

∣∣P ⊥NUPM ∣∣2 ≤

p

∑
i=−p+2

∣∣P ⊥SN
(

2R−p−1

∑
n=0

αnφi,R,n +
2R−1

∑
n=2R−p

βnφ
#
i,R,n)∣∣2

=

p

∑
i=−p+2

¿
Á
Á
ÁÀ∑

k>N
2−R ∣φi
⋀W

(
k

2R
)Φi(

k

2R
) + φ#

i

⋀W

(
k

2R
)Φ#

i (
k

2R
)∣

2

.

After multiplying out the brackets we are left with

(4.5) ∑
k>N

2−R ∣φi
⋀W

(
k

2R
)Φi(

k

2R
)∣

2

and the analogue for φ# as well as their product. Because φ and φ# share the same decay rate, it is sufficient
to only deal with (4.5) and deduce the rest from it. To estimate these values we use the one-periodicity of the
Walsh functions. For this sake let M = 2R. We always want to reconstruct a full level as we do not know in
which part of the level the information is located. Then we replace k =mM + j, where j = 0, . . . ,M − 1 and
m ≥ S = N/M . This leads to

∑
k≥N

2−R ∣φi
⋀W

(
k

2R
)Φi(

k

2R
)∣

2

≤
M−1

∑
j=0

1

M
∣Φi(

j

M
)∣

2

∑
m≥S

∣φi
⋀W

(
j

M
+m)∣

2

.

We estimate with Lemma 4.7

∑
m≥S

∣φi
⋀W

(
j

M
+m)∣

2

≤ ∑
m≥S

C2
φ

m2
≤
C2
φ

S
.

Here Cφ depends on the choice of the wavelet. In contrast to the Fourier case there is no known relationship
between the smoothness of the wavelet and the decay rate or the behaviour of Cφ, as discussed in Remark
3.3.

For the first sum we get from technical computations in [33] and Lemma 3.7 that

M−1

∑
j=0

1

M
∣Φi(

j

M
)∣

2

=

2R−p+i−1+2RpR(i−1)

∑
l=−p+1+i−1+2RpR(i−1)

∣αl−i+1−2RpR(i−1)∣
2
=

2R−p
∑

n=−p+1

∣αn∣
2
≤ 1.

The analogue holds true for the φ# part. Hence, we get together

∣∣P ⊥NUPM ∣∣2 ≤

p

∑
i=−p+2

⎛

⎝
∑
k≥M

2−R ∣φi
⋀W

(
k

2R
)Φi(

k

2R
)∣

2

+ ∑
k≥M

2−R ∣φ#
i

⋀W

(
k

2R
)Φ#

i (
k

2R
)∣

2

+2( ∑
k≥M

2−R ∣φi
⋀W

(
k

2R
)Φi(

k

2R
)∣

2

)

1/2
⎛

⎝
∑
k≥M

2−R ∣φ#
i

⋀W

(
k

2R
)Φ#

i (
k

2R
)∣

2
⎞

⎠

1/2
⎞
⎟
⎠

1/2

.

≤

p

∑
i=−p+2

(
C2
φ

S
+
Cφ#

2

S
+ 2

CφCφ#

S
)

1/2

≤
4

S1/2 (2p − 2)max{C2
φ,Cφ#

2
}

1/2
.

When we now replace S = N/M and set Crs = (8p − 8)2 max{C2
φ,Cφ#

2
} we get

∣∣P ⊥NUPM ∣∣
2
2 ≤ Crs

M

N
.

�

With this estimate at hand we can now proof the next lemma.
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Lemma 4.13. Let U be the change of basis matrix given by the Walsh measurements and boundary wavelets
of order p ≥ 3. Then we have that

∣∣PNk−1
Nk

UPMl−1
Ml

∣∣
2
2 ≤ Cmax ⋅ 2

−∣l−k∣+1,

where Cmax = max{Cµ̃,Crs}.

Proof. We use similar estimates as in Corollary 4.10. We know from Lemma 4.12 that ∣∣P ⊥NUPM ∣∣22 ≤

Crs ⋅ (
M
N

), whenever N ≥M . With this we get for k > l:

∣∣PNk−1
Nk

UPMl−1
Ml

∣∣
2
2 ≤ ∣∣P ⊥Nk−1UPMl

∣∣
2
2 ≤ Crs (

Ml

Nk−1
)

= Crs (2(J0+l) ⋅ 2−(J0+k−1)) = Crs ⋅ 2
(l−k)+1

= Crs ⋅ 2
−∣l−k∣+1.

