Numerical Analysis - Part II

Anders C. Hansen

Lecture 20

Iterative methods for linear algebraic systems

Minimization of quadratic function

The methods we considered so far for solving $A\mathbf{x} = \mathbf{b}$, namely Jacobi, Gauss-Seidel, and those with relaxation, fit into the scheme

$$\mathbf{x}^{(k+1)} = \mathbf{x}^{(k)} + c_k \mathbf{d}^{(k)},$$

where we were aimed at getting $\rho(H) < 1$ for the iteration matix H. Say, for Jacobi with relaxation, we set $c_k = \omega$ and $\mathbf{d}^{(k)} = D^{-1}(\mathbf{b} - A\mathbf{x}^{(k)})$. For solving $A\mathbf{x} = \mathbf{b}$ with a (positive definite) matrix A > 0, there is a different approach to constructing good iterative methods. It is based on succesive minimization of the quadratic function

$$F(\mathbf{x}^{(k)}) := \|\mathbf{x}^* - \mathbf{x}^{(k)}\|_A^2 = \|\mathbf{e}^{(k)}\|_A^2,$$

since the minimizer is clearly the exact solution. Here, $\|\mathbf{y}\|_A := (A\mathbf{y}, \mathbf{y})^{1/2} := \sqrt{\mathbf{y}^T A \mathbf{y}}$ is a Euclidean-type distance which is well-defined for A > 0.

So, at each step k, we are decreasing the A-distance between $\mathbf{x}^{(k)}$ and the exact solution \mathbf{x}^* . Thus, for a symmetric positive definite A > 0, we choose an iterative method that provides the descent condition

$$\mathbf{x}^{(k+1)} = \mathbf{x}^{(k)} + c_k \mathbf{d}^{(k)} \quad \Rightarrow \quad F(\mathbf{x}^{(k+1)}) < F(\mathbf{x}^{(k)}). \tag{1}$$

An equivalent approach is to minimize the quadratic function

$$F_1(\mathbf{x}) = \frac{1}{2}\mathbf{x}^T A \mathbf{x} - \mathbf{x}^T \mathbf{b},$$

which attains its minimum when $\nabla F_1(\mathbf{x}) = A\mathbf{x} - \mathbf{b} = 0$, and which does not involve the unknown \mathbf{x}^* . It is easy to check that $F_1(\mathbf{x}) = \frac{1}{2}F(\mathbf{x}) - \frac{1}{2}c$, where $c = \mathbf{x}^{*T}A\mathbf{x}^*$ is a constant independent of k, hence equivalence.

Both the Jacobi and the Gauss-Seidel methods satisfy (1), precisely $(A\mathbf{e}^{(k+1)}, e^{(k+1)}) = (A\mathbf{e}^{(k)}, \mathbf{e}^{(k)}) - (C\mathbf{y}^{(k)}, \mathbf{y}^{(k)}) < (A\mathbf{e}^{(k)}, \mathbf{e}^{(k)}),$ where for Gauss-Seidel: C = D > 0, $\mathbf{y}^{(k)} := (L_0 + D)^{-1}A\mathbf{e}^{(k)};$ and for Jacobi: C = 2D - A > 0, $\mathbf{y}^{(k)} := D^{-1}A\mathbf{e}^{(k)}.$ A-orthogonal projection method: Next, we strengthen the descent condition (1), namely given $\mathbf{x}^{(k)}$ and some $\mathbf{d}^{(k)}$ (called a *search direction*), we will seek $\mathbf{x}^{(k+1)}$ from the set of vectors on the line $\ell = {\mathbf{x}^{(k)} + \alpha \mathbf{d}^{(k)}}_{\alpha \in \mathbb{R}}$ such that it makes the value of $F(\mathbf{x}^{(k+1)})$ not just smaller than $F(\mathbf{x}^{(k)})$, but as small as possible (with respect to this set), namely

$$\mathbf{x}^{(k+1)} := \arg\min_{\alpha} F(\mathbf{x}^{(k)} + \alpha \mathbf{d}^{(k)}).$$
(2)

