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Iterative methods for linear algebraic systems
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Solving linear systems with iterative methods

The general iterative method for solving Ax = b is a rule
xk+1 = fk(x0, x1, . . . , xk). We will consider the simplest ones:
linear, one-step, stationary iterative schemes:

xk+1 = Hxk + v , x0, v ∈ Rn. (1)

Here one chooses H and v so that x∗, a solution of Ax = b,
satisfies x∗ = Hx∗ + v , i.e. it is the fixed point of the iteration (1)
(if the scheme converges). Standard terminology:

I the iteration matrix H,

I the error ek := x∗ − xk ,

I the residual rk := Aek = b − Axk .
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Solving linear systems – Iterative refinement

For a given class of matrices A (e.g. positive definite matrices, or
even a single particular matrix), we are interested in convergent
methods, i.e. the methods such that xk → x∗ = A−1b for every
starting value x0. Subtracting x∗ = Hx∗ + v from (1) we obtain

ek+1 = Hek = · · · = Hk+1e0, (2)

i.e., a method is convergent if ek = Hke0 → 0 for any e0 ∈ Rn.

(Iterative refinement). This is the scheme

xk+1 = xk − S(Axk − b) .

If S = A−1, then xk+1 = A−1b = x∗, so it is suggestive to choose S
as an approximation to A−1. The iteration matrix for this scheme is
HS = I − SA.
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Solving linear systems – Splitting

(Splitting). This is the scheme

(A− B)xk+1 = −Bxk + b ,

with the iteration matrix H = −(A− B)−1B. Any splitting can be viewed
as an iterative refinement (and vice versa) because

(A− B)xk+1 = −Bxk + b ⇔ (A− B)xk+1 = (A− B)xk − (Axk − b)

⇔ xk+1 = xk − (A− B)−1(Axk − b),

so we should seek a splitting such that S = (A− B)−1 approximates A−1.
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Solving linear systems – Convergence

Theorem 1
Let H ∈ Rn×n. Then lim

k→∞
Hkz = 0 for any z ∈ Rn if and only if

ρ(H) < 1.

Proof. 1) Let λ be an eigenvalue of (the real) H, real or complex,
such that |λ| = ρ(H) ≥ 1, and let w be a corresponding
eigenvector, i.e., Hw = λw . Then Hkw = λkw , and

‖Hkw‖∞ = |λ|k‖w‖∞ ≥ ‖w‖∞ =: γ > 0. (3)

If w is real, we choose z = w , hence ‖Hkz‖∞ ≥ γ, and this cannot
tend to zero.
If w is complex, then w = u + iv with some real vectors u, v . But
then at least one of the sequences (Hku), (Hkv) does not tend to
zero. For if both do, then also Hkw = Hku + iHkv → 0, and this
contradicts (3).
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Solving linear systems – Convergence

Proof. Cont. 2) Now, let ρ(H) < 1, and assume for simplicity that
H possesses n linearly independent eigenvectors (w j) such that
Hw j = λjw j . Linear independence means that every z ∈ Rn can be
expressed as a linear combination of the eigenvectors, i.e., there
exist (cj) ∈ C such that z =

∑n
j=1 cjw j . Thus,

Hkz =
∑n

j=1 cjλ
k
j w j ,

and since |λj | ≤ ρ(H) < 1 we have limk→∞Hkz = 0, as required. �

7 / 19



Solving linear systems – Convergence

Remark 2
The complete proof of case (2) of Theorem 1 exploits the
so-called Jordan normal form of the matrix H, namely
H = SJS−1, where J is a block diagonal matrix consisting of the
Jordan blocks,

J =


J1

J2
. . .

Jr

 , Ji =


λi 1
λi
. . .
. . . 1

λi

 , Ji ∈ Rni×ni ,
∑

i ni = n .

To prove that Jki → 0 if |λi | < 1 one should split Ji = λi I + P,
notice that Pm = 0 for m ≥ ni , and evaluate the terms of the
expansion (λi I + P)k =

∑ni−1
m=0

(k
m

)
λk−mi Pm.
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Solving linear systems – Convergence

Applying Theorem 1 to the error estimate (2), we arrive at the
following statement.

Theorem 3
Let x∗, a solution of Ax = b, satisfy x∗ = Hx∗ + v and we are
given the scheme

xk+1 = Hxk + v , x0, v ∈ Rn. (4)

Then xk → x∗ for any choice of x0 if and only if ρ(H) < 1.

