Numerical Analysis - Part II

Anders C. Hansen

Lecture 19

Iterative methods for linear algebraic systems

Minimization of quadratic function

The methods we considered so far for solving Ax = b, namely Jacobi, Gauss-Seidel, and those with relaxation, fit into the scheme

$$\mathbf{x}^{(k+1)} = \mathbf{x}^{(k)} + c_k \mathbf{d}^{(k)},$$

where we were aimed at getting $\rho(H) < 1$ for the iteration matix H. Say, for Jacobi with relaxation, we set $c_k = \omega$ and $\mathbf{d}^{(k)} = D^{-1}(\mathbf{b} - A\mathbf{x}^{(k)})$.

For solving $A\mathbf{x} = \mathbf{b}$ with a (positive definite) matrix A > 0, there is a different approach to constructing good iterative methods. It is based on succesive minimization of the quadratic function

$$F(\mathbf{x}^{(k)}) := \|\mathbf{x}^* - \mathbf{x}^{(k)}\|_A^2 = \|\mathbf{e}^{(k)}\|_A^2,$$

since the minimizer is clearly the exact solution. Here, $\|\mathbf{y}\|_A := (A\mathbf{y}, \mathbf{y})^{1/2} := \sqrt{\mathbf{y}^T A \mathbf{y}}$ is a Euclidean-type distance which is well-defined for A > 0.

Minimization of quadratic function

So, at each step k, we are decreasing the A-distance between $\mathbf{x}^{(k)}$ and the exact solution \mathbf{x}^* . Thus, for a symmetric positive definite A>0, we choose an iterative method that provides the descent condition

$$\mathbf{x}^{(k+1)} = \mathbf{x}^{(k)} + c_k \mathbf{d}^{(k)} \Rightarrow F(\mathbf{x}^{(k+1)}) < F(\mathbf{x}^{(k)}).$$
 (1)

Minimization of quadratic function

An equivalent approach is to minimize the quadratic function

$$F_1(\mathbf{x}) = \frac{1}{2} \mathbf{x}^T A \mathbf{x} - \mathbf{x}^T \mathbf{b}$$
,

which attains its minimum when $\nabla F_1(\mathbf{x}) = A\mathbf{x} - \mathbf{b} = 0$, and which does not involve the unknown \mathbf{x}^* . It is easy to check that $F_1(\mathbf{x}) = \frac{1}{2}F(\mathbf{x}) - \frac{1}{2}c$, where $c = \mathbf{x}^{*T}A\mathbf{x}^*$ is a constant independent of k, hence equivalence.

Quadratic function - Jacobi and Gauss-Seidel

Both the Jacobi and the Gauss-Seidel methods satisfy (1), precisely

$$(\boldsymbol{A}\boldsymbol{e}^{(k+1)},\boldsymbol{e}^{(k+1)}) = (\boldsymbol{A}\boldsymbol{e}^{(k)},\boldsymbol{e}^{(k)}) - (\boldsymbol{C}\boldsymbol{y}^{(k)},\boldsymbol{y}^{(k)}) < (\boldsymbol{A}\boldsymbol{e}^{(k)},\boldsymbol{e}^{(k)}),$$

where for Gauss-Seidel:
$$C=D>0$$
, $oldsymbol{y}^{(k)}:=(L_0+D)^{-1}Aoldsymbol{e}^{(k)};$

and for Jacobi:
$$C = 2D - A > 0$$
, $\mathbf{y}^{(k)} := D^{-1}A\mathbf{e}^{(k)}$.

A-orthogonal projection

A-orthogonal projection method: Next, we strengthen the descent condition (1), namely given $\boldsymbol{x}^{(k)}$ and some $\boldsymbol{d}^{(k)}$ (called a search direction), we will seek $\boldsymbol{x}^{(k+1)}$ from the set of vectors on the line $\ell = \{\boldsymbol{x}^{(k)} + \alpha \boldsymbol{d}^{(k)}\}_{\alpha \in \mathbb{R}}$ such that it makes the value of $F(\boldsymbol{x}^{(k+1)})$ not just smaller than $F(\boldsymbol{x}^{(k)})$, but as small as possible (with respect to this set), namely

$$\mathbf{x}^{(k+1)} := \arg\min_{\alpha} F(\mathbf{x}^{(k)} + \alpha \mathbf{d}^{(k)}). \tag{2}$$

A-orthogonal projection

Lemma 1

The minimizer in (2) is given by the formula

$$\mathbf{x}^{(k+1)} = \mathbf{x}^{(k)} + \alpha_k \mathbf{d}^{(k)}, \qquad \alpha_k = \frac{(\mathbf{r}^{(k)}, \mathbf{d}^{(k)})}{(A\mathbf{d}^{(k)}, \mathbf{d}^{(k)})}. \tag{3}$$

This choice of α_k is referred to as exact line search.

