
Numerical Analysis - Part II

Anders C. Hansen

Lecture 17

1 / 36



Iterative methods for linear algebraic systems
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Solving linear systems with iterative methods

The general iterative method for solving Ax = b is a rule
xk+1 = fk(x0, x1, . . . , xk). We will consider the simplest ones: linear,
one-step, stationary iterative schemes:

xk+1 = Hxk + v, x0, v ∈ Rn. (1)

Here one chooses H and v so that x∗, a solution of Ax = b, satisfies
x∗ = Hx∗ + v, i.e. it is the fixed point of the iteration (1) (if the
scheme converges). Standard terminology:

the iteration matrix H, the error ek := x∗ − xk , the residual rk := Aek = b− Axk .
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Solving linear systems – Iterative refinement

For a given class of matrices A (e.g. positive definite matrices, or
even a single particular matrix), we are interested in convergent
methods, i.e. the methods such that xk → x∗ = A−1b for every
starting value x0. Subtracting x∗ = Hx∗ + v from (1) we obtain

ek+1 = Hek = · · · = Hk+1e0, (2)

i.e., a method is convergent if ek = Hke0 → 0 for any e0 ∈ Rn.

(Iterative refinement). This is the scheme

xk+1 = xk − S(Axk − b) .

If S = A−1, then xk+1 = A−1b = x∗, so it is suggestive to choose S
as an approximation to A−1. The iteration matrix for this scheme is
HS = I − SA.
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Solving linear systems – Splitting

(Splitting). This is the scheme

(A− B)xk+1 = −Bxk + b ,

with the iteration matrix H = −(A− B)−1B. Any splitting can be
viewed as an iterative refinement (and vice versa) because

(A− B)xk+1 = −Bxk + b ⇔ (A− B)xk+1 = (A− B)xk − (Axk − b)

⇔ xk+1 = xk − (A− B)−1(Axk − b),

so we should seek a splitting such that S = (A−B)−1 approximates
A−1.
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Solving linear systems – Convergence

Theorem 1
Let H ∈ Rn×n. Then lim

k→∞
Hkz = 0 for any z ∈ Rn if and only if

ρ(H) < 1.

Proof. 1) Let λ be an eigenvalue of (the real) H, real or complex,
such that |λ| = ρ(H) ≥ 1, and let w be a corresponding eigenvector,
i.e., Hw = λw. Then Hkw = λkw, and

‖Hkw‖∞ = |λ|k‖w‖∞ ≥ ‖w‖∞ =: γ > 0. (3)

If w is real, we choose z = w , hence ‖Hkz‖∞ ≥ γ, and this cannot
tend to zero.
If w is complex, then w = u + iv with some real vectors u, v. But
then at least one of the sequences (Hku), (Hkv) does not tend to
zero. For if both do, then also Hkw = Hku + iHkv→ 0, and this
contradicts (3).
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Solving linear systems – Convergence

Proof. Cont. 2) Now, let ρ(H) < 1, and assume for simplicity that
H possesses n linearly independent eigenvectors (wj) such that
Hwj = λjwj . Linear independence means that every z ∈ Rn can be
expressed as a linear combination of the eigenvectors, i.e., there
exist (cj) ∈ C such that z =

∑n
j=1 cjwj . Thus,

Hkz =
∑n

j=1 cjλ
k
j wj ,

and since |λj | ≤ ρ(H) < 1 we have limk→∞Hkz = 0, as required. �

7 / 36



Solving linear systems – Convergence

Remark 2 (Non-examinable)

The complete proof of case (2) of Theorem 1 exploits the
so-called Jordan normal form of the matrix H, namely
H = SJS−1, where J is a block diagonal matrix consisting of the
Jordan blocks,

J =


J1

J2

. . .

Jr

 , Ji =


λi 1
λi
. . .
. . . 1

λi

 , Ji ∈ Rni×ni ,
∑

i ni = n .

To prove that Jk
i → 0 if |λi | < 1 one should split Ji = λi I + P,

notice that Pm = 0 for m ≥ ni , and evaluate the terms of the
expansion (λi I + P)k =

∑ni−1
m=0

(k
m

)
λk−mi Pm.
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Solving linear systems – Convergence

Applying Theorem 1 to the error estimate (2), we arrive at the
following statement.

Theorem 3
Let x∗, a solution of Ax = b, satisfy x∗ = Hx∗ + v and we are given
the scheme

xk+1 = Hxk + v, x0, v ∈ Rn. (4)

Then xk → x∗ for any choice of x0 if and only if ρ(H) < 1.

