Numerical Analysis - Part Il

Anders C. Hansen

Lecture 2
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Solving PDEs with finite difference methods
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Our goal is to solve the Poisson equation
Viu=f  (xy)eQ, (1)

2 2 . .
where V2 = A = % + 8872 is the Laplace operator and Q is an

open connected domain of R? with a Jordan boundary, specified
together with the Dirichlet boundary condition

U(X,y):(Z)(X,y) (va)eaQ' (2)

(You may assume that f € C(Q), ¢ € C2(dR), but this can be
relaxed by an approach outside the scope of this course.)
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We cannot solve
Vu=f (x,y) € Q,

directly, meaning that we typically do not have a closed form
solution u, nor can we solve (3) directly on a computer.

However, we do know how to solve a linear system of equations

Ax =y, AecRVN vy e RV,

(3)
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If we can "approximate” a function u with a vector x, what should
be the approximation of the operator V2?7

Crazy ldea: Use finite differences! After all, the derivative is the
limit of differences of the function with some scaling. Indeed,

J(3) = ,lyi_rr‘o u(a+ h/)7 — u(a).
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To this end we impose on Q a square grid with uniform spacing of
h > 0 and replace

Veu=f (x,y) € Q,

by a finite-difference formula. For simplicity, we require for the time
being that 09 'fits’ into the grid: if a grid point lies inside 2 then
all its neighbours are in cl1£2. We will discuss briefly in the sequel
grids that fail this condition.
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Figure: A square domain Q with an equidistant grid.
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Example of a grid on a more complicated domain

N\

Figure: A more complicated domain Q with an equidistant grid.
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We have the five-point method
U1+ Uipj+ uijo1+ i —duij = Wi, (ihjh) € Q, (4)

where f; ; = f(ih, jh) are given, and u;j ~ u(ih, jh) is an
approximation to the exact solution. It is usually denoted by the
following computational stencil

_ 2

Whenever (ih, jh) € 09, we substitute appropriate Dirichlet
boundary values. Note that the outcome of our procedure is a set of
linear algebraic equations whose solution approximates the solution
of the Poisson equation (1) at the grid points.
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Finite-difference discretization of V2u = f replaces the PDE by a
large system of linear equations. In the sequel we pay special
attention to the five-point formula, which results in the
approximation

WV2u(x,y) ~ U(X—h,y)+U(X+h,y)+U(X,y—h)+U(X,y+h)—4U((X), y).
5

For the sake of simplicity, we restrict our attention to the important

. . . 1 “ .
case of {2 being a unit square, where h= == for some positive

integer m. Thus, we estimate the m? unknown function values
u(ih, jh)7:_y (where (ih, jh) € Q) by letting the right-hand side of
(5) equal h?f(ih, jh) at each value of i and j. This yields an n x n
system of linear equations with n = m? unknowns u; ;:

Ui—1j+ Uiy + ujj—1+ Ujj+1 — 4u,-d- = hzf(ih,jh) . (6)
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(Note that when i or j is equal to 1 or m, then the values upj, uig
Or Uj m+1, Umt1,j are known boundary values and they should be
moved to the right-hand side, thus leaving fewer unknowns on the
left.) Having ordered grid points, we can write (6) as a linear
system, say

Au=>b.

Our present concern is to prove that, as h — 0, the numerical
solution (6) tends to the exact solution of the Poisson equation
V2u = f (with appropriate Dirichlet boundary conditions).
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Figure: A square domain Q with an equidistant grid.
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Example 1 (Natural ordering)

The way the matrix A of this system looks depends of course on
the way how the grid points (ih, jh) are being assembled in the
one-dimensional array. In the natural ordering, when the grid
points are arranged by columns, A is the following block
tridiagonal matrix:

B I -4 1
I B I 1-4 1

I B I 1 -4 1

I B 1-4 |
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Before heading on let us prove the following simple but useful
theorem whose importance will become apparent in the course of
the lecture.