For l ≥ k we get

max
i=Nk−1+1,...,Nk

max
j=Ml−1+1,...,Ml

∣ui,j ∣
2
≤ Cµ̃2−(J0+l−1).

Hence, we conclude

∣∣PNk−1
Nk

UPMl−1
Ml

∣∣
2
2 = sup

z∈C2(J0+l−1) ,∣∣z∣∣2=1

Nk

∑
i=Nk−1+1

Ml

∑
j=Ml−1+1

∣ui,jzj ∣
2

≤ sup
z∈C2(J0+l−1) ,∣∣z∣∣2=1

Cµ̃ ⋅ 2
−(J0+l−1)

Nk

∑
i=Nk−1+1

Ml

∑
j=Ml−1+1

∣zj ∣
2

≤ Cµ̃2(J0+k)−(J0+l−1)
= Cµ̃2(k−l)+1

= Cµ̃2−∣k−l∣+1.

�

With this Lemmas at hand we can now bound the relative sparsity Sk(N,M, s).

Corollary 4.14. For the setting as before we have

Sk(N,M, s) ≤ 2Cmax

r−1

∑
l=0

2−∣k−l∣/2sl.

Proof. With the estimates from before and the Cauchy-Schwarz inequality we get

Sk = (
r

∑
l=1

∣∣PNk−1
Nk

UPMl−1
Ml

∣∣2
√
sl)

2

= 2Cmax (
r

∑
l=1

2−∣k−l∣/2
√
sl)

2

≤ 2Cmax

r

∑
l=1

2−∣k−l∣/2
r

∑
l=1

2−∣k−l∣/2sl ≤ 2Cmax

r

∑
l=1

2−∣k−l∣/2sl.

�

4.2.3. Bounding M̃ . Next, for an estimate of

M̃ = min{i ∈ N ∶ max
m≥i

∣∣PNUem∣∣2 ≤
1

32K
√
s
}

we make the following calculation with m = 2(J0+n) =Mn ≥ N

∣∣PNUem∣∣2 = (
N

∑
i=1

∣ui,m∣
2
)

1/2

≤ (Cµ̃N ⋅ 2−(J0+n))
1/2

.

Hence, for 2(J0+n) ≥ Cµ̃ ⋅N ⋅ (32K
√
s)

2
we have

∣∣PNUem∣∣2 ≤
1

32K
√
s
.

Therefore,

(4.6) M̃ ≤ Cµ̃ ⋅ ⌈N322K2s⌉.
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4.2.4. Balancing Property. In this chapter we show that the first assumption of Theorem 4.5 is fulfilled.
For this sake, we use the results from the previous chapter, especially Lemma 4.12.

Corollary 4.15. Let S andR be the sampling and reconstruction space spanned by the Walsh functions and
separable boundary wavelets of order p ≥ 3 respectively. Moreover, let M = 2R with R ∈ N. Then, we get
for all θ ∈ (1,∞)

∣∣P ⊥NUPM ∣∣2 ≤ θ,

whenever

N ≥ Crs ⋅M ⋅ θ−2.

Proof. Rewriting N ≥ Crs ⋅M ⋅ θ−2 gives us

θ2
≥ Crs

M

N
.

And hence with Lemma 4.12 and θ > 1 we get

∣∣P ⊥NUPM ∣∣2 ≤ (Crs ⋅
M

N
)

1/2
≤ θ.

�

With this at hand we can now proof the relation between N,M such that the strong balancing property is
satisfied.

Lemma 4.16. For the setting as before N,K satisfy the strong balancing property with respect to U,M and
s whenever N ≳M2(log2(4MK

√
s)).

Proof. From Lemma 4.15 we have that ∣∣P ⊥NUPM ∣∣2 ≤ 1

8
√
M

(log
1/2
2 (4KM

√
s))

−1
whenever it holds that

N ≳M2 (log2(4KM
√
s)). Using additionally that U is an isometry we get

∣∣PMU
∗PNUPM − PM ∣∣∞ = ∣∣PMU

∗PNUPM − PMU
∗IUPM ∣∣∞

= ∣∣PMU
∗P ⊥NUPM ∣∣∞ ≤

√
M ∣∣P ⊥NUPM ∣∣2 ≤

1

8
(log

1/2
2 (4KM

√
s))

−1
.