Note: Of course, we would like to know not just convergence but
the rate of it. For example, we achieve convergence with

H =

 0.99 106

0 0.99

 ,
but it will take quite a long time. We will discuss this topic briefly
later on.
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Jacobi and Gauss–Seidel

Both of these methods are versions of splitting which can be applied
to any A with nonzero diagonal elements. We write A as the sum of
three matrices L0 + D + U0: subdiagonal (strictly lower-triangular),
diagonal and superdiagonal (strictly upper-triangular) portions of A,
respectively.

10 / 36



The Jacobi method

1) Jacobi method. We set A− B = D, the diagonal part of A, and
we obtain the next iteration by solving the diagonal system

Dx(k+1) = −(L0 + U0)x(k) + b, HJ = −D−1(L0 + U0) .
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The Gauss–Seidel method

2) Gauss–Seidel method. We take A− B = L0 + D = L, the
lower-triangular part of A, and we generate the sequence (x(k)) by
solving the triangular system

(L0 + D) x(k+1) = −U0x(k) + b, HGS = −(L0 + D)−1U0 .

There is no need to invert (L0 + D), we calculate the components of
x(k+1) in sequence by forward substitution:

aiix
(k+1)
i = −

∑
j<i aijx

(k+1)
j −

∑
j>i aijx

(k)
j + bi , i = 1..n.
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Convergence

As we mentioned above, the sequence x(k) converges to the solution
of Ax = b if the spectral radius of the iteration matrix,

HJ = −D−1(L0 + U0) or HGS = −(L0 + D)−1U0,

respectively, is less than one. Our next goal is to prove that this is
the case for two important classes of matrices A:

a) diagonally dominant and b) positive definite matrices.

We start with recalling the simple, but very useful Gershgorin
theorem.
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Revision – Gershgorin theorem

All eigenvalues of an n×n matrix A are contained in the union of
the Gershgorin discs in the complex plane:

σ(A) ⊂ ∪ni=1Γi , Γi := {z ∈ C : |z − aii | ≤ ri}, ri :=
∑

j 6=i |aij | .
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Strictly diagonally dominant matrices

Definition 4 (Strictly diagonally dominant matrices)

A matrix A is called strictly diagonally dominant by rows (resp.
by columns) if

|aii | >
∑

j 6=i |aij |, i = 1..n (resp. |ajj | >
∑

i 6=j |aij |, j = 1..n ).

From Gershgorin theorem, it follows that strictly diagonally
dominant matrices are nonsingular.
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Convergence of iterations

Theorem 5
If A is strictly diagonally dominant, then both the Jacobi and the
Gauss-Seidel methods converge.

Proof. For the Gauss-Seidel method, the eigenvalues of the
iteration matrix HGS = −(L0 + D)−1U0 satisfy the equation

det[HGS − λI ] = det[−(L0 + D)−1U0 − λI ] = 0.

Moreover,

det[−(L0+D)−1U0−λI ] = 0 ⇒ det[Aλ] := det[U0+λD+λL0] = 0.

It is easy to see that if A = L0 + D + U0 is strictly diagonally
dominant, then for |λ| ≥ 1 the matrix Aλ = λL0 + λD + U0 is
strictly diagonally dominant too, hence it is nonsingular, and
therefore the equality det[Aλ] = 0 is impossible. Thus |λ| < 1,
hence convergence. The proof for the Jacobi method is the same. �
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The Householder–John theorem

Theorem 6 (The Householder–John theorem)

If A and B are real matrices such that both A and A−B−BT are
symmetric positive definite, then the spectral radius of
H = −(A− B)−1B is strictly less than one.
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The Householder–John theorem

Proof. Let λ be an eigenvalue of H, so Hw = λw holds, where
w 6= 0 is an eigenvector. (Note that both λ and w may have
nonzero imaginary parts when H is not symmetric, e.g. in the
Gauss–Seidel method.) The definition of H provides equality
−Bw = λ(A− B)w, and we note that λ 6= 1 since otherwise A
would be singular (which it is not). Thus, we deduce

wTBw =
λ

λ− 1
wTAw, (5)

where the bar means complex conjugation.
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The Householder–John theorem

Proof. Cont. Moreover, writing w = u + iv, where u and v are
real, we find (for C = CT ) the identity wTCw = uTCu + vTCv, so
symmetric positive definiteness in the assumption implies
wTAw > 0 and wT (A− B − BT )w > 0. In the latter inequality, we
use relation (5) and its conjugate transpose to obtain

0 < wTAw −wTBw −wTBTw =

(
1− λ

λ− 1
− λ

λ− 1

)
wTAw

=
1− |λ|2

|λ− 1|2
wTAw.