Lemma 1 The minimizer in (2) is given by the formula

$$\mathbf{x}^{(k+1)} = \mathbf{x}^{(k)} + \alpha_k \mathbf{d}^{(k)}, \qquad \alpha_k = \frac{(\mathbf{r}^{(k)}, \mathbf{d}^{(k)})}{(A\mathbf{d}^{(k)}, \mathbf{d}^{(k)})}.$$
(3)

Proof. From the definition of *F*, it follows that in (2) we should choose the point $\mathbf{x}^{(k+1)} \in \ell$ that minimizes the *A*-distance between \mathbf{x}^* and the points $\mathbf{y} \in \ell$. Geometrically, it is clear that the minimum occurs when $\mathbf{x}^{(k+1)}$ is the A-orthogonal projection of \mathbf{x}^* onto the line $\ell = {\mathbf{x}^{(k)} + \alpha \mathbf{d}^{(k)}}$, i.e., when

$$\mathbf{x}^* - \mathbf{x}^{(k+1)} \perp_A \mathbf{d}^{(k)} \Rightarrow A(\mathbf{x}^* - \mathbf{x}^{(k+1)}) \perp \mathbf{d}^{(k)} \Rightarrow \mathbf{r}^{(k+1)} = \mathbf{r}^{(k)} - \alpha_k A \mathbf{d}^{(k)} \perp \mathbf{d}^{(k)}$$

This gives expression for α_k in (3).

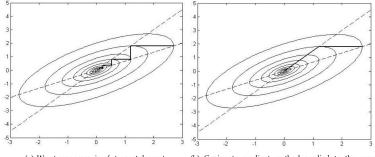
The steepest descent method: This method takes $\mathbf{d}^{(k)} = -\nabla F_1(\mathbf{x}^{(k)}) = \mathbf{b} - A\mathbf{x}^{(k)}$ for every k, the reason being that, locally, the negative gradient of a quadratic function shows the direction of the (locally) steepest descent at a given point. Thus, the iterations have the form

$$\mathbf{x}^{(k+1)} = \mathbf{x}^{(k)} + \alpha_k (\mathbf{b} - A \mathbf{x}^{(k)}), \qquad k \ge 0.$$
(4)

It can be proved that the sequence $(\mathbf{x}^{(k)})$ converges to the solution \mathbf{x}^* of the system $A\mathbf{x} = \mathbf{b}$ as required, but usually the speed of convergence is rather slow.

The reason is that the iteration (4) decreases the value of $F(\mathbf{x}^{(k+1)})$ locally, relatively to $F(\mathbf{x}^{(k)})$, but the global decrease, with respect to $F(\mathbf{x}^{(0)})$, is often not that large. The use of *conjugate directions* provides a method with a global minimization property.

Steepest descent and conjugate gradient



(a) Worst case scenario of steepest descent

(b) Conjugate gradient method applied to the same problem as in (a)

Definition 2 (Conjugate directions)

The vectors $\mathbf{u}, \mathbf{v} \in \mathbb{R}^n$ are *conjugate* with respect to a symmetric positive definite matrix A if they are nonzero and A-orthogonal: $(\mathbf{u}, \mathbf{v})_A := (A\mathbf{u}, \mathbf{v}) = 0.$

Theorem 3 (Non-examinable)

Given $A \in \mathbb{R}^{n \times n}$, A > 0, let $\{\mathbf{d}^{(k)}\}_{k=0}^{n-1}$ be a set of the conjugate directions, i.e., $(A\mathbf{d}^{(k)}, \mathbf{d}^{(i)}) = 0$ for i < k. Then the value of $F(\mathbf{x}^{(m+1)})$ obtained through step-by-step minimization for each k = 0..m as described in (3) coincides with the minimum of $F(\mathbf{y})$ taken over all $\mathbf{y} = \mathbf{x}^{(0)} + \sum_{k=0}^{m} c_k \mathbf{d}^{(k)}$ simultaneously, namely

$$\arg\min_{c_0,\ldots,c_m} F(\mathbf{y}) = \mathbf{x}^{(m+1)} = \mathbf{x}^{(0)} + \sum_{k=0}^m \alpha_k \mathbf{d}^{(k)}$$

