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Partial differential equations of evolution
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Solving the diffusion equation

We consider the solution of the diffusion equation

∂u

∂t
=
∂2u

∂x2
, 0 ≤ x ≤ 1, t ≥ 0,

with initial conditions u(x , 0) = u0(x) for t = 0 and Dirichlet
boundary conditions u(0, t) = φ0(t) at x = 0 and u(1, t) = φ1(t) at
x = 1.
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Semidiscretization

Let um(t) = u(mh, t), m = 1...M, t ≥ 0. Approximating ∂2/∂x2 as
before, we deduce from the PDE that the semidiscretization

dum
dt

=
1

h2
(um−1 − 2um + um+1), m = 1...M (1)

carries an error of O(h2). This is an ODE system, and we can solve
it by any ODE solver.
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Recall the trapezoidal rule

Suppose that we want to solve the differential equation

y ′ = f (t, y), y(t0) = y0.

The trapezoidal rule is given by the formula

yn+1 = yn + 1
2k
(
f (tn, yn) + f (tn+1, yn+1)

)
,

where k = tn+1 − tn is the step size.
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The Crank–Nicolson scheme

Discretizing the ODE (1) with the trapezoidal rule, we obtain

un+1
m − 1

2
µ(un+1

m−1− 2un+1
m + un+1

m+1) = unm + 1
2
µ(unm−1− 2unm + unm+1),

(2)
where m = 1...M. Thus, each step requires the solution of an
M×M TST system. The error of the scheme is O(k3 + kh2), so
basically the same as with Euler’s method. However, as we will see,
Crank–Nicolson enjoys superior stability features.
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Crank–Nicolson method for diffusion equation

Let

un+1
m − 1

2
µ(un+1

m−1− 2un+1
m + un+1

m+1) = unm + 1
2
µ(unm−1− 2unm + unm+1),

where m = 1...M. Then Bun+1 = Cun, where the matrices B and
C are Toeplitz symmetric tridiagonal (TST),

un+1 = B−1Cun,

B = I − 1
2
µA∗ ,

C = I + 1
2
µA∗ ,

A∗ =


−2 1

1
. . .

. . .
. . .

. . . 1

1 −2


M×M

.
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Crank–Nicolson method for diffusion equation

All M×M TST matrices share the same eigenvectors, hence so does
B−1C . Moreover, these eigenvectors are orthogonal. Therefore, also
A = B−1C is normal and its eigenvalues are

λk(A) =
λk(C )

λk(B)
=

1− 2µ sin2 1
2πkh

1 + 2µ sin2 1
2πkh

⇒ |λk(A)| ≤ 1, k = 1...M.

Consequently Crank–Nicolson is stable for all µ > 0.

Note: Similarly to the situation with stiff ODEs, this does not mean
that k = ∆t may be arbitrarily large, but that the only valid
consideration in the choice of k = ∆t vs h = ∆x is accuracy.

8 / 25



Convergence of the Crank-Nicolson method for
diffusion equation

It is not difficult to verify that the local error of the Crank-Nicolson
scheme is ηnm = O(k3 + kh2), where O(k3) is inherited from the
trapezoidal rule (compared to O(k2) for the Euler method). We
also have

‖ηn‖ = {h
∑M

m=1 |ηnm|2}1/2 = O(k3 + kh2) .

Hence, for the error vectors en we have

Ben+1 = Cen +ηn ⇒ ‖en+1‖ ≤ ‖B−1C‖ · ‖en‖+‖B−1‖ · ‖ηn‖ .

We have just proved that ‖B−1C‖ ≤ 1, and we also have
‖B−1‖ ≤ 1, because all the eigenvalues of B are greater than 1 (by
Gershgorin’s theorem). Therefore, ‖en+1‖ ≤ ‖en‖+ ‖ηn‖, and

‖en‖ ≤ ‖e0‖+ n‖η‖ = n‖η‖ ≤ cT
k

(k3 + kh2) = cT (k2 + h2).

Thus, taking k =αh will result in O(h2) error of approximation.
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The advection equation

We consider the solution of the advection equation

∂u

∂t
=
∂u

∂x
, 0 ≤ x ≤ 1, t ≥ 0,

with initial conditions u(x , 0) = u0(x) for t = 0 and Dirichlet
boundary conditions u(0, t) = φ0(t) at x = 0 and u(1, t) = φ1(t) at
x = 1.
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Crank–Nicolson for advection equation

Let

un+1
m −unm = 1

4
µ(un+1

m+1−un+1
m−1)+ 1

4
µ(unm+1−unm−1), m = 1...M .