Theorem 2 (Gershgorin theorem)

All eigenvalues of an nx n matrix A are contained in the union of
the Gershgorin discs in the complex plane:

o(A) cur, T, i:={zeC:l|z—a;| <r}, ri= izl
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Proof. Let A be an eigenvalue of A. Choose a corresponding
eigenvector x = (x;j) so that one component Xx; is equal to 1 and the
others are of absolute value less than or equal to x; =1 and |xj| <1
Jj # i. There is always such an x, which can be obtained simply by
dividing any eigenvector by its component with largest modulus.
Since Ax = Ax, in particular

Za’JXJ = )\X,' =\
J

So, splitting the sum and taking into account once again that

xi =1, we get
Z ajjxj + ajj = A
J#i

Therefore, applying the triangle inequality,

A= ail = D a| <D lagllxl < D lay| = ri

J# JF# J#
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The matrix A is symmetric and negative definite

Lemma 3
For any ordering of the grid points, the matrix A of the system (6)
is symmetric and negative definite.
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Proof. Equation (6) implies that if a; # 0 for / # j, then the i-th and j-th
points of the grid (ph, gh), are nearest neighbours. Hence aj; # 0 implies
aj = aji = 1, which proves the symmetry of A. Therefore A has real
eigenvalues and eigenvectors.

It remains to prove that all the eigenvalues are negative. The arguments
are parallel to the proof of Gershgorin theorem. Let Ax = A\x, and let i be
an integer such that |x;| = max|x;|. With such an i we address the
following identity (which is a reordering of the equation (Ax); = Ax;):

(X = ai) x| = | X7 x| - (7)

[A-+4] [x] <4 x|

Here aj = —4 and a;; € {0, 1} for j#i, with at most four nonzero elements
on the right-hand side. It is seen that the case A > 0 is impossible.
Assuming A = 0, we obtain |x;| = |x;| whenever a;; = 1, so we can alter
the value of j in (7) to any of such j and repeat the same arguments.
Thus, the modulus of every component of x would be |x;|, but then the
equations (7) that occur at the boundary of the grid and have fewer than
four off-diagonal terms (see (6)) could not be true. Hence, A =0is
impossible too, hence A < 0 which proves that A is negative definite. O
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Proof. Let U be any linear operator changing the grid ordering. Then U is
clearly unitary (||Ux|l2 = ||x||2 for any x). Note that any matrix A
representing the the system of equations (6) can be written as A = UAU*
for some unitary matrix U, where A is as in Example 1. Self-adjointness is
preserved by unitary operators, and so is the spectrum. Thus, Alis
self-adjoint (symmetric as it is real). Moreover, o(A) does not intersect
the positive half plane by the Gershgorin theorem, so we only need to show
that 0 ¢ o(A). If Ax =0 then, by the definition of A, x must have
elements of equal modulus, however, then the definition of B (that gives
A) implies that x = 0. O
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The eigenvalues of the matrix A

Proposition 4

The eigenvalues of the matrix A are

kmh {rh 1
)\kg——4(SIn T+S 2 7; ),
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Proof. Let us show that, for every pair (k,¢), the vectors

v={(vjj), Vvij=sinixsinjy, where x=kmh, y={rh,
are the eigenvectors of A. Indeed, for i,j = 1...m, we have
(Av)ij = sin(jy) [sin(ix — x) — 2sin(ix) + sin(ix + x)]

+ sin(ix) [sin(jy — y) = 2sin(jy) + sin(jy + y)]
= sin(jy)sin(ix)[2 cos x — 2] + sin(ix)sin(jy)[2cosy — 2] = Av;;.

Note that the terms uj11 j, uj j+1 do not appear in (6) for i, j=1 or
i,j=m, respectively, therefore (for such /,;) we should have dropped the
corresponding components from above equation, but they are equal to

zero because sin(i — 1)x = 0 for i = 1, while sin(i + 1)x =0 for i = m,
since x = nf—fl Thus, the eigenvalues are

Mee = [2cosx —2] + [2cosy — 2] = —4(Sin2%+sin2 %)

kmh h
= -4 (sin2 % + sin? %)



Remark 5

As a matter of independent mathematical interest, note that for
1 < k, £ < m we have sin x &~ x, hence the eigenvalues for the
discretized Laplacian V% are

Ao 4 [KPr2h?  Pr?h?

TR e e kT

Now, recall (e.g. from the solution of the Poisson equation in a
square by separation of variables in Maths Methods) that the
exact eigenvalues of V2 (in the unit square) are — (k2 + £2)72,
k,¢ € N, with the corresponding eigenfunctions

Viee(x,y) = sin kmxsinfmy. So, the eigenvectors of the discretized
V2 are the values of Vj ¢(x,y) on the grid-points, and the
eigenvalues of V% approximate those for continuous case.
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