Proof. Again, it is clear geometrically that the minimal *A*-distance between the exact solution \mathbf{x}^* and the points \mathbf{y} on the plane $\mathcal{P} := {\mathbf{x}^{(0)} + \sum_{k=0}^{m} c_k \mathbf{d}^{(k)} : c_k \in \mathbb{R}}$ is attained when $\mathbf{x}^{(m+1)} \in \mathcal{P}$ is the *A*-orthogonal projection of \mathbf{x}^* onto \mathcal{P} , i.e.,

$$\arg\min_{\mathbf{y}\in\mathcal{P}}F(\mathbf{y})=\mathbf{x}^{(m+1)} \quad \Leftrightarrow \quad \mathbf{x}^*-\mathbf{x}^{(m+1)}\perp_A \{\mathbf{d}^{(k)}\}_{k=0}^m.$$

It can be shown then, that (for conjugate $\{\mathbf{d}^{(k)}\}\)$ the latter conditions provide expressions for α_k as given in (3).

So, if a sequence $(\mathbf{d}^{(k)})$ of conjugate directions is at hands, we have an iterative procedure with good approximation properties. The (*A*-orthogonal) basis of conjugate directions is constructed by *A*-orthogonalization of the sequence $\{\mathbf{r}_0, A\mathbf{r}_0, A^2\mathbf{r}_0, ..., A^{n-1}\mathbf{r}_0\}$ with $\mathbf{r}_0 = \mathbf{b} - A\mathbf{x}_0$. This is done in the way similar to orthogonalization of the monomial sequence $\{1, x, x^2, ..., x^{n-1}\}$ using a recurrence relation.

Remark 4

It is possible to extend the methods for solving $A\mathbf{x} = \mathbf{b}$ with symmetric positive definite A to any other matrices by a simple trick. Suppose we want to solve $B\mathbf{x} = \mathbf{c}$, where $B \in \mathbb{R}^{n \times n}$ is nonsingular. We can convert the above system to the symmetric and positive definite setting by defining $A = B^T B$, $\mathbf{b} = B^T \mathbf{c}$ and then solving $A\mathbf{x} = \mathbf{b}$ with the conjugate gradient algorithm (or any other method for positive definite A).

The conjugate gradient method

Here it is.

(A) For any initial vector $\mathbf{x}^{(0)}$, set $\mathbf{d}^{(0)} = \mathbf{r}^{(0)} = \mathbf{b} - A\mathbf{x}^{(0)}$; (B) For $k \ge 0$, calculate $\mathbf{x}^{(k+1)} = \mathbf{x}^{(k)} + \alpha_k \mathbf{d}^{(k)}$ and the residual

$$\mathbf{r}^{(k+1)} = \mathbf{r}^{(k)} - \alpha_k A \mathbf{d}^{(k)}, \quad \text{with} \\ \alpha_k := \{ \mathbf{r}^{(k+1)} \perp \mathbf{d}^{(k)} \} = \frac{(\mathbf{r}^{(k)}, \mathbf{d}^{(k)})}{(A \mathbf{d}^{(k)}, \mathbf{d}^{(k)})}, \quad k \ge 0.$$
(5)

(C) For the same k, the next conjugate direction is the vector

$$\mathbf{d}^{(k+1)} = \mathbf{r}^{(k+1)} + \beta_k \mathbf{d}^{(k)}, \quad \text{with}$$

$$\beta_k := \{ \mathbf{d}^{(k+1)} \perp A \mathbf{d}^{(k)} \} = -\frac{(\mathbf{r}^{(k+1)}, A \mathbf{d}^{(k)})}{(\mathbf{d}^{(k)}, A \mathbf{d}^{(k)})}, \quad k \ge 0.$$
(6)

Theorem 5 (Properties of CGM)

For every $m \ge 0$, the conjugate gradient method has the following properties.

