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Solving PDEs with finite difference methods
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Solving the Poisson equation

Our goal is to solve the Poisson equation

∇2u = f (x , y) ∈ Ω, (1)

where ∇2 = ∆ = ∂2

∂x2
+ ∂2

∂y2 is the Laplace operator and Ω is an

open connected domain of R2 with a Jordan boundary, specified
together with the Dirichlet boundary condition

u(x , y) = φ(x , y) (x , y) ∈ ∂Ω. (2)

(You may assume that f ∈ C (Ω), φ ∈ C 2(∂Ω), but this can be
relaxed by an approach outside the scope of this course.)
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Computational stencil

We have the five-point method

ui−1,j + ui+1,j + ui ,j−1 + ui ,j+1− 4ui ,j = h2fi ,j , (ih, jh) ∈ Ω, (3)

where fi ,j = f (ih, jh) are given, and ui ,j ≈ u(ih, jh) is an
approximation to the exact solution. It is usually denoted by the
following computational stencil

�
��
�
��
�
��

�
�� �
��
−4

1

1

1 1 ui ,j = h2fi ,j ,

Whenever (ih, jh) ∈ ∂Ω, we substitute appropriate Dirichlet
boundary values. Note that the outcome of our procedure is a set of
linear algebraic equations whose solution approximates the solution
of the Poisson equation (1) at the grid points.

4 / 19



Finite-difference discretization

Finite-difference discretization of ∇2u = f replaces the PDE by a
large system of linear equations. In the sequel we pay special
attention to the five-point formula, which results in the
approximation

h2∇2u(x , y) ≈ u(x−h, y)+u(x+h, y)+u(x , y−h)+u(x , y+h)−4u(x , y) .
(4)

For the sake of simplicity, we restrict our attention to the important
case of Ω being a unit square, where h= 1

m+1 for some positive

integer m. Thus, we estimate the m2 unknown function values
u(ih, jh)mi ,j=1 (where (ih, jh) ∈ Ω) by letting the right-hand side of

(4) equal h2f (ih, jh) at each value of i and j . This yields an n × n
system of linear equations with n = m2 unknowns ui ,j :

ui−1,j + ui+1,j + ui ,j−1 + ui ,j+1 − 4ui ,j = h2f (ih, jh) . (5)
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Analysis of the local error

Since ∇2 = ∆ = ∂2

∂x2
+ ∂2

∂y2 , we need to consider a finite-difference
approximation of second derivatives.

Proposition 1

Let g ∈ C 4[a, b] and x ∈ (a + h, b − h). Then

∆2
h g(x) := g(x−h)−2g(x)+g(x+h) = h2g ′′(x)+ 1

12
h4g (4)+O(h6).

(6)

Corollary 2

The approximation

(∆2
h,x + ∆2

h,y ) u(x , y)

= u(x − h, y) + u(x + h, y) + u(x , y − h) + u(x , y + h)− 4u(x , y)

≈ h2∇2u(x , y)

(7)

produces a local error of O(h4).
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The matrix A

Example 3 (Natural ordering)
The way the matrix A of this system looks depends of course on
the way how the grid points (ih, jh) are being assembled in the
one-dimensional array. In the natural ordering, when the grid
points are arranged by columns, A is the following block
tridiagonal matrix:

A =



B I

I B I
. . .

. . .
. . .

I B I

I B


, B =



−4 1

1 −4 1
. . .

. . .
. . .

1 −4 1

1 −4


.
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The eigenvalues of the matrix A

Proposition 4

The eigenvalues of the matrix A are

λk,` = −4
(

sin2 kπh

2
+sin2

`πh

2

)
, h =

1

m + 1
, k, ` = 1...m.
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Convergence of the 5-point formula

Let ûi ,j = u(ih, jh) be the grid values of the exact solution of the
Poisson equation, and let ei ,j = ui ,j − ûi ,j be the pointwise error of
the 5-point formula. Set e = (ei ,j) ∈ Rn where n = m2, and for
x ∈ Rn let ‖x‖ = ‖x‖`2 be the Eucledian norm of the vector x :

‖x‖2 =
n∑

k=1

|xk |2 =
m∑
i=1

m∑
j=1

|xi ,j |2.

Theorem 5
Subject to sufficient smoothness of the function f and of the
boundary conditions, there exists a number c > 0, independent of
h = 1

m+1
, such that

‖e‖ ≤ ch .
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Convergence of the 5-point formula - Proof

Proof. 1) We already know (having constructed the 5-point formula
by matching Taylor expansions) that, for the exact solution, we have

ûi−1,j + ûi+1,j + ûi ,j−1 + ûi ,j+1−4ûi ,j = h2fi ,j +ηi ,j , ηi ,j = O(h4).

Subtracting this from numerical approximation (5), we obtain

ei−1,j + ei+1,j + ei ,j−1 + ei ,j+1 − 4ei ,j = ηi ,j

or, in the matrix form, Ae = η, where A is symmetric (negative
definite). It follows that

Ae = η ⇒ e = A−1η ⇒ ‖e‖ ≤ ‖A−1‖ ‖η‖ .
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Convergence of the 5-point formula - Proof

2) Since every component of η satisfies |ηi ,j |2 < c2h8, where
h = 1

m+1 , and there are m2 components, we have

‖η‖2 =
m∑
i=1

m∑
j=1

|ηi ,j |2 ≤ c2m2h8 < c2 1
h2

h8 = c2h6 ⇒ ‖η‖ ≤ ch3.