A-orthogonal projection

Proof. From the definition of F, it follows that in (2) we should choose the point $\mathbf{x}^{(k+1)} \in \ell$ that minimizes the A-distance between \mathbf{x}^* and the points $\mathbf{y} \in \ell$. Geometrically, it is clear that the minimum occurs when $\mathbf{x}^{(k+1)}$ is the A-orthogonal projection of \mathbf{x}^* onto the line $\ell = \{\mathbf{x}^{(k)} + \alpha \mathbf{d}^{(k)}\}$, i.e., when

$$\mathbf{x}^* - \mathbf{x}^{(k+1)} \perp_A \mathbf{d}^{(k)} \Rightarrow A(\mathbf{x}^* - \mathbf{x}^{(k+1)}) \perp \mathbf{d}^{(k)}$$

 $\Rightarrow \mathbf{r}^{(k+1)} = \mathbf{r}^{(k)} - \alpha_k A \mathbf{d}^{(k)} \perp \mathbf{d}^{(k)}.$

This gives expression for α_k in (3).

The steepest descent method

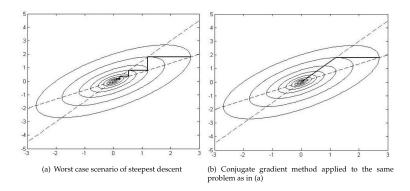
The steepest descent method: This method takes $\mathbf{d}^{(k)} = -\nabla F_1(\mathbf{x}^{(k)}) = \mathbf{b} - A\mathbf{x}^{(k)}$ for every k, the reason being that, locally, the negative gradient of a quadratic function shows the direction of the (locally) steepest descent at a given point. Thus, the iterations have the form

$$\mathbf{x}^{(k+1)} = \mathbf{x}^{(k)} + \alpha_k (\mathbf{b} - A\mathbf{x}^{(k)}), \qquad k \ge 0.$$
 (4)

It can be proved that the sequence $(x^{(k)})$ converges to the solution x^* of the system Ax = b as required, but usually the speed of convergence is rather slow.

The reason is that the iteration (4) decreases the value of $F(\mathbf{x}^{(k+1)})$ locally, relatively to $F(\mathbf{x}^{(k)})$, but the global decrease, with respect to $F(\mathbf{x}^{(0)})$, is often not that large. The use of *conjugate directions* provides a method with a global minimization property.

Steepest descent and conjugate gradient



Conjugate directions

Let's revisit equation (3) for a general direction \boldsymbol{d} (i.e., not necessarily equal to the negative gradient). Assume $\boldsymbol{x}=\boldsymbol{x}^{(k)}$, and let $\boldsymbol{e}^{(k)}=\boldsymbol{x}^*-\boldsymbol{x}^{(k)}$ be the error and $\boldsymbol{r}^{(k)}=\boldsymbol{b}-A\boldsymbol{x}^{(k)}=A\boldsymbol{e}^{(k)}$ be the residual. Then we can write $\langle \boldsymbol{r}^{(k)}, \boldsymbol{d} \rangle = \langle \boldsymbol{e}^{(k)}, \boldsymbol{d} \rangle_A$, and so for a general search direction \boldsymbol{d} with an exact line search, the iterate takes the form $\boldsymbol{x}^{(k+1)}=\boldsymbol{x}^{(k)}+\frac{\langle \boldsymbol{e}^{(k)}, \boldsymbol{d} \rangle_A}{\langle \boldsymbol{d}, \boldsymbol{d} \rangle_A} \boldsymbol{d}$. By substracting \boldsymbol{x}^* , the iterates in terms of the error $\boldsymbol{e}^{(k+1)}$ are given by:

$$\mathbf{e}^{(k+1)} = \mathbf{e}^{(k)} - \frac{\langle \mathbf{e}^{(k)}, \mathbf{d} \rangle_{A}}{\langle \mathbf{d}, \mathbf{d} \rangle_{A}} \mathbf{d}. \tag{5}$$

