
Numerical Analysis - Part II

Anders C. Hansen

Lecture 10

1 / 28

The diffusion equation in two space

dimensions

2 / 28

The diffusion equation in two space dimensions

We are solving

∂u

∂t
= ∇2u, 0 ≤ x , y ≤ 1, t ≥ 0, (1)

where u = u(x , y , t), together with initial conditions at t = 0 and
Dirichlet boundary conditions at ∂Ω, where Ω = [0, 1]2 × [0,∞). It
is straightforward to generalize our derivation of numerical
algorithms, e.g. by the method of lines.

3 / 28

Recall the five point formula

We have the five-point method

�
��
�
��
�
��

�
�� �
��
−4

1

1

1 1 ui ,j = ui−1,j + ui+1,j + ui ,j−1 + ui ,j+1 − 4ui ,j ,

discretising the two dimensional Laplacian.

4 / 28

The diffusion equation in two space dimensions

Thus, let u`,m(t) ≈ u(`h,mh, t), where h = ∆x = ∆y , and let
un
`,m ≈ u`,m(nk) where k = ∆t. The five-point formula results in

u′`,m = 1
h2 (u`−1,m + u`+1,m + u`,m−1 + u`,m+1 − 4u`,m),

or in the matrix form

u′ = 1
h2 A∗u, u = (u`,m) ∈ RN , (2)

where A∗ is the block TST matrix of the five-point scheme:

A∗ =


H I

I
. . .

.

. . . I

I H

 , H =


−4 1

1
. . .

.

. . . 1

1 −4

 .

5 / 28

Crank-Nicolson for 2D

Applying the trapezoidal rule to our semi-dicretization (2) we obtain
the two-dimensional Crank-Nicolson method:

(I − 1
2
µA∗) un+1 = (I + 1

2
µA∗) un , (3)

in which we move from the n-th to the (n+1)-st level by solving the
system of linear equations Bun+1 = Cun, or un+1 = B−1Cun. For
stability, similarly to the one-dimensional case, the eigenvalue
analysis implies that A = B−1C is normal and shares the same
eigenvectors with B and C , hence

λ(A) =
λ(C)

λ(B)
=

1 + 1
2µλ(A∗)

1− 1
2µλ(A∗)

⇒ |λ(A)| < 1 as λ(A∗) < 0

and the method is stable for all µ. The same result can be obtained
through the Fourier analysis.

6 / 28

Splitting

We would like to find a fast solver to the system (3). The matrix
B = I − 1

2
µA∗ has a structure similar to that of A∗, where

A∗ =


H I

I
. . .

.

. . . I

I H

 , H =


−4 1

1
. . .

.

. . . 1

1 −4

 .
so we may apply the Hockney method.

7 / 28

Special structure of 5-point equations

Observation 1 (Special structure of 5-point equations)
We wish to motivate and introduce a family of efficient solution
methods for the 5-point equations: the fast Poisson solvers. Thus,
suppose that we are solving ∇2u = f in a square m ×m grid with the
5-point formula (all this can be generalized a great deal, e.g. to the
nine-point formula). Let the grid be enumerated in natural ordering, i.e.
by columns. Thus, the linear system Au = b can be written explicitly
in the block form

B I

I B
. . .

. . .
. . . I

I B


︸ ︷︷ ︸

A


u1

u2

...

um

 =


b1

b2

...

bm

 , B =


−4 1

1 −4
. . .

. . .
. . . 1

1 −4


m×m

,

where uk ,bk ∈ Rm are portions of u and b, respectively, and B is a
TST-matrix which means tridiagonal, symmetric and Toeplitz (i.e.,
constant along diagonals).

8 / 28

Special structure of 5-point equations

Observation 2 (Special structure of 5-point equations)

By Exercise 4, its eigenvalues and orthonormal eigenvectors are
given as

Bq` = λ`q`, λ` = −4 + 2 cos `π
m+1

,

q` = γm
(

sin j`π
m+1

)m
j=1

, ` = 1..m,

where γm =
√

2
m+1 is the normalization factor. Hence

B = QDQ−1 = QDQ, where D = diag (λ`) and Q = QT = (qj`).
Note that all m×m TST matrices share the same full set of
eigenvectors, hence they all commute!

9 / 28

The Hockney method

Set vk = Quk , ck = Qbk , therefore our system becomes


D I
I D

. . .
. . .

. . . I

I D




v1

v2

...

vm

 =


c1

c2

...

cm

 .

Let us by this stage reorder the grid by rows, instead of by columns..
In other words, we permute v 7→ v̂ = Pv, c 7→ ĉ = Pc, so that the
portion ĉ1 is made out of the first components of the portions
c1, . . . , cm, the portion ĉ2 out of the second components and so on.

10 / 28

The Hockney method

This results in new system


Λ1

Λ2 . . .

Λm




v̂1

v̂2

...

v̂m

 =


ĉ1

ĉ2

...

ĉm

 , Λk =


λk 1

1 λk 1
. . .

. . .
. . .

1 λk


m×m

,

where k = 1...m.

