Numerical Analysis - Part Il
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Partial differential equations of evolution
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We consider the solution of the diffusion equation

ou  du

—_— = 0<x<1, t=>0

ot ox2’ =X=5h =
with initial conditions u(x,0) = ug(x) for t = 0 and Dirichlet
boundary conditions u(0,t) = ¢o(t) at x =0 and u(1,t) = ¢1(t) at
x =1

What if —oo < x < 00?
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Let us now assume a recurrence of the form

Zi:r akurr:ii—lk = Zi:r bkur,177+k7 ne Z+’ (1)

where m ranges over Z. (Within our framework of discretizing PDEs
of evolution, this corresponds to —co < x < oo in the undelying
PDE and so there are no explicit boundary conditions, but the initial
condition must be square-integrable in (—oo, 00): this is known as a
Cauchy problem.)

The coefficients a, and by are independent of m, n, but typically
depend upon p. We investigate stability by Fourier analysis. [Note
that it doesn’t matter what is the underlying PDE: numerical
stability is a feature of algebraic recurrences, not of PDEs!]



Let v = (Vm)mez € l2[Z]. Its Fourier transform is the function
V(0) =X ez e v, —r<0<m.

We equip sequences and functions with the norms

1
1 R T 3
Wi={> |vwmlP}?  and HvH*—{i/ \v(e)rzde} .

meZ -n
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Lemma 1 (Parseval's identity)
For any v € (3[Z], we have |lv|| = ||V
Proof. By definition,

Mi:i[ﬂZaWMw [ZD}MWW”M

meZ meZ keZ
= =33 Vka/ eilm=ke g O Z > VWS = |IVII?,
meZ keZ meZ keZ
where equality () is due to the fact that
T 2w, £=0,
/)aww: O
- 0, (e€Z\{0},

The implication of the lemma is that the Fourier transform is an
isometry of the Euclidean norm. This is an important reason
underlying its many applications in mathematics and beyond.

6
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For € [—m, 7], let T"(0) = >,z € "™ ul, be the Fourier
transform of the sequence u” € /5[Z]. We multlply the discretized
equations (1) by e and sum up for m € Z. Thus, the left-hand

side yields

oo

s
—im6 n+1 —im@ n+1
E e’ E akup’ = E ak E e "Mupt,
m=—00 k=r m=—00
()

s

o0
_ ar Z a—i(m—k)6 unl = (Zakelka> (6

k=r m=—o00

Similarly manipulating the right-hand side, we deduce that

Si bl )

Zk:r akelke

The function H is sometimes called the amplification factor of the
recurrence (1)

L) = H(0)T"(0), where H(0) =
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Fourier analysis of stability

Theorem 2
The method (1) is stable < |H(0)| <1 forall 0 € [—m,n].
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Stability: Euler and the diffusion equation

Consider the Cauchy problem for the diffusion equation

1) For the Euler method
= U + (U1 = 2Up + Upia)

n+1
u, =

we obtain
. Yy
psin® 5 € [1—4u,1],

thus the method is stable iff u < %
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Stability: Backward Euler and the diffusion equation

2) For the backward Euler method

1 n+1ly _

n+1 n+ n+1 n
U = p(up™y = 2up™ +upy) = up,,

we have

H(9) = [1 —u (e_ie —2+ e”)}_l - [1 + 4ysin® g}‘l € (0,1].

thus stability for all u.
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Stability: Crank—Nicolson and the diffusion equation

3) The Crank—Nicolson scheme

up™ = S — 2™ ) = u + Su(upy — 2uf, + ),
results in
1+ Ly(ei0 — 2 4 oif 1 —2usin?
H(6) = 2:“( ) H 2 € (-1,1]

1—Ip(e i —2+ef) 14 2usin??

Hence stability for all 1z > 0.
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The advection and wave equations
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Problem 3 (The advection equation)
A useful paradigm for hyperbolic PDEs is the advection equation

Up = Uy, 0<x<1, t>0, (4)

where u = u(x, t). It is given with the initial condition

u(x,0) = p(x), x € [0,1] and (for simplicity) the boundary
condition u(1,t) = ¢(t 4+ 1). The exact solution of (4) is simply
u(x,t) = o(x + t), a unilateral shift leftwards. This, however,
does not mean that its numerical modelling is easy.
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We commence by semidiscretizing a”é")ft) ~ ﬁ [Umt1(t) — um—1(t)],
so coming to the ODE v/ (t) = # [Umt1(t) — um—1(t)]. For the
Euler method, the outcome is

n+l _  .n 1 n n _
Up = = Uy + E:u(um—s—l - um—1)> m=0..M, né€Z,

with ud = 0 for all n. In matrix form this reads

1
_1
u"! = Au” A= 2

)

