Numerical Analysis - Part Il

Anders C. Hansen

Lecture 24
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Eigenvalues and eigenvectors
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Theorem 1

Let A and S be n x n matrices, S being nonsingular. Then w is an
eigenvector of A with eigenvalue X if and only ifw = Sw is an
eigenvector of A = SAS™! with the same eigenvalue.

Proof.
Aw = dw & ASTI(Sw) =) w & (SASTH)(Sw) = \(Sw).

g

25



Suppose that we have found one solution of the eigenvector
equation Aw = Aw, where A is again n x n. Then deflation is the
task of constructing an (n—1) x (n—1) matrix, B say, whose
eigenvalues are the other eigenvalues of A. Specifically, we apply a
similarity transformation S to A such that the first column of

A= SAS~1is ) times the first coordinate vector e1, because it
follows from the characteristic equation for eigenvalues and from
Theorem 1 that we can let B be the bottom right (n — 1) x (n — 1)
submatrix of A= SAS~1. In particular,

A B

SASl = A= .
0 B
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We write the condition on S as (SAS~1)e; = \e;. Then the last
equation in the proof of Theorem 1 shows that it is sufficient if S
has the property Sw = cej, where ¢ is any nonzero scalar.
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Suppose that A is symmetric and w € R", A € R are given so that
Aw = Aw. We seek a nonsingular matrix S such that Sw = ce;
and such that SAS™! is also symmetric. The last condition holds if
S is orthogonal, since then S1 =87 Itis suitable to pick a
Householder reflection, which means that S has the form

H,=1—2uu”/||lu|?, where uecR"

6
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Specifically, we recall from the Numerical Analysis IB course that
Householder reflections are orthogonal and that, because H,u = —u
and H,v = v if u’v = 0, they reflect any vector in R” with respect
to the (n—1)-dimensional hyperplane orthogonal to u. So, for any
two vectors x and y of equal lengths,

Hyx =y, where u=x-y.

Hence,

uu’
(/ — 2||“H2> w = *|lw|e;, where u=wF|wle;.
Since the bottom n—1 components of u and w coincide, the
calculation of u requires only O(n) computer operations. Further,
the calculation of SAS~! can be done in only O(n?) operations,
taking advantage of the form S =/ — 2uu’ /||u||?, even if all the
elements of A are nonzero.

~
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After deflation, we may find an eigenvector, w say, of SAS~ 1. Then
the new eigenvector of A, according to Theorem 1, is S~ lw = Sw,
because Householder matrices, like all symmetric orthogonal
matrices, are involutions: S% = I.
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The notation QU] denotes the following n x n matrix

Qlivl —

i

4

i

Generally, for any vector a, € R", we can find a matrix QU] such that

Qlivla =

aik

ank

i

—J

— ik
€= a2 +az ’
ik T Tk

ajk

2, 27
i tag

— /2.2
r = a,.kJrajkA

s =
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1) We can choose QU] so that any prescribed element aj in the
j-th row of A ZNQ[iJ]A is zero.
2) The rows of A= QUJIA are the same as the rows of A, except

that the j-th and j-th rows of the product are linear combinations of
the i-th and j-th rows of A.

3) The columns of A = AQUIIT are the same as the columns of A,

except that the i-th and j-th columns of A are linear combinations
of the i-th and j-th columns of A.
4) Qlivl is an orthogonal matrix, thus A = QU AQUIT inherits the
eigenvalues of A. R
5) If Ais symmetric, then so is A.
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Transformation to an upper Hessenberg form: We replace A by A= SAS1,
where S is a product of Givens rotations QUW] chosen to annihilate subsubdiagonal

elements a; ;1 in the (/—1)-st column:

%k % % ¢k ok k * @@k 5k ok ok xOk®
skkok | g3, | eee@ |  op3T | xeex [ gpa, |eeee | opaT [xexe
N = — —

% k% Oeee Oeex 0 % Oexe

% % sk % * % K % * @@ % Oeee Oexe

* kK x **koe
QB Ay | kEk kR | L QBAT | kxee
— =

Qeee Oxee

0Qee 0Qee

The e-elements have changed through a single transformation while the x-elements remained the same.

It is seen that every element that we have set to zero remains zero, and the final
outcome is indeed an upper Hessenberg matrix. If A is symmetric then so will be the
outcome of the calculation, hence it will be tridiagonal. In general, the cost of this

procedure is O(n3).
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Alternatively, we can transform A to upper Hessenberg using Householder reflections,
rather than Givens rotations. In that case we deal with a c~o|umn at a time, taking u
such that, with H, = | — 2uu” /||u||?, the i-th column of B = H,B is consistent with
the upper Hessenberg form. Such a u has its first i coordinates vanishing, therefore
B= BH[ has the first i columns unchanged, and all new and old zeros (which are in
the first i columns) stay untouched.

