
Numerical Analysis - Part II

Anders C. Hansen

Lecture 2

1 / 21



Solving PDEs with finite difference methods
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Approximation of ∇2

Our goal is to solve the Poisson equation

∇2u = f (x , y) ∈ Ω, (1)

where ∇2 = ∆ = ∂2

∂x2
+ ∂2

∂y2 is the Laplace operator and Ω is an

open connected domain of R2 with a Jordan boundary, specified
together with the Dirichlet boundary condition

u(x , y) = φ(x , y) (x , y) ∈ ∂Ω. (2)

(You may assume that f ∈ C (Ω), φ ∈ C 2(∂Ω), but this can be
relaxed by an approach outside the scope of this course.)
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Approximation of ∇2

We cannot solve
∇2u = f (x , y) ∈ Ω, (3)

directly, meaning that we typically do not have a closed form
solution u, nor can we solve (3) directly on a computer.

However, we do know how to solve a linear system of equations

Ax = y , A ∈ RN×N , x , y ∈ RN .
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Approximation of ∇2

If we can ”approximate” a function u with a vector x , what should
be the approximation of the operator ∇2?

Crazy Idea: Use finite differences! After all, the derivative is the
limit of differences of the function with some scaling. Indeed,

u′(a) = lim
h→0

u(a + h)− u(a)

h
.
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Approximation of ∇2

To this end we impose on Ω a square grid with uniform spacing of
h > 0 and replace

∇2u = f (x , y) ∈ Ω,

by a finite-difference formula. For simplicity, we require for the time
being that ∂Ω ‘fits’ into the grid: if a grid point lies inside Ω then
all its neighbours are in clΩ. We will discuss briefly in the sequel
grids that fail this condition.
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Example of a grid on a square

Figure: A square domain Ω with an equidistant grid.
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Example of a grid on a more complicated domain

Figure: A more complicated domain Ω with an equidistant grid.
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Computational stencil

We have the five-point method

ui−1,j + ui+1,j + ui ,j−1 + ui ,j+1− 4ui ,j = h2fi ,j , (ih, jh) ∈ Ω, (4)

where fi ,j = f (ih, jh) are given, and ui ,j ≈ u(ih, jh) is an
approximation to the exact solution. It is usually denoted by the
following computational stencil
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1 1 ui ,j = h2fi ,j ,

Whenever (ih, jh) ∈ ∂Ω, we substitute appropriate Dirichlet
boundary values. Note that the outcome of our procedure is a set of
linear algebraic equations whose solution approximates the solution
of the Poisson equation (1) at the grid points.
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Finite-difference discretization

Finite-difference discretization of ∇2u = f replaces the PDE by a
large system of linear equations. In the sequel we pay special
attention to the five-point formula, which results in the
approximation

h2∇2u(x , y) ≈ u(x−h, y)+u(x+h, y)+u(x , y−h)+u(x , y+h)−4u(x , y) .
(5)

For the sake of simplicity, we restrict our attention to the important
case of Ω being a unit square, where h= 1

m+1 for some positive

integer m. Thus, we estimate the m2 unknown function values
u(ih, jh)mi ,j=1 (where (ih, jh) ∈ Ω) by letting the right-hand side of

(5) equal h2f (ih, jh) at each value of i and j . This yields an n × n
system of linear equations with n = m2 unknowns ui ,j :

ui−1,j + ui+1,j + ui ,j−1 + ui ,j+1 − 4ui ,j = h2f (ih, jh) . (6)
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Obtaining the linear system of equations

(Note that when i or j is equal to 1 or m, then the values u0,j , ui ,0
or ui ,m+1, um+1,j are known boundary values and they should be
moved to the right-hand side, thus leaving fewer unknowns on the
left.) Having ordered grid points, we can write (6) as a linear
system, say

Au = b .

Our present concern is to prove that, as h→ 0, the numerical
solution (6) tends to the exact solution of the Poisson equation
∇2u = f (with appropriate Dirichlet boundary conditions).
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Example of a grid on a square

Figure: A square domain Ω with an equidistant grid.
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Approximation of ∇2

Example 1 (Natural ordering)
The way the matrix A of this system looks depends of course on
the way how the grid points (ih, jh) are being assembled in the
one-dimensional array. In the natural ordering, when the grid
points are arranged by columns, A is the following block
tridiagonal matrix:

A =



B I

I B I
. . .

. . .
. . .

I B I

I B


, B =



−4 1

1 −4 1
. . .

. . .
. . .

1 −4 1

1 −4


.
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The Gershgorin theorem

Before heading on let us prove the following simple but useful
theorem whose importance will become apparent in the course of
the lecture.

Theorem 2 (Gershgorin theorem)

All eigenvalues of an n×n matrix A are contained in the union of
the Gershgorin discs in the complex plane:

σ(A) ⊂ ∪ni=1Γi , Γi := {z ∈ C : |z−aii | ≤ ri}, ri :=
∑

j 6=i |aij | .
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Proof of the Gershgorin theorem

Proof. Let λ be an eigenvalue of A. Choose a corresponding
eigenvector x = (xj) so that one component xi is equal to 1 and the
others are of absolute value less than or equal to xi = 1 and |xj | ≤ 1
j 6= i . There is always such an x , which can be obtained simply by
dividing any eigenvector by its component with largest modulus.
Since Ax = λx , in particular∑

j

aijxj = λxi = λ.

