Numerical Analysis - Part Il
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Lecture 16
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Iterative methods for linear algebraic systems
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The general iterative method for solving Ax = b is a rule
xk = £(x% x1, ..., x¥). We will consider the simplest ones:
linear, one-step, stationary iterative schemes:

xk1 = Hxk 4 v, x% v eR" (1)

Here one chooses H and v so that x*, a solution of Ax = b,
satisfies x* = Hx* + v, i.e. it is the fixed point of the iteration (1)
(if the scheme converges). Standard terminology:

» the jteration matrix H,

k k

= x* — x*,
» the residual r .= Aek = b — Axk.

» the error e
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For a given class of matrices A (e.g. positive definite matrices, or
even a single particular matrix), we are interested in convergent

methods, i.e. the methods such that xk — x* = A~1b for every
starting value x°. Subtracting x* = Hx* + v from (1) we obtain

el = Hek = ... = H< el (2)

i.e., a method is convergent if ek = He® — 0 for any e® € R".
(Iterative refinement). This is the scheme

xkt1 = xk — S(Ax* — b).
If S = A"1, then xT1 = A=1b = x*, so it is suggestive to choose S
as an approximation to A~1. The iteration matrix for this scheme is
Hs =1 — SA.
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(Splitting). This is the scheme
(A— B)x*"' = —_Bxk + b,

with the iteration matrix H = —(A — B)~'B. Any splitting can be viewed
as an iterative refinement (and vice versa) because

(A-B)xk*l = -Bxk+b & (A-B)x**l =(A- B)x* - (Axk - b)
& xkl=xk _(A-B)"}(Axk - b),

so we should seek a splitting such that S = (A — B)~! approximates A~
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Theorem 1
Let H € R™". Then lim HXz =0 for any z € R" if and only if

k—o00
p(H) < 1.
Proof. 1) Let A be an eigenvalue of (the real) H, real or complex,
such that |A| = p(H) > 1, and let w be a corresponding
eigenvector, i.e., Hw = Aw. Then H*w = \*w, and

IH Wloo = [A“[lwloe > [[wlloc =: 7 > 0. (3)

If w is real, we choose z = w, hence ||H*z||o, > 7, and this cannot
tend to zero.

If w is complex, then w = u + iv with some real vectors u, v. But
then at least one of the sequences (H¥u), (H*v) does not tend to
zero. For if both do, then also H*w = HXu + iH*v — 0, and this
contradicts (3).
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Proof. Cont. 2) Now, let p(H) < 1, and assume for simplicity that
H possesses n linearly independent eigenvectors (w;) such that
Hwj = A\jw;. Linear independence means that every z € R" can be
expressed as a linear combination of the eigenvectors, i.e., there
exist (¢;) € C such that z=3"7_, cjw;. Thus,

k, _ 1 New
H z =% i1 gAfwj,

and since |\;| < p(H) < 1 we have limy_,o, H*z = 0, as required. [OJ
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Remark 2

The complete proof of case (2) of Theorem 1 exploits the
so-called Jordan normal form of the matrix H, namely

H = SJS™!, where J is a block diagonal matrix consisting of the
Jordan blocks,

v

b
J= | Cod= | ML serm,

Ai

Jr

To prove that J,-k — 0 if |Aj| < 1 one should split J; = A\l + P,
notice that P™ = 0 for m > n;, and evaluate the terms of the
expansion (\j/ + P)k = S 1 (;)Aff_’"Pm.

m=0
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Applying Theorem 1 to the error estimate (2), we arrive at the
following statement.

Theorem 3
Let x*, a solution of Ax = b, satisfy x* = Hx* + v and we are
given the scheme

xkH = Hxk 4 v, x% v eR" (4)
Then x* — x* for any choice of x° if and only if p(H) < 1.

