Numerical Analysis - Part II

Anders C. Hansen

Lecture 2

Solving PDEs with finite difference methods

Our goal is to solve the Poisson equation

$$\nabla^2 u = f \qquad (x, y) \in \Omega, \tag{1}$$

where $\nabla^2 = \Delta = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}$ is the Laplace operator and Ω is an open connected domain of \mathbb{R}^2 with a Jordan boundary, specified together with the *Dirichlet boundary condition*

$$u(x,y) = \phi(x,y)$$
 $(x,y) \in \partial \Omega.$ (2)

(You may assume that $f \in C(\Omega)$, $\phi \in C^2(\partial \Omega)$, but this can be relaxed by an approach outside the scope of this course.)

Approximation of ∇^2

We cannot solve

$$abla^2 u = f \qquad (x, y) \in \Omega,$$
(3)

directly, meaning that we typically do not have a closed form solution u, nor can we solve (3) directly on a computer.

However, we do know how to solve a linear system of equations

$$Ax = y, \qquad A \in \mathbb{R}^{N \times N}, \quad x, y \in \mathbb{R}^{N}.$$

If we can "approximate" a function u with a vector x, what should be the approximation of the operator ∇^2 ?

Crazy Idea: Use finite differences! After all, the derivative is the limit of differences of the function with some scaling. Indeed,

$$u'(a) = \lim_{h \to 0} \frac{u(a+h) - u(a)}{h}$$

To this end we impose on Ω a square grid with uniform spacing of h>0 and replace

$$\nabla^2 u = f \qquad (x, y) \in \Omega,$$

by a *finite-difference* formula. For simplicity, we require for the time being that $\partial \Omega$ 'fits' into the grid: if a grid point lies inside Ω then all its neighbours are in cl Ω . We will discuss briefly in the sequel grids that fail this condition.

Example of a grid on a square

Figure: A square domain Ω with an equidistant grid.

Example of a grid on a more complicated domain

Figure: A more complicated domain Ω with an equidistant grid.

Computational stencil

We have the five-point method

$$u_{i-1,j} + u_{i+1,j} + u_{i,j-1} + u_{i,j+1} - 4u_{i,j} = h^2 f_{i,j},$$
 (*ih*, *jh*) $\in \Omega$, (4)

where $f_{i,j} = f(ih, jh)$ are given, and $u_{i,j} \approx u(ih, jh)$ is an approximation to the exact solution. It is usually denoted by the following *computational stencil*

Whenever $(ih, jh) \in \partial\Omega$, we substitute appropriate Dirichlet boundary values. Note that the outcome of our procedure is a set of linear algebraic equations whose solution approximates the solution of the Poisson equation (1) at the grid points.

Finite-difference discretization

Finite-difference discretization of $\nabla^2 u = f$ replaces the PDE by a large system of linear equations. In the sequel we pay special attention to the *five-point formula*, which results in the approximation

$$h^{2}\nabla^{2}u(x,y) \approx u(x-h,y) + u(x+h,y) + u(x,y-h) + u(x,y+h) - 4u(x,y).$$
(5)

For the sake of simplicity, we restrict our attention to the important case of Ω being a *unit square*, where $h = \frac{1}{m+1}$ for some positive integer *m*. Thus, we estimate the m^2 unknown function values $u(ih, jh)_{i,j=1}^m$ (where $(ih, jh) \in \Omega$) by letting the right-hand side of (5) equal $h^2 f(ih, jh)$ at each value of *i* and *j*. This yields an $n \times n$ system of linear equations with $n = m^2$ unknowns $u_{i,j}$:

$$u_{i-1,j} + u_{i+1,j} + u_{i,j-1} + u_{i,j+1} - 4u_{i,j} = h^2 f(ih, jh).$$
 (6)

(Note that when *i* or *j* is equal to 1 or *m*, then the values $u_{0,j}$, $u_{i,0}$ or $u_{i,m+1}$, $u_{m+1,j}$ are known boundary values and they should be moved to the right-hand side, thus leaving fewer unknowns on the left.) Having ordered grid points, we can write (6) as a linear system, say

$$A \boldsymbol{u} = \boldsymbol{b}$$
 .