For the second inequality we have that

∣∣P ⊥MU
∗PNUPM ∣∣∞ = ∣∣P ⊥MU

∗PNUPM + P ⊥MU
∗IUPM ∣∣∞

= ∣∣P ⊥MU
∗P ⊥NUPM ∣∣∞ ≤

√
M ∣∣P ⊥NUPM ∣∣2 ≤

1

8
(log

1/2
2 (4KM

√
s))

−1
≤

1

8
.

The last inequality follows from the fact that K,M,s are integers and therefore log2(4KM
√
s) ≥ 1. Hence,

the strong balancing property is fulfilled. �

4.3. Proof of the main theorem. In this chapter we bring the previous results together to proof Theorem
3.1.

Proof of Theorem 3.1. We show that the assumptions of Theorem 5.3. in [9] are fulfilled. Moreover, we
follow the lines of [10].

With Lemma 4.16 we have that N,K satisfy the strong balancing property with respect to U,M and s.
Hence, point (1) in Theorem 4.5 is fulfilled.
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The last two steps show that (4.3) and (4.4) are fulfilled and Theorem 4.5 can be applied. We have

Nk −Nk−1

mk
log(ε−1

)(
r

∑
l=1

µN,M(k, l)sl) log(KM̃
√
s)

≤
Nk −Nk−1

mk
log(ε−1

)(
r

∑
l=1

C1/2
µ 2−(J0+k−1)

⋅Cφ,ψ2−1/22−∣k−l∣/2sl) log(322Cµ̃NK
3s3/2

)

= C1/2
µ Cφ,ψ2−1/2 log(ε−1)

mk

Nk −Nk−1

Nk−1
(
r

∑
l=1

2−∣k−l∣/2sl) log(32Cµ̃NK
3s3/2

),

where we used the estimate of µN,M from Corollary 4.10 and 4.11, (3.3) and (4.6). Moreover,C1/2
µ Cφ,ψ2−1/2

is independent of k, l,M,N, s. Therefore,

Cd/2µ Cφ,ψ2−1/2 log(ε−1)

mk

Nk −Nk−1

Nk−1
(
r

∑
l=1

2−∣k−l∣/2sl) log(32Cµ̃NK
3s3/2

) ≲ 1

and Equation (4.3) is fulfilled. Now, we consider Equation (4.4)
r

∑
k=1

(
Nk −Nk−1

m̂k
− 1)µN,M(k, l)s̃k

≤
r

∑
k=1

(
Nk −Nk−1

m̂k
)C1/2

µ 2−(J0+k−1)
⋅Cφ,ψ2−1/22−∣k−l∣/2s̃k

= C
1/2
µ̃ Cφ,ψ2−1/2Nk −Nk−1

Nk−1

r

∑
k=1

s̃k
m̂k

2−∣l−k∣/2

≤ C
1/2
µ̃ Cφ,ψ21/2

r

∑
k=1

s̃k
m̂k

2−∣l−k∣/2

Due to the fact that the geometric series is bounded we have
r

∑
k=1

2−∣l−k∣/2 ≤ Cgeo, for all l = 1, . . . , r.

We are left with bounding s̃k/m̂k for all k = 1, . . . , r. Denote the constant from ≲ in Theorem 4.5 by C.
With the estimate in Corollary 4.14 we can then bound s̃k with (3.3) by

s̃k ≤ Sk(N,M, s) ≤ Cµ̃ ⋅ 2
r−1

∑
l=0

2−∣k−l∣/2sl(4.7)

≤ 2Cmk ⋅
Nk−1

Nk −Nk−1

(log(ε−1
) log(K2sN))

−1

≤ 2C
Nk−1

Nk −Nk−1
m̂k = 2Cm̂k.

All together yields
r

∑
k=1

(
Nk −Nk−1

m̂k
− 1)µN,M(k, l)s̃k ≤ 23/2C

1/2
µ̃ Cφ,ψCgeoC ≲ 1.

�

4.4. Recovery guarantees for the Walsh-Haar case. In this section we pay attention to the Walsh-Haar
case. This relationship is of high interest because of the very similar behaviour of Walsh functions and Haar
wavelets. As seen earlier this results in perfect block diagonality of the change of basis matrix, see Figure
1a. For a detailed analysis we refer the reader to [53]. Due to the structure, the off diagonal blocks to not
impact the coherence and sparsity structure at one level. Therefore, the number of samples per level only
depends on the incoherence in this given level and the relative sparsity within. With this the main theorem
simplifies for the Walsh-Haar case to the next Corollary.