3) The matrix A is symmetric, hence so is A−1 and therefore
‖A−1‖ = ρ(A−1). Here ρ(A−1) is the spectral radius of A−1, that is
ρ(A−1) = maxi |λi |, where λi are the eigenvalues of A−1. The
eigenvalues of A−1 are the reciprocals of the eigenvalues of A, and
the latter are given by Proposition 4. Thus,

‖A−1‖ = 1
4

max
k,`=1...m

(
sin2 kπh

2
+ sin2 `πh

2

)−1
= 1

8 sin2( 1
2
πh)

< 1
8h2
.

Therefore ‖e‖ ≤ ‖A−1‖ ‖η‖ ≤ ch for some constant c > 0. �
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Special structure of 5-point equations

Observation 6 (Special structure of 5-point equations)
We wish to motivate and introduce a family of efficient solution
methods for the 5-point equations: the fast Poisson solvers. Thus,
suppose that we are solving ∇2u = f in a square m ×m grid with the
5-point formula (all this can be generalized a great deal, e.g. to the
nine-point formula). Let the grid be enumerated in natural ordering, i.e.
by columns. Thus, the linear system Au = b can be written explicitly
in the block form

B I

I B
. . .

. . .
. . . I

I B


︸ ︷︷ ︸

A


u1

u2

...

um

 =


b1

b2

...

bm

 , B =


−4 1

1 −4
. . .

. . .
. . . 1

1 −4


m×m

,

where uk ,bk ∈ Rm are portions of u and b, respectively, and B is a
TST-matrix which means tridiagonal, symmetric and Toeplitz (i.e.,
constant along diagonals).
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Special structure of 5-point equations

Observation 7 (Special structure of 5-point equations)

By Exercise 4, its eigenvalues and orthonormal eigenvectors are
given as

Bq` = λ`q`, λ` = −4 + 2 cos `π
m+1

,

q` = γm
(

sin j`π
m+1

)m
j=1

, ` = 1..m,

where γm =
√

2
m+1 is the normalization factor. Hence

B = QDQ−1 = QDQ, where D = diag (λ`) and Q = QT = (qj`).
Note that all m×m TST matrices share the same full set of
eigenvectors, hence they all commute!
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The Hockney method

Set vk = Quk , ck = Qbk , therefore our system becomes


D I
I D

. . .
. . .

. . . I

I D




v1

v2

...

vm

 =


c1

c2

...

cm

 .

Let us by this stage reorder the grid by rows, instead of by columns..
In other words, we permute v 7→ v̂ = Pv , c 7→ ĉ = Pc , so that the
portion ĉ1 is made out of the first components of the portions
c1, . . . , cm, the portion ĉ2 out of the second components and so on.
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The Hockney method

This results in new system


Λ1

Λ2 . . .

Λm




v̂1

v̂2

...

v̂m

 =


ĉ1

ĉ2

...

ĉm

 , Λk =


λk 1

1 λk 1
. . .

. . .
. . .

1 λk


m×m

,

where k = 1...m.
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The Hockney method

These are m uncoupled systems, Λk v̂k = ĉk for k = 1...m. Being
tridiagonal, each such system can be solved fast, at the cost of
O(m). Thus, the steps of the algorithm and their computational
cost are as follows.

1. Form the products ck = Qbk , k = 1...m . . . . . . . . . . O(m3)
2. Solve m ×m tridiagonal systems Λk v̂ k = ĉk , k = 1...m . . . . . .O(m2)

3. Form the products uk = Qv k , k = 1...m . . . . . . . . . . O(m3)

16 / 19



The improved Hockney method

We observe that the computational bottleneck is to be found in the
2m matrix-vector products by the matrix Q. Recall further that the
elements of Q are qj` = γm sin πj`

m+1 . This special form lends itself to
a considerable speedup in matrix multiplication. Before making the
problem simpler, however, let us make it more complicated! We
write a typical product in the form

(Qy)` =
m∑
j=1

sin
πj`

m + 1
yj = Im

m∑
j=0

exp
iπj`

m + 1
yj = Im

2m+1∑
j=0

exp
2iπj`

2m + 2
yj , ` = 1...m,

(8)
where ym+1 = · · · = y2m+1 = 0.
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The discrete Fourier transform (DFT)

Definition 8 (The discrete Fourier transform (DFT))

Let Πn be the space of all bi-infinite complex n-periodic sequences
x = {x`}`∈Z (such that x`+n = x`). Set ωn = exp 2πi

n , the primitive
root of unity of degree n. The discrete Fourier transform (DFT) of
x is

Fn : Πn → Πn such that y = Fnx , where yj =
1

n

n−1∑
`=0

ω−j`n x`,

where j = 0...n−1.

Trivial exercise: You can easily prove that Fn is an isomorphism
of Πn onto itself and that

x = F−1n y , where x` =
n−1∑
j=0

ωj`
n yj , ` = 0...n−1.
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The discrete Fourier transform (DFT)

An important observation: Thus, multiplication by Q in (8) can be
reduced to calculating an inverse of DFT.
Since we need to evaluate DFT (or its inverse) only in a single
period, we can do so by multiplying a vector by a matrix, at the cost
of O(n2) operations. This, however, is suboptimal and the cost of
calculation can be lowered a great deal!
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