The linear space spanned by the residuals {r⁽ⁱ⁾} is the same as the linear space spanned by the conjugate directions {d⁽ⁱ⁾} and it coincides with the space spanned by {Aⁱr⁽⁰⁾}:

$$\operatorname{span}\{\mathbf{r}^{(i)}\}_{i=0}^{m} = \operatorname{span}\{\mathbf{d}^{(i)}\}_{i=0}^{m} = \operatorname{span}\{A^{i}\mathbf{r}^{(0)}\}_{i=0}^{m}.$$

- (2) The residuals satisfy the orthogonality conditions: $(\mathbf{r}^{(m)}, \mathbf{r}^{(i)}) = (\mathbf{r}^{(m)}, \mathbf{d}^{(i)}) = 0$ for i < m.
- (3) The directions are conjugate (A-orthogonal): $(\mathbf{d}^{(m)}, \mathbf{d}^{(i)})_A = (\mathbf{d}^{(m)}, A\mathbf{d}^{(i)}) = 0$ for i < m.

Proof. We use induction on $m \ge 0$, the assertions being trivial for m = 0, since $\mathbf{d}^{(0)} = \mathbf{r}^{(0)}$ and (2)-(3) are void. Therefore, assuming that the assertions are true for some m = k, we ask if they remain true when m = k + 1.

(1) Formula (6)

$$\mathbf{d}^{(k+1)} = \mathbf{r}^{(k+1)} + \beta_k \mathbf{d}^{(k)}$$

readily implies that equivalence of the spaces spanned by $(\mathbf{r}^{(i)})_0^k$ and $(\mathbf{d}^{(i)})_0^k$, is preserved when k is increased to k + 1. Similarly, from $\mathbf{r}^{(k+1)} = \mathbf{r}^{(k)} - \alpha_k A \mathbf{d}^{(k)}$ in (5), and from the inductive assumption $\mathbf{r}^{(k)}, \mathbf{d}^{(k)} \in \operatorname{span}\{A^i \mathbf{r}^{(0)}\}_{i=0}^k$, it follows that $\mathbf{r}^{(k+1)} \in \operatorname{span}\{A^i \mathbf{r}^{(0)}\}_{i=0}^{k+1}$. To see that $A^{k+1} \mathbf{r}^{(0)} \in \operatorname{span}\{\mathbf{r}^{(i)}\}_{i=0}^{k+1}$, since $\alpha_k \neq 0$, the claim follows by (5) if $\mathbf{d}^{(k)}$ has a non-zero component from $A^k \mathbf{r}^{(0)}$, and if not the claim follows from the induction hypothesis.

Proof. Cont. (2) Turning to assertion (2), we need $\mathbf{r}^{(k+1)} \perp \mathbf{r}^{(i)}$ for $i \leq k$, which by (1) is equivalent to

$$\mathbf{r}^{(k+1)} \perp \mathbf{d}^{(i)}$$
 for $i \leq k$.

We have $\mathbf{r}^{(k+1)} \perp \mathbf{d}^{(k)}$ by the definition of α_k in (5), so we need

$$\mathbf{r}^{(k+1)} \stackrel{(5)}{=} \mathbf{r}^{(k)} - \alpha_k A \mathbf{d}^{(k)} \perp \mathbf{d}^{(i)} \quad \text{for} \quad i < k \,,$$

and this follow from the inductive assumptions $\mathbf{r}^{(k)} \perp \mathbf{d}^{(i)}$ and $A\mathbf{d}^{(k)} \perp \mathbf{d}^{(i)}$.

Proof. Cont. (3) It remains to justify (3), namely that $\mathbf{d}^{(k+1)}$ defined in (6) satisfies

$$\mathbf{d}^{(k+1)} \perp A \mathbf{d}^{(i)}$$
 for $i \leq k$.