(This is the trapezoidal rule applied to the semidiscretization of
advection equation ∂u

∂t = ∂u
∂x ). In this case, un+1 = B−1Cun, where

the matrices B and C are Toeplitz antisymmetric tridiagonal,

B =


1 −1

4µ
1
4µ 1

. . .
. . .

. . . −1
4µ

1
4µ 1

 , C =


1 1

4µ

−1
4µ 1

. . .
. . .

. . . 1
4µ

−1
4µ 1

 .
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Crank–Nicolson for advection equation

Similarly to Exercise 4, the eigenvalues and eigenvectors of the
matrix

S =


α β

−β α
. . .

. . .
. . . β

−β α

 ,
are given by λk = α + 2 iβ cos kx , and wk = (im sin kmx)Mm=1,
where x = πh = π

M+1
. So, all such S are normal and share the same

eigenvectors, hence so does A = B−1C , hence A is normal and

λk(A) =
λk(C )

λk(B)
=

1 + 1
2 iµ cos kx

1− 1
2 iµ cos kx

⇒ |λk(A)| = 1, k = 1...M.

So, Crank–Nicolson is again stable for all µ > 0.
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Euler for advection equation

Finally, consider the Euler method for advection equation

un+1
m − unm = µ(unm+1 − unm), m = 1...M .

We have un+1 = Aun, where

A =


1− µ µ

1− µ . . .
. . . µ

1− µ

 ,

but A is not normal, and although its eigenvalues are bounded by 1
for µ ≤ 2, it is the spectral radius of AAT that matters, and we
have ρ(AAT ) ≈ (|1− µ|+ |µ|)2, so that the method is stable only if
µ ≤ 1.
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Solving the diffusion equation

We consider the solution of the diffusion equation

∂u

∂t
=
∂2u

∂x2
, 0 ≤ x ≤ 1, t ≥ 0,

with initial conditions u(x , 0) = u0(x) for t = 0 and Dirichlet
boundary conditions u(0, t) = φ0(t) at x = 0 and u(1, t) = φ1(t) at
x = 1.

What if −∞ < x <∞?
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Fourier analysis of stability

Let us now assume a recurrence of the form∑s
k=r aku

n+1
m+k =

∑s
k=r bku

n
m+k , n ∈ Z+, (3)

where m ranges over Z. (Within our framework of discretizing PDEs
of evolution, this corresponds to −∞ < x <∞ in the undelying
PDE and so there are no explicit boundary conditions, but the initial
condition must be square-integrable in (−∞,∞): this is known as a
Cauchy problem.)

The coefficients ak and bk are independent of m, n, but typically
depend upon µ. We investigate stability by Fourier analysis. [Note
that it doesn’t matter what is the underlying PDE: numerical
stability is a feature of algebraic recurrences, not of PDEs!]
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Fourier analysis of stability

Let v = (vm)m∈Z ∈ `2[Z]. Its Fourier transform is the function

v̂(θ) =
∑

m∈Z e
−imθvm, −π ≤ θ ≤ π.

We equip sequences and functions with the norms

‖v‖ =
{∑

m∈Z
|vm|2

} 1
2 and ‖v̂‖∗ =

{
1
2π

∫ π

−π
|v̂(θ)|2dθ

} 1
2

.
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Parseval’s identity

Lemma 1 (Parseval’s identity)

For any v ∈ `2[Z], we have ‖v‖ = ‖v̂‖∗.
Proof. By definition,

‖v̂‖2∗ = 1
2π

∫ π

−π

∣∣∑
m∈Z

e−imθvm
∣∣2dθ = 1

2π

∫ π

−π

∑
m∈Z

∑
k∈Z

vmv̄ke
−i(m−k)θdθ

= 1
2π

∑
m∈Z

∑
k∈Z

vmv̄k

∫ π

−π
e−i(m−k)θdθ

(∗)
=
∑
m∈Z

∑
k∈Z

vmv̄kδm−k = ‖v‖2 ,

where equality (∗) is due to the fact that

∫ π

−π
e−i`θdθ =


2π, ` = 0,

0, ` ∈ Z \ {0},
�

The implication of the lemma is that the Fourier transform is an
isometry of the Euclidean norm. This is an important reason
underlying its many applications in mathematics and beyond.
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Amplification factor

For θ ∈ [−π, π], let ûn(θ) =
∑

m∈Z e
−imθunm be the Fourier

transform of the sequence un ∈ `2[Z]. We multiply the discretized
equations (3) by e−imθ and sum up for m ∈ Z. Thus, the left-hand
side yields

∞∑
m=−∞

e−imθ
s∑

k=r

aku
n+1
m+k =

s∑
k=r

ak

∞∑
m=−∞

e−imθun+1
m+k

=
s∑

k=r

ak

∞∑
m=−∞

e−i(m−k)θun+1
m =

( s∑
k=r

ake
ikθ
)
ûn+1(θ).