Now λ 6= 1 implies |λ− 1|2 > 0. Hence, recalling that wTAw > 0,
we see that 1− |λ|2 is positive. Therefore |λ| < 1 occurs for every
eigenvalue of H as required. �

19 / 36



The Householder–John theorem – A corollary

Corollary 7

1) If A is symmetric positive definite, then the Gauss-Seidel
method converges.

2) If both A and 2D−A are symmetric positive definite, then the
Jacobi method converges.

Proof. 1) For the Gauss-Seidel method, we take A− B = L0 + D,
thus B = U0 is the superdiagonal part of symmetric A, hence
A− B − BT is equal to D, the diagonal part of A, and if A is
positive definite, then D is positive definite too (this is the first part
of the Exercise 23 from Example Sheets).
2) For the Jacobi method, we have B = A− D, and if A is
symmetric, then A− B − BT = 2D − A. (The latter matrix is the
same as A except that the signs of the off-diagonal elements are
reversed.) �
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Linear systems in elliptic PDEs

As we have seen in the previous sections linear systems Ax = b,
where A is a real symmetric positive (negative) definite matrix,
frequently occur in numerical methods for solving elliptic partial
differential equations.
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Poisson’s equation on a square

A typical example we already encountered is Poisson’s equation on a
square where the five-point formula approximation yields an n × n
system of linear equations with n = m2 unknowns up,q:

up−1,q + up+1,q + up,q−1 + up,q+1 − 4up,q = h2f (ph, qh) (6)

In the natural ordering, when the grid points are arranged by
columns, A is the following block tridiagonal matrix:

A =



B I

I B I
. . .

. . .
. . .

I B I

I B


, B =



−4 1

1 −4 1
. . .

. . .
. . .

1 −4 1

1 −4


. (7)
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The matrix A is symmetric and negative definite

Lemma 8
For any ordering of the grid points, the matrix A of the system (6)
is symmetric and negative definite.
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Proof II

Proof. Let U be any linear operator changing the grid ordering. Then U is
clearly unitary (‖Ux‖2 = ‖x‖2 for any x). Note that any matrix Ã
representing the the system of equations (6) can be written as Ã = UAU∗

for some unitary matrix U, where A is as in (7). Self-adjointness is
preserved by unitary operators, and so is the spectrum. Thus, Ã is
self-adjoint (symmetric as it is real). Moreover, σ(A) does not intersect
the positive half plane by the Gershgorin theorem, so we only need to show
that 0 /∈ σ(A). If Ax = 0 then, by the definition of A, x must have
elements of equal modulus, however, then the definition of B (that gives
A) implies that x = 0. �
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Poisson’s equation on a square

Note that when p or q is equal to 1 or m, then the values u0,q, up,0

or up,m+1, um+1,q are known boundary values and they should be
moved to the right-hand side, thus leaving fewer unknowns on the
left.

For any ordering of the grid points (ph, qh) we have shown in
Lemma 8 that the matrix A of this linear system is symmetric and
negative definite.
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Poisson’s equation on a square

Corollary 9

For the linear system (6), for any ordering of the grid, both Jacobi
and Gauss-Seidel methods converge.

Proof. By Lemma 8, A is symmetric and negative definite, hence
convergence of Gauss-Seidel. To prove convergence of the Jacobi
method, we need negative definiteness of the matrix 2D − A, and
that follows by the same arguments as in Lemma 8: recall that the
proof operates with the modulus of the off-diagonal elements and
does not depend on their sign. �
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Relaxation

It is often possible to improve the efficiency of the splitting method
by relaxation. Specifically, instead of letting
(A− B)x(k+1) = −Bx(k) + b, we let

(A−B)x̂(k+1) = −Bx(k)+b, and then x(k+1) = ωx̂(k+1)+(1−ω)x(k) k = 0, 1, . . . ,

where ω is a real constant called the relaxation parameter.

Note that ω = 1 corresponds to the standard “unrelaxed” iteration.
Good choice of ω leads to a smaller spectral radius of the iteration
matrix (compared with the ”unrelaxed” method), and the smaller
the spectral radius, the faster the iteration converges.
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Relaxation

To this end, let us express the relaxation iteration matrix Hω in
terms of H = −(A− B)−1B. We have

x̂(k+1) = Hx(k)+v ⇒
x(k+1) = ωx̂(k+1) + (1− ω)x(k)

= ωHx(k) + (1− ω)x(k) + ωv,

hence
Hω = ωH + (1− ω)I .