The value of β_k in (6) is defined to give $\mathbf{d}^{(k+1)} \perp A\mathbf{d}^{(k)}$, so we need

$$\mathbf{d}^{(k+1)} \stackrel{(6)}{=} \mathbf{r}^{(k+1)} + \beta_k \mathbf{d}^{(k)} \perp A \mathbf{d}^{(i)} \quad \text{for} \quad i < k \,.$$

By the inductive hypothesis $\mathbf{d}^{(k)} \perp A\mathbf{d}^{(i)}$, hence it remains to establish that $\mathbf{r}^{(k+1)} \perp A\mathbf{d}^{(i)}$ for i < k. Now, the formula (5) yields $A\mathbf{d}^{(i)} = (\mathbf{r}^{(i)} - \mathbf{r}^{(i+1)})/\alpha_i$, therefore we require the conditions $\mathbf{r}^{(k+1)} \perp (\mathbf{r}^{(i)} - \mathbf{r}^{(i+1)})$ for i < k, and they are a consequence of the assertion (2) for m = k + 1 obtained previously.

Corollary 6 (A termination property)

If the conjugate gradient method is applied in exact arithmetic, then, for any $\mathbf{x}^{(0)} \in \mathbb{R}^n$, termination occurs after at most n iterations. More precisely, termination occurs after at most s iterations, where $s = \dim \operatorname{span} \{A^i \mathbf{r}_0\}_{i=0}^{n-1}$ (which can be smaller than n). **Proof.** Assertion (2) of Theorem 5 states that residuals $(\mathbf{r}^{(k)})_{k\geq 0}$ form a sequence of mutually orthogonal vectors in \mathbb{R}^n , therefore at most *n* of them can be nonzero. Since they also belong to the space span $\{A^i\mathbf{r}_0\}_{i=0}^{n-1}$, their number is bounded by the dimension of that space.

The Krylov subspaces

Definition 7 (The Krylov subspaces)

Let A be an $n \times n$ matrix, $\mathbf{v} \in \mathbb{R}^n$ nonzero, and $m \in \mathbb{N}$. The linear space $K_m(A, \mathbf{v}) := \operatorname{span}\{A^i \mathbf{v}\}_{i=0}^{m-1}$ is called the *m*-th Krylov subspace of \mathbb{R}^n .

Theorem 8 (Number of iterations in CGM)

Let A > 0, and let s be the number of its distinct eigenvalues. Then, for any \mathbf{v} ,

$$\dim K_m(A, \mathbf{v}) \leq s \quad \forall m.$$
(7)

Hence, for any A > 0, the number of iterations of the CGM for solving $A\mathbf{x} = \mathbf{b}$ is bounded by the number of distinct eigenvalues of A.

Proof. Inequality (7) is true not just for positive definite A > 0, but for any A with n linearly independent eigenvectors (\mathbf{u}_i) . Indeed, in that case one can expand $\mathbf{v} = \sum_{i=1}^{n} a_i \mathbf{u}_i$, and then group together eigenvectors with the same eigenvalues: for each λ_{ν} we set $\mathbf{w}_{\nu} = \sum_{k=1}^{m_{\nu}} a_{i_k} \mathbf{u}_{i_k}$ if $A\mathbf{u}_{i_k} = \lambda_{\nu} \mathbf{u}_{i_k}$. Then

$$\mathbf{v} = \sum_{\nu=1}^{s} c_{\nu} \mathbf{w}_{\nu} , \qquad c_{\nu} \in \{0,1\} ,$$

hence $A^i \mathbf{v} = \sum_{\nu=1}^{s} c_{\nu} \lambda_{\nu}^i \mathbf{w}_{\nu}$, thus for any m we get $K_m(A, \mathbf{v}) \subseteq \operatorname{span}\{\mathbf{w}_1, \mathbf{w}_2, \dots, \mathbf{w}_s\}$, and that proves (7). By Corollary 6, the number of iteration in CGM is bounded by $\dim K_m(A, \mathbf{r}^{(0)})$, hence the final conclusion.

Remark 9

Theorem 8 shows that, unlike other iterative schemes, the conjugate gradient method is both iterative and direct: each iteration produces a reasonable approximation to the exact solution, and the exact solution itself will be recovered after n iterations at most.