Note: Of course, we would like to know not just convergence but
the rate of it. For example, we achieve convergence with

0.99 10°
0 0.99

but it will take quite a long time. We will discuss this topic briefly
later on.
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Both of these methods are versions of splitting which can be applied
to any A with nonzero diagonal elements. We write A as the sum of
three matrices Lo + D + Up: subdiagonal (strictly lower-triangular),
diagonal and superdiagonal (strictly upper-triangular) portions of A,

respectively.
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1) Jacobi method. We set A— B = D, the diagonal part of A, and
we obtain the next iteration by solving the diagonal system

Dx(k+1) — —([-0 4 Uo)x(k) + b, Hy = —Dfl(Lo -+ Uo).
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2) Gauss—Seidel method. We take A— B = Lo+ D = L, the
lower-triangular part of A, and we generate the sequence (x(k)) by
solving the triangular system

(Lo -+ D)x* = —Upx¥) 4+ b, Has = (Lo + D) p.

There is no need to invert (Lo + D), we calculate the components of
x(k*1) in sequence by forward substitution:

(k1) L lk+1) (k) . C_
ajix; = =D j<i X —Zj>,-a,JxJ. + b;, i=1..n.
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As we mentioned above, the sequence x(¥) converges to the solution
of Ax = b if the spectral radius of the iteration matrix,

Hy = =D (Lo + Up) or Has = —(Lo + D)™ Up,

respectively, is less than one. Our next goal is to prove that this is
the case for two important classes of matrices A:

a) diagonally dominant and  b) positive definite matrices.

We start with recalling the simple, but very useful Gershgorin
theorem.
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Revision — Gershgorin theorem

All eigenvalues of an nx n matrix A are contained in the union of
the Gershgorin discs in the complex plane:

(T(A) CU?er,', M= {ZG(CZ |z—a,-,-| < r,-}, ri = Zj¢i|a;j|.
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Strictly diagonally dominant matrices

Definition 4 (Strictly diagonally dominant matrices)

A matrix A is called strictly diagonally dominant by rows (resp.
by columns) if

]a,-,-\ > Zj;éi ’a,:,'|, i=1.n (resp. \ajj| > Zi;ﬁj \a,-j], j= 1..n).

From Gershgorin theorem, it follows that strictly diagonally
dominant matrices are nonsingular.
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Theorem 5

If A is strictly diagonally dominant, then both the Jacobi and the
Gauss-Seidel methods converge.

Proof. For the Gauss-Seidel method, the eigenvalues of the
iteration matrix Hgs = —(Lo + D)™ Uy satisfy the equation

det[Hgs — M] = det[—(Lo + D) *Uy — AI] = 0.
Moreover,
det[—(Lo+D) 1 Up—M]=0 = det[Ay] := det[Up+AD+\Lo] = 0.

It is easy to see that if A= Lo+ D + U is strictly diagonally
dominant, then for |A| > 1 the matrix Ay = ALg + AD + Uy is
strictly diagonally dominant too, hence it is nonsingular, and
therefore the equality det[A)] = 0 is impossible. Thus || < 1,
hence convergence. The proof for the Jacobi method is the same. [J
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The Householder—John theorem

Theorem 6 (The Householder—John theorem)

If A and B are real matrices such that both A and A—B—B" are
symmetric positive definite, then the spectral radius of
H = —(A — B)~1B is strictly less than one.
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Proof. Let A\ be an eigenvalue of H, so Hw = Aw holds, where
w # 0 is an eigenvector. (Note that both A\ and w may have
nonzero imaginary parts when H is not symmetric, e.g. in the
Gauss—Seidel method.) The definition of H provides equality
—Bw = A\(A — B)w, and we note that A # 1 since otherwise A
would be singular (which it is not). Thus, we deduce

w' Bw = w' Aw, (5)

A—1

where the bar means complex conjugation.
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Proof. Cont. Moreover, writing w = u + iv, where u and v are

real, we find (for C = CT) the identity w Cw=u"Cu+v'Cy,
so symmetric positive definiteness in the assumption implies

w Aw >0and W' (A— B — BT)w > 0. In the latter inequality,
we use relation (5) and its conjugate transpose to obtain

O<w' Aw —w'Bw —w'B"w = 1—L—L w’ Aw
A—-1 X—-1
1=,
= A
a1

Now A # 1 implies |\ — 1|2 > 0. Hence, recalling that w’ Aw > 0,
we see that 1 — |\|? is positive. Therefore |\| < 1 occurs for every
eigenvalue of H as required. O
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