So, splitting the sum and taking into account once again that
xi = 1, we get ∑

j 6=i

aijxj + aii = λ.

Therefore, applying the triangle inequality,

|λ− aii | =

∣∣∣∣∣∣
∑
j 6=i

aijxj

∣∣∣∣∣∣ ≤
∑
j 6=i

|aij ||xj | ≤
∑
j 6=i

|aij | = ri .
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The matrix A is symmetric and negative definite

Lemma 3
For any ordering of the grid points, the matrix A of the system (6)
is symmetric and negative definite.
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Proof I

Proof. Equation (6) implies that if aij 6= 0 for i 6= j , then the i-th and j-th
points of the grid (ph, qh), are nearest neighbours. Hence aij 6= 0 implies
aij = aji = 1, which proves the symmetry of A. Therefore A has real
eigenvalues and eigenvectors.
It remains to prove that all the eigenvalues are negative. The arguments
are parallel to the proof of Gershgorin theorem. Let Ax = λx , and let i be
an integer such that |xi | = max |xj |. With such an i we address the
following identity (which is a reordering of the equation (Ax)i = λxi ):∣∣(λ− aii ) xi |︸ ︷︷ ︸

|λ+4| |xi |

=
∣∣∑n

j 6=i aijxj
∣∣︸ ︷︷ ︸

≤4 |xi |

. (7)

Here aii = −4 and aij ∈{0, 1} for j 6= i , with at most four nonzero elements
on the right-hand side. It is seen that the case λ > 0 is impossible.
Assuming λ = 0, we obtain |xj | = |xi | whenever aij = 1, so we can alter
the value of i in (7) to any of such j and repeat the same arguments.
Thus, the modulus of every component of x would be |xi |, but then the
equations (7) that occur at the boundary of the grid and have fewer than
four off-diagonal terms (see (6)) could not be true. Hence, λ = 0 is
impossible too, hence λ < 0 which proves that A is negative definite. �
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Proof II

Proof. Let U be any linear operator changing the grid ordering. Then U is
clearly unitary (‖Ux‖2 = ‖x‖2 for any x). Note that any matrix Ã
representing the the system of equations (6) can be written as Ã = UAU∗

for some unitary matrix U, where A is as in Example 1. Self-adjointness is
preserved by unitary operators, and so is the spectrum. Thus, Ã is
self-adjoint (symmetric as it is real). Moreover, σ(A) does not intersect
the positive half plane by the Gershgorin theorem, so we only need to show
that 0 /∈ σ(A). If Ax = 0 then, by the definition of A, x must have
elements of equal modulus, however, then the definition of B (that gives
A) implies that x = 0. �
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The eigenvalues of the matrix A

Proposition 4

The eigenvalues of the matrix A are

λk,` = −4
(

sin2 kπh

2
+sin2

`πh

2

)
, h =

1

m + 1
, k, ` = 1...m.
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Proof

Proof. Let us show that, for every pair (k , `), the vectors

v = (vi,j), vi,j = sin ix sin jy , where x = kπh, y = `πh,

are the eigenvectors of A. Indeed, for i , j = 1...m, we have

(Av)i,j = sin(jy)
[

sin(ix − x)− 2 sin(ix) + sin(ix + x)
]

+ sin(ix)
[

sin(jy − y)− 2 sin(jy) + sin(jy + y)
]

= sin(jy) sin(ix)
[
2 cos x − 2] + sin(ix) sin(jy)

[
2 cos y − 2

]
= λvi,j .

Note that the terms ui±1,j , ui,j±1 do not appear in (6) for i , j =1 or
i , j =m, respectively, therefore (for such i , j) we should have dropped the
corresponding components from above equation, but they are equal to
zero because sin(i − 1)x = 0 for i = 1, while sin(i + 1)x = 0 for i = m,
since x = kπ

m+1 . Thus, the eigenvalues are

λk,` =
[
2 cos x − 2

]
+
[
2 cos y − 2

]
= −4

(
sin2 x

2
+ sin2 y

2

)
= −4

(
sin2 kπh

2
+ sin2 `πh

2

)
.

(8)

�
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Remark

Remark 5
As a matter of independent mathematical interest, note that for
1 ≤ k, `� m we have sin x ≈ x , hence the eigenvalues for the
discretized Laplacian ∇2

h are

λk,`
h2
≈ − 4

h2

[
k2π2h2

4
+
`2π2h2

4

]
= −(k2 + `2)π2 .

Now, recall (e.g. from the solution of the Poisson equation in a
square by separation of variables in Maths Methods) that the
exact eigenvalues of ∇2 (in the unit square) are −(k2 + `2)π2,
k, ` ∈ N, with the corresponding eigenfunctions
Vk,`(x , y) = sin kπx sin `πy . So, the eigenvectors of the discretized
∇2

h are the values of Vk,`(x , y) on the grid-points, and the
eigenvalues of ∇2

h approximate those for continuous case.
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