11 / 28

The Hockney method

These are m uncoupled systems, Λk v̂k = ĉk for k = 1...m. Being
tridiagonal, each such system can be solved fast, at the cost of
O(m). Thus, the steps of the algorithm and their computational
cost are as follows.

1. Form the products ck = Qbk , k = 1...m O(m3)
2. Solve m ×m tridiagonal systems Λk v̂k = ĉk , k = 1...mO(m2)

3. Form the products uk = Qvk , k = 1...m O(m3)

12 / 28

Splitting

However, since the method (3) has a local truncation error
O(k3 + kh2), we don’t need an exact solution of the system: it
would be enough to have one within the error.
Let us employ the notation

∆2
xu`,m = u`−1,m−2u`,m+u`+1,m, ∆2

yu`,m = u`,m−1−2u`,m+u`,m+1 .

Then the Crank-Nicolson method calculates un+1 by solving the
system[
I − 1

2
µ(∆2

x + ∆2
y)
]

un+1
`,m =

[
I + 1

2
µ(∆2

x + ∆2
y)
]

un
`,m , `,m = 1...M.

(4)

13 / 28

Splitting

The local error is however preserved if we replace this formula by
the difference equation[

I − 1
2
µ∆2

x

][
I − 1

2
µ∆2

y

]
un+1
`,m =

[
I + 1

2
µ∆2

x

][
I + 1

2
µ∆2

y

]
un
`,m , (5)

which is called the split version of Crank-Nicolson. Indeed, the
difference between two schemes is equal to

1
4
µ2∆2

x∆2
y (un+1

`,m − un
`,m) = k2

4
1
h2 ∆2

x
1
h2 ∆2

y

(
k ∂
∂t

un
`,m +O(k2)

)
= k3

4

(
∂2

∂x2
∂2

∂y2
∂
∂t

un
`,m +O(k + h2)

)
= O(k3 + kh2) ,

(6)

the same magnitude as of the local error.

14 / 28

Splitting

In the matrix form, (5) is equivalent to splitting the matrix A∗ into
the sum of two matrices Ax and Ay as

A∗ = Ax + Ay ,

Ax =


−2I I

I
. . .

.

. . . I

I −2I

 , Ay =


H

H
. . .

H

 , H =


−2 1

1
. . .

.

. . . 1

1 −2


and solving the uncoupled system[

I − 1
2
µAx

][
I − 1

2
µAy

]
un+1 =

[
I + 1

2
µAx

][
I + 1

2
µAy

]
un .

as
Bxun+1/2 = CxCyun, Byun+1 = un+1/2.

15 / 28

Splitting

The matrix

By = I − 1

2
µAy

is block diagonal, and solving Byu = v is just solving one and the
same tridiagonal system Bui = vi with different right-hand sides.
Matrix Bx = I − 1

2µAx is of the same form up to a permutation
(reodering of the grid), so solving Bxv = b is again a fast procedure.

16 / 28

The general diffusion equation

Consider the general diffusion equation

∂u

∂t
= ∇> (a(x , y)∇u) + f (x , y)

=
∂

∂x

(
a(x , y)

∂u

∂x

)
+

∂

∂y

(
a(x , y)

∂u

∂y

)
+ f (x , y),

(7)

where a(x , y) > α > 0 and f (x , y) are given, together with initial
conditions on [0, 1]2 and Dirichlet boundary conditions along
∂[0, 1]2×[0,∞). Replace each space derivative by central differences at
midpoints,

dg(ξ)

dξ
≈

g(ξ + 1
2

h)− g(ξ − 1
2

h)

h
,

resulting in the ODE system

u′`,m = 1
h2

[
a`− 1

2 ,m
u`−1,m + a`+ 1

2 ,m
u`+1,m + a`,m− 1

2
u`,m−1 + a`,m+ 1

2
u`,m+1

−
(
a`− 1

2 ,m
+ a`+ 1

2 ,m
+ a`,m− 1

2
+ a`,m+ 1

2

)
u`,m

]
+ f`,m.

(8)
17 / 28

The general diffusion equation

Assuming zero boundary conditions and f ≡ 0, we have a system
u′ = Au, and we may solve it again by Crank–Nicolson, and apply
the split

A = Ax + Ay .

Here, Ax and Ay are again constructed from the contribution of
discretizations in the x- and y -directions respectively, namely Ax

includes all the a`± 1
2
,m terms, and Ay consists of the remaining

a`,m± 1
2

components. Arguments similar to what we used in moving

from (4) to (5) justify the use of the split version in this general
case as well.

18 / 28

Intermezzo – Linear systems of ODEs

With greater generality, let us consider the ODE system

y′ = Ay, y(0) = y0. (9)

We define formally a matrix exponential by Taylor series,
eB :=

∑∞
k=0

1
k!

Bk , and easily verify by formal differentiation that

detA/dt = AetA, therefore y(t) = etAy0 is a soluton.
One observes that one-step methods for solving (9) are
approximating a matrix exponential. Thus, with k = ∆t,

Euler: yn = (I + kA)ny0, 1 + z = ez +O(z2);

TR: yn =
[(

I − 1
2 kA

)−1 (
I + 1

2 kA
)]n

y0,
1+ 1

2
z

1− 1
2
z

= ez +O(z3).