Simplifying the CGM-algorithm

We now simplify and reformulate the CGM-algorithm.

Firstly, we rewrite expressions for the parameters α_k and β_k in (5)-(6) as follows:

$$\begin{aligned} \alpha_{k} &= \frac{(\mathbf{r}^{(k)}, \mathbf{d}^{(k)})}{(\mathbf{d}^{(k)}, A\mathbf{d}^{(k)})} \stackrel{(c)}{=} \frac{\|\mathbf{r}^{(k)}\|^{2}}{(\mathbf{d}^{(k)}, A\mathbf{d}^{(k)})} > 0, \\ \beta_{k} &= -\frac{(\mathbf{r}^{(k+1)}, A\mathbf{d}^{(k)})}{(\mathbf{d}^{(k)}, A\mathbf{d}^{(k)})} \stackrel{(a)}{=} -\frac{(\mathbf{r}^{(k+1)}, \mathbf{r}^{(k+1)} - \mathbf{r}^{(k)})}{(\mathbf{d}^{(k)}, \mathbf{r}^{(k+1)} - \mathbf{r}^{(k)})} \stackrel{(b)}{=} \frac{\|\mathbf{r}^{(k+1)}\|^{2}}{(\mathbf{d}^{(k)}, \mathbf{r}^{(k)})} \stackrel{(c)}{=} \frac{\|\mathbf{r}^{(k+1)}\|^{2}}{\|\mathbf{r}^{(k)}\|^{2}} > 0. \end{aligned}$$

Here, for β , we used in (a) the fact that $A\mathbf{d}^{(k)}$ is a multiple of $\mathbf{r}^{(k+1)} - \mathbf{r}^{(k)}$ by (5), and in (b) orthogonality of $\mathbf{r}^{(k+1)}$ to both $\mathbf{r}^{(k)}, \mathbf{d}^{(k)}$ proved in Theorem 5(2). Then, for both β and α , we used in (c) the property $(\mathbf{d}^{(k)}, \mathbf{r}^{(k)}) = \|\mathbf{r}^{(k)}\|^2$ which follows from (6) with index k + 1, taking in account orthogonality $\mathbf{r}^{(k+1)} \perp \mathbf{d}^{(k)}$. Secondly, we let $\mathbf{x}^{(0)}$ be the zero vector.

Here it is.

(1) Set k = 0, $\mathbf{x}^{(0)} = 0$, $\mathbf{r}^{(0)} = \mathbf{b}$, and $\mathbf{d}^{(0)} = \mathbf{r}^{(0)}$;

(2) Calculate the matrix-vector product $\mathbf{v}^{(k)} = A\mathbf{d}^{(k)}$ and $\alpha_k = \|\mathbf{r}^{(k)}\|^2/(\mathbf{d}^{(k)}, \mathbf{v}^{(k)}) > 0;$ (3) Apply the formulae $\mathbf{x}^{(k+1)} = \mathbf{x}^{(k)} + \alpha_k \mathbf{d}^{(k)}$ and

(3) Apply the formulae
$$\mathbf{x}^{(k+1)} = \mathbf{x}^{(k)} + \alpha_k \mathbf{a}^{(k)}$$
 a
 $\mathbf{r}^{(k+1)} = \mathbf{r}^{(k)} - \alpha_k \mathbf{v}^{(k)};$

(4) Stop if
$$\|\mathbf{r}^{(k+1)}\|$$
 is acceptably small;

(5) Set
$$\mathbf{d}^{(k+1)} = \mathbf{r}^{(k+1)} + \beta_k \mathbf{d}^{(k)}$$
, where $\beta_k = \|\mathbf{r}^{(k+1)}\|^2 / \|\mathbf{r}^{(k)}\|^2 > 0$;

(6) Increase $k \rightarrow k+1$ and go back to (2).

The total work is dominated by the number of iterations, multiplied by the time it takes to compute $\mathbf{v}^{(k)} = A\mathbf{d}^{(k)}$. Thus the conjugate gradient algorithm is highly suitable when most of the elements of Aare zero, i.e. when A is *sparse*.