* ok koK K * %k koK K EX XX X * ok K K K xteee * ok K ok K x%%x0e
* ok k kK eccee xe00® EEEE xteee EEEE EEET X
Hy x x H{ Ha x xHy Hz x xHJ
sxkxx*x| — |Qoeee| — [Qeeee| — |Qeeee| — [Oxeee| — |Oxxxx| — [Oxxoe
* ok ok ok ok Oeecee Oeecee 0Qeee 0Qeee 0Qeee 0Oxee
Kk K K K Qeecee Qeecee 0Qeee 0Qeee 000ee 000ee
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The “plain vanilla” version of the QR algorithm is as follows. Set Ay = A.
For k =0,1,... calculate the QR factorization Ax = QxRk (here Qy is
n x n orthogonal and Ry is n X n upper triangular) and set Ax11 = Ri Qk.
The eigenvalues of Ayy1 are the same as the eigenvalues of Ay, since we
have

Ais1 = ReQ = Q  (QuRk) Qk = Q' Ak Qx, (1)

a similarity transformation. Moreover, Qk_l = QkT, therefore if Ay is
symmetric, then so is Axy1.

If for some k > 0 the matrix Ax 1 can be regarded as "deflated”, i.e. it
has the block form

B C
Ak+1 - )
E

where B, E are square and D~0, then we calculate the eigenvalues of B
and E separately (again, with QR, except that there is nothing to calculate
for 1x1 and 2x2 blocks). As it turns out, such a "deflation” occurs
surprisingly often.
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If A is upper Hessenberg, then its QR factorization by means of the
Givens rotations produces the matrix

Rk - Q/Z—Ak = Q[n—l,n] . 9[213]9[172]/4/( ,

which is upper triangular. The QR iteration sets
As1 = RQi = RQIATQRIIT ... QIn=1nIT "and it follows that
Ag+1 is also upper Hessenberg, because

¥ ok ok % ® e x x * o e x **xo®

Ok *xx | (quaAT [ @@ %% [ op3T [ x @ @ % [ o347 [ *x x @@
— — —

00 * % 00 * % ODeex Oxee

000 x 000 x 000 % 0Qee

Thus a strong advantage of bringing A to the upper Hessenberg
form initially is that then, in every iteration in QR algorithm, Qf is a
product of just n—1 Givens rotations. Hence each iteration of the
QR algorithm requires just O(n?) operations.
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We bring A to the upper Hessenberg form, so that the QR
algorithm commences from a symmetric tridiagonal matrix Ag, and
then the technique on the previous slide is applied for every k as
before. Since both the upper Hessenberg structure and symmetry is
retained, each Ay, 1 is also symmetric tridiagonal too.

It follows that, whenever a Givens rotation QU4 combines either
two adjacent rows or two adjacent columns of a matrix, the total
number of nonzero elements in the new combination of rows or
columns is at most five. Thus there is a bound on the work of each
rotation that is independent of n. Hence each QR iteration requires
just O(n) operations.
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To analyse the matrices Ax that occur in the QR algorithm 5.13, we
introduce

Qu = QQ1-- Q. Ri = RiRi—1- - Ro, k=0,1,.... (2)

Note that Qy is orthogonal and Ry upper triangular.
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Lemma 2 (Fundamental properties of Q, and Ry)

Ak+1 Is related to the original matrix A by the similarity transformation
Aky1 = QkTAQk. Further, QxRy is the QR factorization of Ak*+1.

Proof. We prove the first assertion by induction. By (1), we have
Al = QOTAoQQ = Q(;’-AQ() Assuming Ak = QIZ-—IAQ’(*L equations (1)-(2)
provide the first indentity

A1 = QL AQr = Q) (Q_1AQk_1)Qx = QF AQx .