Geometrically, this means that $e^{(k+1)}$ is the projection of $e^{(k)}$ onto the hyperplane that is A-orthogonal to d, i.e., we have

$$\langle \boldsymbol{e}^{(k+1)}, \boldsymbol{d} \rangle_A = 0.$$
 (6)

Conjugate directions

Definition 2 (Conjugate directions)

The vectors $\boldsymbol{u}, \boldsymbol{v} \in \mathbb{R}^n$ are *conjugate* with respect to a symmetric positive definite matrix A if they are nonzero and A-orthogonal: $\langle \boldsymbol{u}, \boldsymbol{v} \rangle_A := \langle \boldsymbol{u}, A \boldsymbol{v} \rangle = 0$.

Theorem 3

Let $\mathbf{d}^{(0)}, \mathbf{d}^{(1)}, \dots, \mathbf{d}^{(n-1)}$ be n nonzero pairwise conjugate directions, and consider the sequence of iterates

$$\mathbf{x}^{(k+1)} = \mathbf{x}^{(k)} + \alpha_k \mathbf{d}^{(k)}, \qquad \alpha_k = \frac{\langle \mathbf{r}^{(k)}, \mathbf{d}^{(k)} \rangle}{\langle \mathbf{d}^{(k)}, A \mathbf{d}^{(k)} \rangle}.$$

Let $\mathbf{r}^{(k)} = \mathbf{b} - A\mathbf{x}^{(k)}$ be the residual. Then for each k = 1, ..., n, $\mathbf{r}^{(k)}$ is orthogonal to $\mathrm{span}\{\mathbf{d}^{(0)}, ..., \mathbf{d}^{(k-1)}\}$. In particular $\mathbf{r}^{(n)} = 0$.

Proof. Since $\mathbf{r}^{(k)} = A\mathbf{e}^{(k)}$, it suffices to show that $\mathbf{e}^{(k)}$ is A-orthogonal to $\mathrm{span}\{\mathbf{d}^{(0)},\ldots,\mathbf{d}^{(k-1)}\}$. The proof is by induction on k. For k=0 there is nothing to prove. Assume the statement is true for $k\geq 0$, and consider the equation (5) (with $\mathbf{d}=\mathbf{d}^{(k)}$). From the induction hypothesis, and the fact that the $\mathbf{d}^{(i)}$ are pairwise conjugate directions, we see that $\mathbf{e}^{(k+1)}$ is A-orthogonal to $\mathbf{d}^{(0)},\ldots,\mathbf{d}^{(k-1)}$. Furthermore, we have already seen in (6) that $\langle \mathbf{e}^{(k+1)},\mathbf{d}^{(k)}\rangle_A=0$. Thus this shows that $\mathbf{e}^{(k+1)}$ is A-orthogonal to $\mathbf{d}^{(0)},\ldots,\mathbf{d}^{(k)}$ as desired.

So, if a sequence $(\boldsymbol{d}^{(k)})$ of conjugate directions is at hands, we have an iterative procedure with good approximation properties. The (A-orthogonal) basis of conjugate directions is constructed by A-orthogonalization of the sequence $\{\boldsymbol{r}_0,A\boldsymbol{r}_0,A^2\boldsymbol{r}_0,...,A^{n-1}\boldsymbol{r}_0\}$ with $\boldsymbol{r}_0=\boldsymbol{b}-A\boldsymbol{x}_0$. This is done in the way similar to orthogonalization of the monomial sequence $\{1,x,x^2,...,x^{n-1}\}$ using a recurrence relation.

Remark 4

It is possible to extend the methods for solving $A\mathbf{x} = \mathbf{b}$ with symmetric positive definite A to any other matrices by a simple trick. Suppose we want to solve $B\mathbf{x} = \mathbf{c}$, where $B \in \mathbb{R}^{n \times n}$ is nonsingular. We can convert the above system to the symmetric and positive definite setting by defining $A = B^T B$, $\mathbf{b} = B^T \mathbf{c}$ and then solving $A\mathbf{x} = \mathbf{b}$ with the conjugate gradient algorithm (or any other method for positive definite A).

The conjugate gradient method

Here it is.