19 / 28

Splitting methods – The philosophy

Recall that, for z1, z2 ∈ C, we have ez1+z2 = ez1ez2 and had this
been true for the matrices, i.e. that etA = et(B+C) = etBetC , we
could have approximated each component of the exponent of
A = Ax + Ay with the trapezoidal rule, say, to produce

un+1 =
(
I−1

2
µAx

)−1(
I + 1

2
µAx

)(
I−1

2
µAy

)−1(
I + 1

2
µAy

)
un , µ = k/h2 ,

(10)
and since both I − 1

2
µAx and I − 1

2
µAy are tridiagonal, this system

can be solved very cheaply.

20 / 28

Splitting methods – The philosophy

Unfortunately, the assumption that et(B+C) = etBetC is, in general,
false. Not all hope is lost, though, and we will demonstrate that,
suitably implemented, splitting is a powerful technique to reduce
drastically the expense of numerical solution.

21 / 28

Splitting methods – The philosophy

Comparing the Taylor expansions of et(B+C) with etBetC we obtain

etBetC = et(B+C) + 1
2

t2(BC − CB) +O(t3). (11)

In particular, etBetC = et(B+C) for all t ≥ 0 if and only if B and C
commute. The good news is, however, that approximating e∆t(B+C)

with e∆tBe∆tC incurs an error of O((∆t)2). So, if r is a rational
function such that r(z) = ez +O(z2), then

un+1 = r(µAx)r(µAy)un (12)

produces an error of O((∆t)2). The choice
r(z) = (1 + 1

2 z)/(1− 1
2 z) results in a split Crank–Nicolson scheme,

whose implementation reduces to a solution of tridiagonal algebraic
linear systems.

22 / 28

Splitting methods – Strang splitting

It is easy to prove that

et(B+C) = 1
2

(
etBetC + etCetB

)
+O(t3),

et(B+C) = e
1
2
tBetCe

1
2
tB +O(t3),

the second formula is called the Strang splitting. Thus, as long as
r(z) = ez +O(z3), the time-stepping formula

un+1 = r
(

1
2
µAx

)
r
(
µAy

)
r
(

1
2
µAx

)
un

carries a local error of O((∆t)3).

23 / 28

Splitting methods – Stability

As far as stability is concerned, we observe that both Ax and Ay are
symmetric, hence normal, therefore so are r(µAx) and r(µAy).
Then Euclidean `2-norm equals the spectral radius, therefore for the
splitting (12), we have

‖un+1‖ ≤ ‖r(µAx)‖ · ‖r(µAy)‖ · ‖un‖ = ρ[r(µAx)] · ρ[r(µAy)] · ‖un‖.

It is easy to verify by Gershgorin theorem that the eigenvalues of the
matrices Ax and Ay are nonpositive, hence provided that r fulfils
|r(z)| < 1 for z ∈ C with Re z < 0, it is then true that

ρ[r(µAx)], ρ[r(µAy)] ≤ 1.

This proves ‖un+1‖ ≤ ‖un‖ ≤ · · · ≤ ‖u0‖, hence stability.

24 / 28

Splitting of inhomogeneous systems

Recall our goal, namely fast methods for the two-dimensional
diffusion equation. Our exposition so far has been contrived,
because of the assumption that the boundary conditions are zero. In
general, the linear ODE system is of the form

u′ = Au + b, u(0) = u0, (13)

where b originates in boundary conditions (and in a forcing term
f (x , y) in the original PDE (7)).

25 / 28

Splitting of inhomogeneous systems

Note that our analysis should accommodate b = b(t), since
boundary conditions might vary in time! The exact solution of (13)
is provided by the variation of constants formula

u(t) = etAu(0) +

∫ t

0
e(t−s)Ab(s) ds, t ≥ 0,

therefore

u(tn+1) = e∆tAu(tn) +

∫ tn+1

tn

e(tn+1−s)Ab(s) ds .

26 / 28

Splitting of inhomogeneous systems

The integral can be frequently evaluated explicitly, e.g. when b is a
linear combination of polynomial and exponential terms. For
example, b(t) ≡ b = const yields

u(tn+1) = e∆tAu(tn) + A−1
(

e∆tA − I
)

b.

This, unfortunately, is not a helpful observation, since, even if we
split the exponential etA, how are we supposed to split
A−1 = (B + C)−1?

27 / 28

Splitting of inhomogeneous systems

The remedy is not to evaluate the integral explicitly but, instead, to
use quadrature. For example, the trapezoidal rule∫ k

0 g(τ) dτ = 1
2

k[g(0) + g(k)] +O(k3) gives

u(tn+1) ≈ e∆tAu(tn) + 1
2

∆t[e∆tAb(tn) + b(tn+1)],

with a local error of O((∆t)3). We can now replace exponentials
with their splittings. For example, Strang’s splitting results in

un+1 = r
(

1
2

∆tB
)

r
(
∆tC

)
r
(

1
2

∆tB
)[

un + 1
2

∆tbn
]

+ 1
2

∆tbn+1.

As before, everything reduces to (inexpensive) solution of
tridiagonal systems!

28 / 28