The second assertion is true for k = 0, since @Ry = QR = Ag = A.
Again, we use induction, assuming Qi_1Re_1 = Ak, Thus, using the
definition (2) and the first statement of the lemma, we deduce that

QR = (Q_1Qk)(RkRk_1) = Qu_1AkRk_1 = Qx_1(Q)_1AQk_1)Rk_1
= AQu_1Ri_1 = A- Ak = Ak

and the lemma is true. O
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Assume that the eigenvalues of A have different magnitudes,
|)\1| < |)\2| <0< ’/\n’; and let e; = 27:1 CiW; = z:n:l CiW;

(3)
be the expansion of the first coordinate vector in terms of the

normalized eigenvectors of A, where m is the greatest integer such
that ¢, # 0.
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Consider the first columns of both sides of the matrix equation
Ak—‘rl — Okl_?k-

By the power method arguments, the vector Akt1le; is a multiple of
ST ci(Mi/Am) T tw;, so the first column of AK*1 tends to be a
multiple of wy, for k > 1. On the other hand, if q, is the first
column of Qx, then, since Ry is upper triangular, the first column of
QxR is a multiple of q.

Therefore q, tends to be a multiple of w,,. Further, because both
d, and wy, have unit length, we deduce that q, = £wp, + hy,
where hy tends to zero as k — oo. Therefore,

Aq, = Amay, +0(1), k— oco. (4)

19/25



Theorem 3 (The first column of Ay)

Let conditions (3) be satisfied. Then, as k — oo, the first column of
Ai tends to \me1, making Ay suitable for deflation.

Proof. By Lemma 2, the first column of Agy1 is (_QkTAlel, and,
using (4), we deduce that

- - - 4 - *
Acs1er = QT AQrer = Q) Aq, ®) Q/ [MmAi+o(1)] © Amei1+o(1),
where in (%) we used that (_Q,;qu = e; by orthogonality of Q, and

that ||Qxkx||2 = ||x||2 because an orthogonal mapping is an isometry.
O
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In practice, the statement of Theorem 3 is hardly ever important,
because usually, as k — oo, the off-diagonal elements in the bottom
row of Ax,1 tend to zero much faster than the off-diagonal
elements in the first column. The reason is that, besides the
connection with the power method, the QR algorithm also enjoys a
close relation with inverse iteration.

Let again

A1l <Xl << |Aol, andlet el =30 vl =31 vl

(5)
be the expansion of the last coordinate row vector e! in the basis of
normalized left eigenvectors of A, i.e. v,-TA = )\,-v,-T, where s is the
least integer such that ¢s # 0.
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Assuming that A is nonsingular, we can write the equation

ARFL = Qi Ry in the form A=() =R, 1Q[. Consider the bottom
rows of both sides of this equation: el A=(k+1) = (e R, 1)Q/ .

By the inverse iteration arguments, the vector eTA_(k+1) is a
multiple of >°7__ci(As/A; )"Jrl T, so the bottom row of A= (k+1)
tends to be multlple of v[. On the other hand, let p be the
bottom row of Qk . Slnce Rk is upper triangular, its inverse I_?k_l
upper triangular too, hence the bottom row of I_?,:IC_Q,(T, is a multiple
of p/.

Therefore, p[ tends to a multiple of v;’—, and, because of their unit
lengths, we have ka = :l:vsT + hkT, where hy — 0, i.e.,

plA=Ap] +0(1), k—oco. (6)



Theorem 4 (The bottom row of Ay)

Let conditions (5) be satisfied. Then, as k — oo, the bottom row of
Ay tends to )\se,z—, making Ay suitable for deflation.

Proof. By Lemma 2, the bottom row of Ag.1 is e,,T(_?,Z—AQk, and
similarly to the previous proof we obtain

- - - (6 -
el Acs1 = el QF AQk = pT AQ @ \ep] +0(1)] Qe = Ase +0(1).
(7)

the last equality by orthogonality of Q. O
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As we saw in previous lectures, there is a huge difference between
power iteration and inverse iteration: the latter can be accelerated
arbitrarily through the use of shifts. The better we can estimate

Sk = As, the more we can accomplish by a step of inverse iteration
with the shifted matrix A — s,/. Theorem 4 shows that the bottom
right element (Ax)nn becomes a good estimate of \s. So, in the
single shift technique, the matrix Ay is replaced by Ay —sk/, where
sk = (Ak)nn, before the QR factorization:

Ak — skl = QRu,
Akt1 = RiQu+ skl
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A good approximation s =(Ak)nn to the eigenvalue \s generates
even better approximation of sxi1 = (Ak+1)nn to As, and
convergence is accelerating at a higher and higher rate (it will be
the so-called cubic convergence |\s — ski1] < v |As — si|3). Note
that, similarly to the original QR iteration, we have

Acs1 = QI (QuRk + sk Qi = QF Ak Qe

hence Axy1 = QF AQx, but note also that Qx Ry # A TL, but we
have instead

Okf_?k = Hﬁ:o(A — sml)
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