Contemporary sampling techniques and compressed sensing (Part III course)

Lecturers: Anders Hansen and Bogdan Roman
Time, location: Tue & Thu 12pm, MR14

This is a (non-examinable) graduate course on sampling theory and compressed sensing for use in signal processing and imaging. Compressed sensing is a theory of randomisation, sparsity and non-linear optimisation techniques that breaks traditional barriers in sampling theory. Since its introduction in 2004 the field has exploded and is rapidly growing and changing. Thus, we will take the word contemporary quite literally and emphasise the latest developments, however, no previous knowledge of the field is assumed. Although the main focus will be on compressed sensing, it will be presented in the general framework of sampling theory. The course will focus on how to get compressed sensing to work in real life applications and is aimed at students and post docs who want to learn how compressed sensing can be used in their research.

References: The course will be based on slides and references to the books:
Compressed Sensing (Eldar, Kutyniok), CUP 2012,
A Mathematical Introduction to Compressive Sensing (Foucart, Rauhut), Birkhauser 2014