- (A) For any initial vector $\mathbf{x}^{(0)}$, set $\mathbf{d}^{(0)} = \mathbf{r}^{(0)} = \mathbf{b} A\mathbf{x}^{(0)}$;
- (B) For $k \geq 0$, calculate ${m x}^{(k+1)} = {m x}^{(k)} + lpha_k {m d}^{(k)}$ and the residual

$$\mathbf{r}^{(k+1)} = \mathbf{r}^{(k)} - \alpha_k A \mathbf{d}^{(k)}, \quad \text{with}$$

$$\alpha_k := \{ \mathbf{r}^{(k+1)} \perp \mathbf{d}^{(k)} \} = \frac{(\mathbf{r}^{(k)}, \mathbf{d}^{(k)})}{(A \mathbf{d}^{(k)}, \mathbf{d}^{(k)})}, \quad k \ge 0.$$
(7)

(C) For the same k, the next conjugate direction is the vector

$$\mathbf{d}^{(k+1)} = \mathbf{r}^{(k+1)} + \beta_k \mathbf{d}^{(k)}, \text{ with}$$

$$\beta_k := \{ \mathbf{d}^{(k+1)} \perp A \mathbf{d}^{(k)} \} = -\frac{(\mathbf{r}^{(k+1)}, A \mathbf{d}^{(k)})}{(\mathbf{d}^{(k)}, A \mathbf{d}^{(k)})}, \quad k \ge 0.$$
(8)

Theorem 5 (Properties of CGM)

For every $m \ge 0$, the conjugate gradient method has the following properties.

(1) The linear space spanned by the residuals $\{\mathbf{r}^{(i)}\}$ is the same as the linear space spanned by the conjugate directions $\{\mathbf{d}^{(i)}\}$ and it coincides with the space spanned by $\{A^i\mathbf{r}^{(0)}\}$:

$$\operatorname{span}\{\mathbf{r}^{(i)}\}_{i=0}^{m} = \operatorname{span}\{\mathbf{d}^{(i)}\}_{i=0}^{m} = \operatorname{span}\{A^{i}\mathbf{r}^{(0)}\}_{i=0}^{m}.$$

- (2) The residuals satisfy the orthogonality conditions: $(\mathbf{r}^{(m)}, \mathbf{r}^{(i)}) = (\mathbf{r}^{(m)}, \mathbf{d}^{(i)}) = 0$ for i < m.
- (3) The directions are conjugate (A-orthogonal): $(\mathbf{d}^{(m)}, \mathbf{d}^{(i)})_A = (\mathbf{d}^{(m)}, A\mathbf{d}^{(i)}) = 0$ for i < m.

Proof. We use induction on $m \ge 0$, the assertions being trivial for m = 0, since $\mathbf{d}^{(0)} = \mathbf{r}^{(0)}$ and (2)-(3) are void. Therefore, assuming that the assertions are true for some m = k, we ask if they remain true when m = k + 1.

(1) Formula (8)
$$\boldsymbol{d}^{(k+1)} = \boldsymbol{r}^{(k+1)} + \beta_k \boldsymbol{d}^{(k)}$$

readily implies that equivalence of the spaces spanned by $(\mathbf{r}^{(i)})_0^k$ and $(\mathbf{d}^{(i)})_0^k$, is preserved when k is increased to k+1. Similarly, from $\mathbf{r}^{(k+1)} = \mathbf{r}^{(k)} - \alpha_k A \mathbf{d}^{(k)}$ in (7), and from the inductive assumption $\mathbf{r}^{(k)}, \mathbf{d}^{(k)} \in \operatorname{span}\{A^i\mathbf{r}^{(0)}\}_{i=0}^k$, it follows that $\mathbf{r}^{(k+1)} \in \operatorname{span}\{A^i\mathbf{r}^{(0)}\}_{i=0}^{k+1}$. To see that $A^{k+1}\mathbf{r}^{(0)} \in \operatorname{span}\{\mathbf{r}^{(i)}\}_{i=0}^{k+1}$, since $\alpha_k \neq 0$, the claim follows by (7) if $\mathbf{d}^{(k)}$ has a non-zero component from $A^k\mathbf{r}^{(0)}$, and if not the claim follows from the induction hypothesis.

Proof. Cont. (2) Turning to assertion (2), we need $\mathbf{r}^{(k+1)} \perp \mathbf{r}^{(i)}$ for $i \leq k$, which by (1) is equivalent to

$$\mathbf{r}^{(k+1)} \perp \mathbf{d}^{(i)}$$
 for $i \leq k$.

