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/29



Iterative methods for linear algebraic systems
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The methods we considered so far for solving Ax = b, namely
Jacobi, Gauss-Seidel, and those with relaxation, fit into the scheme

where we were aimed at getting p(H) < 1 for the iteration matix H.

Say, for Jacobi with relaxation, we set ¢, = w and

d) = D=1(b — Ax(K).

For solving Ax = b with a (positive definite) matrix A > 0, there is
a different approach to constructing good iterative methods. It is
based on succesive minimization of the quadratic function

F(xM) =[x —xB)5 = eM]3,

since the minimizer is clearly the exact solution. Here,

lylla:= (Ay,y)Y/2 := \/yT Ay is a Euclidean-type distance which is
well-defined for A > 0.
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So, at each step k, we are decreasing the A-distance between x(K)

and the exact solution x*. Thus, for a symmetric positive definite
A > 0, we choose an iterative method that provides the descent
condition

xFD) = x(K) 4 d® = F(xkHD) < F(x(K)). (1)



An equivalent approach is to minimize the quadratic function

Fi(x) = éxTAx —x'b,
which attains its minimum when VFi(x) = Ax — b = 0, and which
does not involve the unknown x*. It is easy to check that

Fi(x) = 3F(x) — 3¢, where ¢ = x*T Ax* is a constant independent
of k, hence equivalence.
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Quadratic function — Jacobi and Gauss—Seidel

Both the Jacobi and the Gauss—Seidel methods satisfy (1), precisely

(Aelht1) elk+1)) — (Ae(k) ey — (Cy() y(h) < (Aelh) eK)),

where for Gauss-Seidel: C =D > 0, y(k) .= (Lo + D)_lAe(k);

and for Jacobi: C=2D—A>0, yk =D 1Ael.
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A-orthogonal projection method: Next, we strengthen the
descent condition (1), namely given x(k) and some d(¥) (called a
search direction), we will seek x(**1) from the set of vectors on the
line £ = {x(X)+ad(},cp such that it makes the value of F(x(k*1))
not just smaller than F(x(K)), but as small as possible (with respect
to this set), namely

x5+ = arg min F(x%) + ad(¥)) . (2)
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A-orthogonal projection

Lemma 1
The minimizer in (2) is given by the formula

k k
D) = 30 4 o d® | a (r(0),dX)

~ (Ad®), g
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Proof. From the definition of F, it follows that in (2) we should
choose the point x(k*t1) ¢ ¢ that minimizes the A-distance between
x* and the points y € /. Geometrically, it is clear that the minimum
occurs when x(K1) is the A-orthogonal projection of x* onto the
line £ = {x(¥) + ad(®}, i.e., when

x* —x+D dk) = Axt — x(EFD) L 0
= kD) = (k) _ o Ad0) L d(F)

This gives expression for ay in (3). O
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The steepest descent method: This method takes

d) =_vVF(x(K)) = b — Ax(¥) for every k, the reason being that,
locally, the negative gradient of a quadratic function shows the
direction of the (locally) steepest descent at a given point. Thus,
the iterations have the form

xFD) = x() Lo (b — AxK)), k>0, (4)

It can be proved that the sequence (x(k)) converges to the solution
x* of the system Ax = b as required, but usually the speed of
convergence is rather slow.

The reason is that the iteration (4) decreases the value of F(x(kt1))
locally, relatively to F(x(¥)), but the global decrease, with respect to
F(x(o)), is often not that large. The use of conjugate directions
provides a method with a global minimization property.
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Steepest descent and conjugate gradient

3 2 g 0 i 2 3 73 2 =} o i 2 3
(a) Worst case scenario of steepest descent (b) Conjugate gradient method applied to the same
problem as in (a)
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Conjugate directions

Definition 2 (Conjugate directions)
The vectors u,v € R" are conjugate with respect to a symmetric
positive definite matrix A if they are nonzero and A-orthogonal:

(u,v)a := (Au,v) = 0.
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Theorem 3 (Non-examinable)