(4)

Similarly manipulating the right-hand side, we deduce that

ûn+1(θ) = H(θ)ûn(θ) , where H(θ) =

∑s
k=r bke

ikθ∑s
k=r ake

ikθ
. (5)

The function H is sometimes called the amplification factor of the
recurrence (3)
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Fourier analysis of stability

Theorem 2
The method (3) is stable ⇔ |H(θ)| ≤ 1 for all θ ∈ [−π, π].
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Fourier analysis of stability (proof)

Proof. The definition of stability is equivalent to the statement that
there exists c > 0 such that ‖un‖ ≤ c for all n ∈ Z+. [Because we
are solving a Cauchy problem, equations are identical for all
h = ∆x , and this simplifies our analysis and eliminates a major
difficulty: there is no need to insist explicitly that ‖un‖ remains
uniformly bounded when h→0 ]. The Fourier transform being an
isometry, stability is thus equivalent to ‖ûn‖∗ ≤ c for all n ∈ Z+.
Iterating (5), we obtain

ûn(θ) = [H(θ)]nû0(θ), |θ| ≤ π, n ∈ Z+. (6)
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Fourier analysis of stability (proof)

Proof. (Continuing)
1) Assume first that |H(θ)| ≤ 1 for all |θ| ≤ π. Then, by (6),

|ûn(θ)| ≤ |û0(θ)|

⇒ ‖ûn‖2∗ =
1

2π

∫ π

−π
|ûn(θ)|2dθ ≤ 1

2π

∫ π

−π
|û0(θ)|2dθ = ‖û0‖2∗.

(7)

Hence stability.
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Fourier analysis of stability (proof)

Proof. (Continuing) 2) Suppose, on the other hand, that there
exists θ0 ∈ [−π, π] such that |H(θ0)| = 1 + 2ε > 1, say. Since H is
continuous, there exist −π ≤ θ1 < θ2 ≤ π such that |H(θ)| ≥ 1 + ε
for all θ ∈ [θ1, θ2]. We set η = θ2 − θ1 and choose as our initial
condition the function (or the `2[Z]-sequence)

û0(θ) =


√

2π
η
, θ1 ≤ θ ≤ θ2,

0, otherwise,

Then

‖ûn‖2∗ = 1
2π

∫ π

−π
|H(θ)|2n|û0(θ)|2dθ = 1

2π

∫ θ2

θ1

|H(θ)|2n|û0(θ)|2dθ

≥ 1
2π

(1 + ε)2n
∫ θ2

θ1

2π
η
dθ = (1 + ε)2n →∞ (n→∞).

We deduce that the method is unstable. �
22 / 25



Stability: Euler and the diffusion equation

Consider the Cauchy problem for the diffusion equation.

1) For the Euler method

un+1
m = unm + µ(unm−1 − 2unm + unm+1) ,

we obtain

H(θ) = 1 + µ
(
e−iθ − 2 + eiθ

)
= 1− 4µ sin2 θ

2
∈ [1− 4µ, 1] ,

thus the method is stable iff µ ≤ 1
2 .
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Stability: Backward Euler and the diffusion equation

2) For the backward Euler method

un+1
m − µ(un+1

m−1 − 2un+1
m + un+1

m+1) = unm ,

we have

H(θ) =
[
1− µ

(
e−iθ − 2 + eiθ

)]−1
=
[
1 + 4µ sin2 θ

2

]−1
∈ (0, 1] .

thus stability for all µ.
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Stability: Crank–Nicolson and the diffusion equation

3) The Crank–Nicolson scheme

un+1
m − 1

2
µ(un+1

m−1− 2un+1
m + un+1

m+1) = unm + 1
2
µ(unm−1− 2unm + unm+1),

results in

H(θ) =
1 + 1

2µ(e−iθ − 2 + eiθ)

1− 1
2µ(e−iθ − 2 + eiθ)

=
1− 2µ sin2 θ

2

1 + 2µ sin2 θ
2

∈ (−1, 1]

Hence stability for all µ > 0.
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