We have ${m r}^{(k+1)} \perp {m d}^{(k)}$ by the definition of α_k in (7), so we need

$$\mathbf{r}^{(k+1)} \stackrel{(7)}{=} \mathbf{r}^{(k)} - \alpha_k A \mathbf{d}^{(k)} \perp \mathbf{d}^{(i)}$$
 for $i < k$,

and this follow from the inductive assumptions $\mathbf{r}^{(k)} \perp \mathbf{d}^{(i)}$ and $A\mathbf{d}^{(k)} \perp \mathbf{d}^{(i)}$.

Proof. Cont. (3) It remains to justify (3), namely that $d^{(k+1)}$ defined in (8) satisfies

$$d^{(k+1)} \perp Ad^{(i)}$$
 for $i \leq k$.

The value of β_k in (8) is defined to give $\mathbf{d}^{(k+1)} \perp A\mathbf{d}^{(k)}$, so we need

$$\mathbf{d}^{(k+1)} \stackrel{\text{(8)}}{=} \mathbf{r}^{(k+1)} + \beta_k \mathbf{d}^{(k)} \perp A \mathbf{d}^{(i)}$$
 for $i < k$.

By the inductive hypothesis $\boldsymbol{d}^{(k)} \perp A \boldsymbol{d}^{(i)}$, hence it remains to establish that $\boldsymbol{r}^{(k+1)} \perp A \boldsymbol{d}^{(i)}$ for i < k. Now, the formula (7) yields $A \boldsymbol{d}^{(i)} = (\boldsymbol{r}^{(i)} - \boldsymbol{r}^{(i+1)})/\alpha_i$, therefore we require the conditions $\boldsymbol{r}^{(k+1)} \perp (\boldsymbol{r}^{(i)} - \boldsymbol{r}^{(i+1)})$ for i < k, and they are a consequence of the assertion (2) for m = k+1 obtained previously.

Termination property

Corollary 6 (A termination property)

If the conjugate gradient method is applied in exact arithmetic, then, for any $\mathbf{x}^{(0)} \in \mathbb{R}^n$, termination occurs after at most n iterations. More precisely, termination occurs after at most s iterations, where $s = \dim \operatorname{span}\{A^i\mathbf{r}_0\}_{i=0}^{n-1}$ (which can be smaller than n).

Termination property

Proof. Assertion (2) of Theorem 5 states that residuals $(\mathbf{r}^{(k)})_{k\geq 0}$ form a sequence of mutually orthogonal vectors in \mathbb{R}^n , therefore at most n of them can be nonzero. Since they also belong to the space $\operatorname{span}\{A^i\mathbf{r}_0\}_{i=0}^{n-1}$, their number is bounded by the dimension of that space.

The Krylov subspaces

Definition 7 (The Krylov subspaces)

Let A be an $n \times n$ matrix, $\mathbf{v} \in \mathbb{R}^n$ nonzero, and $m \in \mathbb{N}$. The linear space $K_m(A, \mathbf{v}) := \operatorname{span}\{A^i\mathbf{v}\}_{i=0}^{m-1}$ is called the m-th Krylov subspace of \mathbb{R}^n .

Theorem 8 (Number of iterations in CGM)

Let A > 0, and let s be the number of its distinct eigenvalues. Then, for any \mathbf{v} ,

$$\dim K_m(A, \mathbf{v}) \le s \quad \forall m. \tag{9}$$

Hence, for any A > 0, the number of iterations of the CGM for solving $A\mathbf{x} = \mathbf{b}$ is bounded by the number of distinct eigenvalues of A.

The Krylov subspaces

Proof. Inequality (9) is true not just for positive definite A>0, but for any A with n linearly independent eigenvectors (\boldsymbol{u}_i) . Indeed, in that case one can expand $\boldsymbol{v}=\sum_{i=1}^n a_i\boldsymbol{u}_i$, and then group together eigenvectors with the same eigenvalues: for each λ_{ν} we set $\boldsymbol{w}_{\nu}=\sum_{k=1}^{m_{\nu}}a_{i_k}\boldsymbol{u}_{i_k}$ if $A\boldsymbol{u}_{i_k}=\lambda_{\nu}\boldsymbol{u}_{i_k}$. Then

$$\mathbf{v} = \sum_{\nu=1}^{s} c_{\nu} \mathbf{w}_{\nu}, \qquad c_{\nu} \in \{0, 1\},$$

hence $A^i \mathbf{v} = \sum_{\nu=1}^s c_\nu \lambda_\nu^i \mathbf{w}_\nu$, thus for any m we get $K_m(A,\mathbf{v}) \subseteq \operatorname{span}\{\mathbf{w}_1,\mathbf{w}_2,\ldots,\mathbf{w}_s\}$, and that proves (9). By Corollary 6, the number of iteration in CGM is bounded by $\dim K_m(A,\mathbf{r}^{(0)})$, hence the final conclusion.