Given A€ R™" A >0, let {d(k)}z;é be a set of the conjugate
directions, i.e., (Ad®) d()) = 0 for i < k. Then the value of
F(x(™t1)Y obtained through step-by-step minimization for each
k = 0..m as described in (3) coincides with the minimum of F(y)
taken over all y = x(©) + Yo crd® simultaneously, namely

arg min F(y) = x(M1) = xO) 4 Zakd(k) :

€05--+5Cm =0
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Proof. Again, it is clear geometrically that the minimal A-distance
between the exact solution x* and the points y on the plane

= {xO 37 ckd( . ¢k € R} is attained when x(mt1) ¢ P is
the A-orthogonal prOJectlon of x* onto P, i.e.,

arg m|7r; Fy) =xm1) o x* —x(m) |, (d0np
ye

It can be shown then, that (for conjugate {d(¥)}) the latter

conditions provide expressions for ay as given in (3). O
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So, if a sequence (d(k)) of conjugate directions is at hands, we have
an iterative procedure with good approximation properties.

The (A-orthogonal) basis of conjugate directions is constructed by
A-orthogonalization of the sequence {rg, Arg, Arg, ..., A" 1ro} with
ro = b — Axg. This is done in the way similar to orthogonalization
of the monomial sequence {1, x, x?
relation.

,...,x" 1} using a recurrence
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Remark 4

It is possible to extend the methods for solving Ax = b with
symmetric positive definite A to any other matrices by a simple
trick. Suppose we want to solve Bx = ¢, where B € R"*" ig
nonsingular. We can convert the above system to the symmetric
and positive definite setting by defining A= BB, b= B'c and
then solving Ax = b with the conjugate gradient algorithm (or
any other method for positive definite A).
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Here it is.
(A) For any initial vector x(©, set d(® = r(®) = b — Ax(®);
(B) For k > 0, calculate x(kt1) = x(k) ¢ o d®) and the residual

rkt1) — (k) — o, AdR), with

(0, 4(k)y (5)

a ::{r(k—l—l)J_d(k)}:m, k>0.

(C) For the same k, the next conjugate direction is the vector

dHD) — ((k+1) 1 g q(K)  ith
(1K), Ad) (©)

— [ dk+1) (v —
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Theorem 5 (Properties of CGM)

For every m > 0, the conjugate gradient method has the following
properties.

(1) The linear space spanned by the residuals {r()} is the same
as the linear space spanned by the conjugate directions {d()}
and it coincides with the space spanned by {Ar(9)}:

span{r()}7, = span{d}7, = span{ A0}
(2) The residuals satisfy  the orthogonality  conditions:
(r(m ¢y = (kM d))y =0 for i < m.

(3) The directions are conjugate (A-orthogonal): (dm d()), =
(d™ AdDY =0 for i < m.
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Proof. We use induction on m > 0, the assertions being trivial for
m =0, since d® = ¢(© and (2)-(3) are void. Therefore, assuming
that the assertions are true for some m = k, we ask if they remain
true when m =k + 1.
(1) Formula (6)

d(+1) — (k1) | g, g(k)

readily implies that equivalence of the spaces spanned by (r(i))é and
(d(i))é, is preserved when k is increased to k + 1. Similarly, from
plkt1) — (k) ozkAd(k) in (5), and from the inductive assumption
r(9), dk) e span{ Alr( 0}k, it follows that

(k1) € span{A’r(O)}kJr:l To see that AK+1r(0) ¢ span{r()} 1,
since a # 0, the claim follows by (5) if d¥) has a non-zero
component from Akr(o), and if not the claim follows from the
induction hypothesis.
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Proof. Cont. (2) Turning to assertion (2), we need r(k*1) | ¢(i) for
i < k, which by (1) is equivalent to

rcD 1 d) for i< k.
We have r(kt1) | d(K) by the definition of ay in (5), so we need
Pt D) &) _ o, ad0) | gD for i<k,

and this follow from the inductive assumptions r(k) L d and
Ad9 1 d().
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Proof. Cont. (3) It remains to justify (3), namely that d(**1)
defined in (6) satisfies

d D) | AdD) for i< k.