It follows that the spectra of Hω and H are related by the rule
λω = ωλ+ (1− ω), therefore one may try to choose ω ∈ R to
minimize

ρ(Hω) = max {|ωλ+ (1− ω)| : λ ∈ σ(H)}.
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Relaxation

In general, σ(H) is unknown, but often we have some information
about it which can be utilized to find a ”good” (rather than ”best”)
value of ω. For example, suppose that it is known that σ(H) is real
and resides in the interval [α, β] where −1 < α < β < 1. In that
case we seek ω to minimize

max {|ωλ+ (1− ω)| : λ ∈ [α, β]} .
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Relaxation

It is readily seen that, for a fixed λ < 1, the function
f (ω) = ωλ+ (1− ω) is decreasing, therefore, as ω increases
(decreases) from 1 the spectrum of Hω moves to the left (to the
right) of the spectrum of H. It is clear that the optimal location of
the spectrum σ(Hω) (or of the interval [αω, βω] that contains
σ(Hω)) is the one which is centralized around the origin:

−[ωα+(1−ω)] = ωβ+(1−ω) ⇒
ωopt = 2

2−(α+β)

−αωopt = βωopt = β−α
2−(α+β)

.
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Attenuation for different frequencies

The speed of convergence of some iterative methods (Jacobi with
relaxation, Gauss–Seidel, etc.) can be increased drastically within
the context of solving linear equations that originate in the
discretization of PDEs. Herewith we analyse (with a great deal of
hand-waving) the system Au = b originated from the 5-point
formula for the Poisson equation on an m×m square grid Ωh, being
solved by the damped Jacobi iteration.
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The damped Jacobi iteration

This is the Jacobi method with a relaxation parameter ω:

û(ν+1) = −D−1(A− D)u(ν) + D−1b = (I − D−1A)u(ν) + D−1b

u(ν+1) = ωû(ν+1) + (1− ω)u(ν) = (I − ωD−1A)u(ν) + ωD−1b .

The error decay is expressed in terms of the iteration matrix Hω:

e(ν) = [Hω]νe(0), Hω = I − ωD−1A = I + 1
4
ωA ,

and it follows from the results of Lecture 2 that the eigenvectors
and the eigenvalues of Hω are

wk,` = (sin ix sin jy), λk,`(ω) = 1− ω
(

sin2 x
2

+ sin2 y
2

)
,

x = kπ
m+1

, y = `π
m+1

.
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The damped Jacobi iteration

We see that ρ(Hω) < 1 for any ω in (0, 1], guaranteeing
convergence, although a very slow one. In particular, for the ”pure”
Jacobi iteration (with ω = 1) we have

ρ(HJ) = 1− 2 sin2 π
2(m+1) ≈ 1− π2

2m2 , and for ω < 1 the spectral
radius is even closer to 1.
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The damped Jacobi iteration

However, expanding the error with respect to the (orthogonal)
eigenvectors we obtain

e(ν) =
∑

k,`
a

(ν)
k,`w

k,`, e(ν) = [Hω]νe(0) ⇒ |a(ν)
k,` | = |λk,`(ω)|ν |a(0)

k,`| ,

i.e. the components of e(ν) (with respect to the basis of
eigenvectors) decay at a different rate for different frequences (k , `).
To this end, we define

Ωh-low frequences (LF):

w(k,`) = (sinπkφ sinπ`ψ)
∣∣
Ωh

with both k and ` from [1,
m + 1

2
),

Ωh-high frequences (HF):

w(k,`) = (sinπkφ sinπ`ψ)
∣∣
Ωh

with either k or ` from [
m + 1

2
,m].
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The damped Jacobi iteration

Let us determine the least factor µ(ω) by which the amplitudes of
HF components are damped per iteration. We have

µ(ω) = max { |λk,`(ω)| : m+1
2
≤ k ≤ m, 1 ≤ ` ≤ m}

= max { |1− ω (sin2 x
2

+ sin2 y
2

)| : π
2
≤ x ≤ π, 0 ≤ y ≤ π}

= max { |1− 1
2
ω|, |1− 2ω|} ,

and it is seen that the optimal factor µ∗ is attained when
1− 1

2 ω = −(1− 2ω), i.e. for ω∗ = 4
5 , and its value is µ∗ = 3

5 .
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The damped Jacobi iteration

Therefore, for the coefficients at the HF components of e(ν) we
obtain

|a(ν)
k,` | ≤ |µ∗|

ν |a(0)
k,`| =

(
3
5

)ν
|a(0)

k,`| � |a
(0)
k,`| ,

i.e. the damped Jacobi method converges fast for high frequencies.
For the remaining Ωh-low frequences we notice that

k , ` ∈ [1, m+1
2

) = [1, 1
2h

) ⇒

{w(k,`)
h = (sinπkφ sinπ`ψ)

∣∣
Ωh
}︸ ︷︷ ︸

Ωh-low frequences

≈ {w(k,`)
2h = (sinπkφ sinπ`ψ)

∣∣
Ω2h
}︸ ︷︷ ︸

Ω2h-high frequences
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