Our present concern is to prove that, as $h \rightarrow 0$, the numerical solution (6) tends to the exact solution of the Poisson equation $\nabla^2 u = f$ (with appropriate Dirichlet boundary conditions).

Example of a grid on a square

Figure: A square domain Ω with an equidistant grid.

Example 1 (Natural ordering)

The way the matrix A of this system looks depends of course on the way how the grid points (ih, jh) are being assembled in the one-dimensional array. In the *natural ordering*, when the grid points are arranged by columns, A is the following block tridiagonal matrix:

$$A = \begin{bmatrix} B & I & & \\ I & B & I & \\ & \ddots & \ddots & \ddots & \\ & I & B & I \\ & & & I & B \end{bmatrix}, \qquad B = \begin{bmatrix} -4 & 1 & & \\ 1 & -4 & 1 & \\ & \ddots & \ddots & \ddots & \\ & 1 & -4 & 1 \\ & & & 1 & -4 \end{bmatrix}$$

Before heading on let us prove the following simple but useful theorem whose importance will become apparent in the course of the lecture.

Theorem 2 (Gershgorin theorem)

All eigenvalues of an $n \times n$ matrix A are contained in the union of the Gershgorin discs in the complex plane:

$$\sigma(A) \subset \cup_{i=1}^{n} \Gamma_{i}, \qquad \Gamma_{i} := \{ z \in \mathbb{C} : |z - a_{ii}| \le r_{i} \}, \qquad r_{i} := \sum_{j \neq i} |a_{ij}|.$$

Proof of the Gershgorin theorem

Proof. Let λ be an eigenvalue of A. Choose a corresponding eigenvector $x = (x_j)$ so that one component x_i is equal to 1 and the others are of absolute value less than or equal to $x_i = 1$ and $|x_j| \le 1$ $j \ne i$. There is always such an x, which can be obtained simply by dividing any eigenvector by its component with largest modulus. Since $Ax = \lambda x$, in particular

$$\sum_{j} a_{ij} x_j = \lambda x_i = \lambda.$$

So, splitting the sum and taking into account once again that $x_i = 1$, we get

$$\sum_{j\neq i}a_{ij}x_j+a_{ii}=\lambda.$$

Therefore, applying the triangle inequality,

$$|\lambda - a_{ii}| = \left|\sum_{j \neq i} a_{ij} x_j\right| \le \sum_{j \neq i} |a_{ij}| |x_j| \le \sum_{j \neq i} |a_{ij}| = r_i.$$

Lemma 3

For any ordering of the grid points, the matrix A of the system (6) is symmetric and negative definite.

Proof I

Proof. Equation (6) implies that if $a_{ij} \neq 0$ for $i \neq j$, then the *i*-th and *j*-th points of the grid (ph, qh), are nearest neighbours. Hence $a_{ij} \neq 0$ implies $a_{ij} = a_{ji} = 1$, which proves the symmetry of *A*. Therefore *A* has real eigenvalues and eigenvectors.

It remains to prove that all the eigenvalues are negative. The arguments are parallel to the proof of Gershgorin theorem. Let $A\mathbf{x} = \lambda \mathbf{x}$, and let *i* be an integer such that $|x_i| = \max |x_j|$. With such an *i* we address the following identity (which is a reordering of the equation $(A\mathbf{x})_i = \lambda x_i$):

$$\underbrace{\left| (\lambda - \mathbf{a}_{ii}) \mathbf{x}_i \right|}_{|\lambda + 4| |\mathbf{x}_i|} = \underbrace{\left| \sum_{j \neq i}^n \mathbf{a}_{ij} \mathbf{x}_j \right|}_{\leq 4| \mathbf{x}_i|} \,. \tag{7}$$

Here $a_{ii} = -4$ and $a_{ij} \in \{0, 1\}$ for $j \neq i$, with at most four nonzero elements on the right-hand side. It is seen that the case $\lambda > 0$ is impossible. Assuming $\lambda = 0$, we obtain $|x_j| = |x_i|$ whenever $a_{ij} = 1$, so we can alter the value of *i* in (7) to any of such *j* and repeat the same arguments. Thus, the modulus of every component of *x* would be $|x_i|$, but then the equations (7) that occur at the boundary of the grid and have fewer than four off-diagonal terms (see (6)) could not be true. Hence, $\lambda = 0$ is impossible too, hence $\lambda < 0$ which proves that *A* is negative definite.