Note: Of course, we would like to know not just convergence but
the rate of it. For example, we achieve convergence with

H =

 0.99 106

0 0.99

 ,
but it will take quite a long time. We will discuss this topic briefly
later on.
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Jacobi and Gauss–Seidel

Both of these methods are versions of splitting which can be applied
to any A with nonzero diagonal elements. We write A as the sum of
three matrices L0 + D + U0: subdiagonal (strictly lower-triangular),
diagonal and superdiagonal (strictly upper-triangular) portions of A,
respectively.
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The Jacobi method

1) Jacobi method. We set A− B = D, the diagonal part of A, and
we obtain the next iteration by solving the diagonal system

Dx (k+1) = −(L0 + U0)x (k) + b, HJ = −D−1(L0 + U0) .
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The Gauss–Seidel method

2) Gauss–Seidel method. We take A− B = L0 + D = L, the
lower-triangular part of A, and we generate the sequence (x (k)) by
solving the triangular system

(L0 + D) x (k+1) = −U0x (k) + b, HGS = −(L0 + D)−1U0 .

There is no need to invert (L0 + D), we calculate the components of
x (k+1) in sequence by forward substitution:

aiix
(k+1)
i = −

∑
j<i aijx

(k+1)
j −

∑
j>i aijx

(k)
j + bi , i = 1..n.
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Convergence

As we mentioned above, the sequence x (k) converges to the solution
of Ax = b if the spectral radius of the iteration matrix,

HJ = −D−1(L0 + U0) or HGS = −(L0 + D)−1U0,

respectively, is less than one. Our next goal is to prove that this is
the case for two important classes of matrices A:

a) diagonally dominant and b) positive definite matrices.

We start with recalling the simple, but very useful Gershgorin
theorem.
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Revision – Gershgorin theorem

All eigenvalues of an n×n matrix A are contained in the union of
the Gershgorin discs in the complex plane:

σ(A) ⊂ ∪ni=1Γi , Γi := {z ∈ C : |z − aii | ≤ ri}, ri :=
∑

j 6=i |aij | .
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Strictly diagonally dominant matrices

Definition 4 (Strictly diagonally dominant matrices)

A matrix A is called strictly diagonally dominant by rows (resp.
by columns) if

|aii | >
∑

j 6=i |aij |, i = 1..n (resp. |ajj | >
∑

i 6=j |aij |, j = 1..n ).

From Gershgorin theorem, it follows that strictly diagonally
dominant matrices are nonsingular.
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Convergence of iterations

Theorem 5
If A is strictly diagonally dominant, then both the Jacobi and the
Gauss-Seidel methods converge.

Proof. For the Gauss-Seidel method, the eigenvalues of the
iteration matrix HGS = −(L0 + D)−1U0 satisfy the equation

det[HGS − λI ] = det[−(L0 + D)−1U0 − λI ] = 0.

Moreover,

det[−(L0+D)−1U0−λI ] = 0 ⇒ det[Aλ] := det[U0+λD+λL0] = 0.

It is easy to see that if A = L0 + D + U0 is strictly diagonally
dominant, then for |λ| ≥ 1 the matrix Aλ = λL0 + λD + U0 is
strictly diagonally dominant too, hence it is nonsingular, and
therefore the equality det[Aλ] = 0 is impossible. Thus |λ| < 1,
hence convergence. The proof for the Jacobi method is the same. �
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The Householder–John theorem

Theorem 6 (The Householder–John theorem)

If A and B are real matrices such that both A and A−B−BT are
symmetric positive definite, then the spectral radius of
H = −(A− B)−1B is strictly less than one.
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The Householder–John theorem

Proof. Let λ be an eigenvalue of H, so Hw = λw holds, where
w 6= 0 is an eigenvector. (Note that both λ and w may have
nonzero imaginary parts when H is not symmetric, e.g. in the
Gauss–Seidel method.) The definition of H provides equality
−Bw = λ(A− B)w , and we note that λ 6= 1 since otherwise A
would be singular (which it is not). Thus, we deduce

wTBw =
λ

λ− 1
wTAw , (5)

where the bar means complex conjugation.
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The Householder–John theorem

Proof. Cont. Moreover, writing w = u + iv , where u and v are
real, we find (for C = CT ) the identity wTCw = uTCu + vTCv ,
so symmetric positive definiteness in the assumption implies
wTAw > 0 and wT (A− B − BT )w > 0. In the latter inequality,
we use relation (5) and its conjugate transpose to obtain

0 < wTAw −wTBw −wTBTw =

(
1− λ

λ− 1
− λ

λ− 1

)
wTAw

=
1− |λ|2

|λ− 1|2
wTAw .

Now λ 6= 1 implies |λ− 1|2 > 0. Hence, recalling that wTAw > 0,
we see that 1− |λ|2 is positive. Therefore |λ| < 1 occurs for every
eigenvalue of H as required. �
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