The Krylov subspaces

Remark 9

Theorem 8 shows that, unlike other iterative schemes, the conjugate gradient method is both iterative and direct: each iteration produces a reasonable approximation to the exact solution, and the exact solution itself will be recovered after n iterations at most.

Simplifying the CGM-algorithm

We now simplify and reformulate the CGM-algorithm.

Firstly, we rewrite expressions for the parameters α_k and β_k in (7)-(8) as follows:

$$\alpha_{k} = \frac{(\mathbf{r}^{(k)}, \mathbf{d}^{(k)})}{(\mathbf{d}^{(k)}, A\mathbf{d}^{(k)})} \stackrel{(c)}{=} \frac{\|\mathbf{r}^{(k)}\|^{2}}{(\mathbf{d}^{(k)}, A\mathbf{d}^{(k)})} > 0,$$

$$\beta_{k} = -\frac{(\mathbf{r}^{(k+1)}, A\mathbf{d}^{(k)})}{(\mathbf{d}^{(k)}, A\mathbf{d}^{(k)})} \stackrel{(a)}{=} -\frac{(\mathbf{r}^{(k+1)}, \mathbf{r}^{(k+1)} - \mathbf{r}^{(k)})}{(\mathbf{d}^{(k)}, \mathbf{r}^{(k)})} \stackrel{(b)}{=} \frac{\|\mathbf{r}^{(k+1)}\|^{2}}{(\mathbf{d}^{(k)}, \mathbf{r}^{(k)})} \stackrel{(c)}{=} \frac{\|\mathbf{r}^{(k+1)}\|^{2}}{\|\mathbf{r}^{(k)}\|^{2}} > 0.$$

Here, for β , we used in (a) the fact that $A\boldsymbol{d}^{(k)}$ is a multiple of $\boldsymbol{r}^{(k+1)}-\boldsymbol{r}^{(k)}$ by (7), and in (b) orthogonality of $\boldsymbol{r}^{(k+1)}$ to both $\boldsymbol{r}^{(k)},\boldsymbol{d}^{(k)}$ proved in Theorem 5(2). Then, for both β and α , we used in (c) the property $(\boldsymbol{d}^{(k)},\boldsymbol{r}^{(k)})=\|\boldsymbol{r}^{(k)}\|^2$ which follows from (8) with index k+1, taking in account orthogonality $\boldsymbol{r}^{(k+1)}\perp\boldsymbol{d}^{(k)}$. Secondly, we let $\boldsymbol{x}^{(0)}$ be the zero vector.

Standard form of the conjugate gradient method

Here it is.

- (1) Set k = 0, $\mathbf{x}^{(0)} = 0$, $\mathbf{r}^{(0)} = \mathbf{b}$, and $\mathbf{d}^{(0)} = \mathbf{r}^{(0)}$;
- (2) Calculate the matrix-vector product $\mathbf{v}^{(k)} = A\mathbf{d}^{(k)}$ and $\alpha_k = \|\mathbf{r}^{(k)}\|^2/(\mathbf{d}^{(k)}, \mathbf{v}^{(k)}) > 0$;
- (3) Apply the formulae $\mathbf{x}^{(k+1)} = \mathbf{x}^{(k)} + \alpha_k \mathbf{d}^{(k)}$ and $\mathbf{r}^{(k+1)} = \mathbf{r}^{(k)} \alpha_k \mathbf{v}^{(k)}$;
- (4) Stop if $||\mathbf{r}^{(k+1)}||$ is acceptably small;
- (5) Set $\mathbf{d}^{(k+1)} = \mathbf{r}^{(k+1)} + \beta_k \mathbf{d}^{(k)}$, where
- $\beta_k = \|\mathbf{r}^{(k+1)}\|^2 / \|\mathbf{r}^{(k)}\|^2 > 0;$
- (6) Increase $k \to k+1$ and go back to (2).

Standard form of the conjugate gradient method

The total work is dominated by the number of iterations, multiplied by the time it takes to compute $\mathbf{v}^{(k)} = A\mathbf{d}^{(k)}$. Thus the conjugate gradient algorithm is highly suitable when most of the elements of A are zero, i.e. when A is *sparse*.