The value of B in (6) is defined to give d**1) 1 Ad%) so we need

d(k+1) (g) r(k—i—l) + ,Bkd(k) ik Ad(i) for i<k.

By the inductive hypothesis d®) 1 Ad), hence it remains to
establish that r(*t1) 1| Ad(") for i < k. Now, the formula (5) yields
Ad) = (¢() — (1)) /;, therefore we require the conditions
r(k+t1) | (¢() — ¢(i+1)) for i < k, and they are a consequence of the
assertion (2) for m = k + 1 obtained previously. O
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Corollary 6 (A termination property)

If the conjugate gradient method is applied in exact arithmetic, then,
for any x(©) € R", termination occurs after at most n iterations.
More precisely, termination occurs after at most s iterations, where
s = dimspan{A'rg 7;01 (which can be smaller than n).



Proof. Assertion (2) of Theorem 5 states that residuals (r(k)),q
form a sequence of mutually orthogonal vectors in R", therefore at
most n of them can be nonzero. Since they also belong to the space
span{A'rg 7:_01, their number is bounded by the dimension of that
space. Il
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Definition 7 (The Krylov subspaces)

Let A be an n x n matrix, v € R"” nonzero, and m € N. The
linear space Km(A,v) := span{A’v 7;61 is called the m-th Krylov
subspace of R".

Theorem 8 (Number of iterations in CGM)

Let A > 0, and let s be the number of its distinct eigenvalues.

Then, for any v,
dim Kpm(A,v) <s Vm. (7)

Hence, for any A > 0, the number of iterations of the CGM for
solving Ax = b is bounded by the number of distinct eigenvalues of
A.
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Proof. Inequality (7) is true not just for positive definite A > 0, but
for any A with n linearly independent eigenvectors (u;). Indeed, in
that case one can expand v = )" , a;u;, and then group together
eigenvectors with the same eigenvalues: for each )\, we set

w, =Y ¥ ajuj if Auj, = \u;,. Then

V=) " W, ¢ €4{0,1},

hence Alv = S 1 c A\ w,, thus for any m we get

Km(A,v) C span{wi,wy,...,ws}, and that proves (7). By
Corollary 6, the number of iteration in CGM is bounded by

dim K, (A, r(©), hence the final conclusion. O
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Remark 9

Theorem 8 shows that, unlike other iterative schemes, the
conjugate gradient method is both iterative and direct: each
iteration produces a reasonable approximation to the exact
solution, and the exact solution itself will be recovered after n
iterations at most.
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We now simplify and reformulate the CGM-algorithm.
Firstly, we rewrite expressions for the parameters ay and S in (5)-(6) as follows:

(), d@) (o [r)2

M= @ ad®) (@9, ad®y T
B = (6, AdW) @) (D) ) — (B ) (e ED)2 (o D2
T @R Ad®y T @R ) ) (@@ k) )2

Here, for 3, we used in (a) the fact that Ad(¥) is a multiple of r(kt1) — ¢(k) by (5),
and in (b) orthogonality of r(k+1) to both r(), d(¥) proved in Theorem 5(2). Then,
for both 8 and a, we used in (c) the property (d(¥), r(K)) = [|¢(¥)||2 which follows
from (6) with index k + 1, taking in account orthogonality r(k*1) 1d),

Secondly, we let x(9) be the zero vector.

>0.
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Here it is.

(1) Set k=0, x(® =0, ¥ = b, and d© = (),

(2) Calculate the matrix-vector product v(k) = Ad(¥) and
= [|r((2/(d, v()) > 0;

(3) Apply the formulae x(kt1) = x(*) 1 ¢, d%) and

p(k1) = ¢(k) — (k).

(4) Stop if [[r*t1)|| is acceptably small;

(5) Set dk+1) = (k1) 1 3,d(K) where

Bre = [Ir* D 2/||r12 > o;

(6) Increase k — k + 1 and go back to (2).
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Standard form of the conjugate gradient method

The total work is dominated by the number of iterations, multiplied
by the time it takes to compute v(K) = Ad¥). Thus the conjugate
gradient algorithm is highly suitable when most of the elements of A
are zero, i.e. when A is sparse.
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