Proof II

Proof. Let *U* be any linear operator changing the grid ordering. Then *U* is clearly unitary $(||Ux||_2 = ||x||_2 \text{ for any } x)$. Note that any matrix \tilde{A} representing the the system of equations (6) can be written as $\tilde{A} = UAU^*$ for some unitary matrix *U*, where *A* is as in Example 1. Self-adjointness is preserved by unitary operators, and so is the spectrum. Thus, \tilde{A} is self-adjoint (symmetric as it is real). Moreover, $\sigma(A)$ does not intersect the positive half plane by the Gershgorin theorem, so we only need to show that $0 \notin \sigma(A)$. If Ax = 0 then, by the definition of *A*, *x* must have elements of equal modulus, however, then the definition of *B* (that gives *A*) implies that x = 0.

Proposition 4

The eigenvalues of the matrix A are

$$\lambda_{k,\ell} = -4\left(\sin^2rac{k\pi h}{2}+\sin^2rac{\ell\pi h}{2}
ight), \qquad h=rac{1}{m+1}\,, \qquad k,\ell=1...m.$$

Proof

Proof. Let us show that, for every pair (k, ℓ) , the vectors

$$v = (v_{i,j}), \quad v_{i,j} = \sin ix \sin jy, \quad \text{where} \quad x = k\pi h, \quad y = \ell \pi h,$$

are the eigenvectors of A. Indeed, for i, j = 1...m, we have

$$\begin{aligned} (Av)_{i,j} &= \sin(jy) \left[\sin(ix - x) - 2\sin(ix) + \sin(ix + x) \right] \\ &+ \sin(ix) \left[\sin(jy - y) - 2\sin(jy) + \sin(jy + y) \right] \\ &= \sin(jy) \sin(ix) \left[2\cos x - 2 \right] + \sin(ix) \sin(jy) \left[2\cos y - 2 \right] = \lambda v_{i,j} \,. \end{aligned}$$

Note that the terms $u_{i\pm 1,j}$, $u_{i,j\pm 1}$ do not appear in (6) for i, j=1 or i, j=m, respectively, therefore (for such i, j) we should have dropped the corresponding components from above equation, but they are equal to zero because $\sin(i-1)x = 0$ for i = 1, while $\sin(i+1)x = 0$ for i = m, since $x = \frac{k\pi}{m+1}$. Thus, the eigenvalues are

$$\lambda_{k,\ell} = \left[2\cos x - 2\right] + \left[2\cos y - 2\right] = -4\left(\sin^2 \frac{x}{2} + \sin^2 \frac{y}{2}\right) \\ = -4\left(\sin^2 \frac{k\pi h}{2} + \sin^2 \frac{\ell\pi h}{2}\right).$$
(8)

Remark

Remark 5

As a matter of independent mathematical interest, note that for $1 \leq k, \ell \ll m$ we have $\sin x \approx x$, hence the eigenvalues for the discretized Laplacian ∇_h^2 are

$$rac{\lambda_{k,\ell}}{h^2}pprox -rac{4}{h^2}\left[rac{k^2\pi^2h^2}{4}+rac{\ell^2\pi^2h^2}{4}
ight]=-(k^2+\ell^2)\pi^2\,.$$

Now, recall (e.g. from the solution of the Poisson equation in a square by separation of variables in Maths Methods) that the *exact* eigenvalues of ∇^2 (in the unit square) are $-(k^2 + \ell^2)\pi^2$, $k, \ell \in \mathbb{N}$, with the corresponding eigenfunctions $V_{k,\ell}(x, y) = \sin k\pi x \sin \ell\pi y$. So, the eigenvectors of the discretized ∇_h^2 are the values of $V_{k,\ell}(x, y)$ on the grid-points, and the eigenvalues of ∇_h^2 approximate those for continuous case.