The matrix A is normal, with the eigenvalues A\y = 1 + i cosfémh

(see Example 2.15), so that ||A||> = 1 + z?, hence instability for any
L.
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.- o Oum
If we semidiscretize uax(t) ~ % [Umt1(t) — um(t)], and solve the

ODE again by Euler's method, then the result is

u,';1+1 = u,';1 —+ M(ugﬂ—l — U,’;), m= OM, ne Z+ (5)

The local error is O(k2+kh) which is O(h?) for a fixed y, hence
convergence if the method is stable.
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The eigenvalue analysis of stability does not apply here, since the
matrix A in u™?! = Au” is no longer normal (see Example 2.16), so
we do it directly (as in Lecture 5). We let the boundary condition at
x =1 be zero and define ||u”|| = maxq, |up,|. It follows at once from
(5) that

a2 = max up ™ < max{ L= [up -+ ufa |} < (11=pl+)u”])

Therefore, 11 € (0,1] means that [[u™ || < |lu”|| < --- < |JuO],
hence stability.
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We semidicretize (4) as 8ug(t) 5F L (Ui (t) — um_1(t)], but now

solve the ODE with the second-order midpoint rule

yn+1 = Y¥Yn-1 + Zkf(tm yn)a ne Z—l— .
The outcome is the two-step leapfrog method

U™ = (g — upg) + (6)

The error is now O(k3+kh?) = O(h3).
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We analyse stability by the Fourier technique, assuming that we are
solving a Cauchy problem. Thus, proceeding as before,

/ljnJrl(e) = (eiG . efié) an(e) + /ljnfl(e) (7)
whence
") — 2ip sin@T"(A) — 1" 1(H) = 0, ne7Z,,

and our goal is to determine values of 1 such that |u"(6)] is
uniformly bounded for all n, 6.
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This is a difference equation wp11 + bw,, + cw,—1 = 0 with the
general solution w, = c1 Al + ], where A1, Ao are the roots of the
characteristic equation A\ + bA + ¢ =0, and ¢1, ¢ are constants,
dependent on the initial values wg and wy. If A; = Ay, then solution
is w, = (c1 + c2n)A\". In our case, we obtain

M2(0) = ipsin® £ /1 — u2sin?0.

Stability is equivalent to |A12(60)| < 1 for all 6 and this is true if and
only if 4 < 1.
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It is easy to extend Fourier analysis for the Euler method
ultt = ult + p(ul,y — ufl), with the initial condition

u(x,0) = ¢(x), x € [0,1), and zero boundary condition along x = 1.

Consider the Cauchy problem for the advection equation with the
initial condition u(x,0) = ¢(x) for x € [0,1), and u(x,0) =0

otherwise (it isn't differentiable, but this is not much of a problem).

Solving the Cauchy problem with Euler, we recover u” that is

identical to the solution obtained from the zero boundary condition.
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This justifies using Fourier analysis for the problem with a boundary,
and we obtain

ILO) = H(O)T"(B),  H(O) = (1 — p) + pe

so that max |H(#)| = |1 — u| + ||, hence stability if and only if
p <L

Unfortunately, this is no longer true for leapfrog. Closer examination
reveals that we cannot use leapfrog at m = 0, since u”; is unknown.
The naive remedy, setting u”; = 0, leads to instability, which
propagates from the boundary inwards. We can recover stability

letting, for example, u(’)”rl = uf (the proof is very difficult).
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Consider the wave equation

Pu  D2%u

2 e x € [0,1], t>0,

given with initial (for v and u;) and boundary conditions. The usual
approximation looks as follows

n+1 n n—1 __ n n n
Up = — 2um + Up = = N(um+1 - 2um + umfl) )

with the Courant number being now u = k2/h?.



To advance in time we have to pick up the numbers ul, = u(xp, k)
(of course they should depend on the initial derivative u¢(x,0).
Euler’s method provides the obvious choice

u(Xm, k) = u(xm,0) + kut(xm, 0), but the following technique enjoys
better accuracy. Specifically, we set ul to the right-hand side of the
formula

u(xm, k) =~ u(xm,0) + kue(xm,0) + %kzutt(xm, 0)

Xm, 0) + kug(xm, 0) + %kzuxx(x,777 0)

= u(
ug‘l + %M(u%—l - 2“21 + U9n+1) + kUt(Xm, 0) .
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The Fourier analysis (for Cauchy problem) provides
u"m(0) — 2u"(0) + u"(H) = —4usin? %ﬁ”(&) ,

with the characteristic equation A? — 2(1 — 2y sin? %))\ +1=0.The
product of the roots is one, therefore stability (that requires the
moduli of both A to be at most one) is equivalent to the roots being
complex conjugate, so we require

(1—2usin?8)2 < 1.

This condition is achieved if and only if u = k?/h? < 1.
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