Corollary 4.17. Let the notation be as before, but let the wavelet be the Haar wavelet. Moreover, let ε > 0

and Ω = ΩN,m be a multilevel sampling scheme such that:
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(1) The number of samples is larger or equal the number of reconstructed coefficients, i.e. N ≥M .
(2) Let K = maxk=1,...,r {

Nk−Nk−1
mk

}, M =Mr, N = Nr and s = s1 + . . . + sr and for each k = 1, . . . , r:

mk ≳ log(ε−1
) log(K

√
sN) ⋅ sk.

Then, with probability exceeding 1 − sε, any minimizer ξ ∈ `1(N) satisfies

∣∣ξ − x∣∣2 ≤ c ⋅ (δ
√
K(1 +L

√
s) + σs,M(f)) ,

for some constant c, where L = c ⋅ (1 +
√

log2(6ε−1)
log2(4KM

√
s)). If mk = Nk −Nk−1 for 1 ≤ k ≤ r then this holds with

probability 1.

Proof. Due to the block diagonality we have for N ≥M that

∣∣P ⊥NUPM ∣∣
2
2 = max

ϕ∈RM

∑
k>N

∣⟨Wal(k, ⋅), ϕ⟩∣2 = 0

and therefore the balancing property is satisfied for any K. Hence assumption (1) in 4.5 is fulfilled. Next,
for the same reason where we replace P ⊥N with Pm we have that M̃ = N and µN,M(k, l) = 0 for k ≠ l. This
allows us to get rid of the sum in the estimate in the main theorem, i.e.

Nk −Nk−1

mk
log(ε−1

)(
r

∑
l=1

µN,M(k, l)sl) log(KM̃
√
s)

≤
Nk −Nk−1

mk
log(ε−1

) (2−(J0+k−1)sk) log(K
√
sN)

=
Nk −Nk−1

Nk−1

log(ε−1)

mk
sk log(K

√
sN)

=
log(ε−1)

mk
sk log(K

√
sN) ≲ 1.

For the second equation (4.4) we get with Equation (4.7)
r

∑
k=1

(
Nk −Nk−1

m̂k
− 1)µN,M(k, l)s̃k

≤ (
Nl −Nl−1

m̂l
)2−(J0+l−1)s̃l

≤
Nl −Nl−1

Nl−1

s̃l
m̂l

≤ C ≲ 1.

�

5. NUMERICAL EXPERIMENTS

In this chapter we show some examples which illustrate the performance gain we get from the use of
compressed sensing in contrast to direct inversion. Additionally, we discuss the impact of the sampling
pattern and that the coherence structure needs to be taken into account. For this sake we use a modification
of the flip test introduced in [9].

First, we have a look again in figure 1 at the coherence structure of the change of basis matrix for different
types of Daubechies wavelets. One can directly spot the block structure of the matrices. This is especially
striking for the Haar-Walsh case, but also for other wavelets it is easy to see that the first block has the largest
values with nearly zeros outside the blocks and a decay along the diagonal. Together with the structured
sparsity of functions and images under the wavelet transform we can apply the main theorem to improve the
reconstruction quality. To demonstrate this, let

(5.1) f(x) = cos(2πx) + 0.2 cos(10πx).

Then, we can see the reconstruction in figure 4. Due to the discontinuous behaviour of the Walsh functions
and the smoothness of the function f , the direct inversion has a lot of block artefacts. Here, CS gives nearly



20 L. THESING AND A. C. HANSEN

FIGURE 3. Original function from Equation (5.1)

perfect reconstruction in Figure 4. It is important to remark that the sampling pattern is chosen accordingly
to Equation (3.3) in the main theorem. However, as mentioned in Remark 3.3 we assume that the squared
relation in Equation (3.2) is not sharp, which can also be observed in the numerical examples. Next, we
demonstrate that the structure is very important. For this sake we conducted the same experiment with a
flipped sampling pattern, see figure 5b. Then, the reconstruction is nowhere close to perfect and the original
signal is not even identifiable.

6. CONCLUSION

In this paper we have completed the theory about linear and non-linear recovery guarantees for the recon-
struction from binary and Fourier measurements with wavelets. We underlined the results about the struc-
tured sampling and sparsity theory with the special case of Walsh and wavelet reconstruction. Additionally,
we showed the numerical gains and the problems that arise when the theory is not taken into account.
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