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Partial differential equations of evolution
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Solving the diffusion equation

We consider the solution of the diffusion equation

∂u

∂t
=
∂2u

∂x2
, 0 ≤ x ≤ 1, t ≥ 0,

with initial conditions u(x , 0) = u0(x) for t = 0 and Dirichlet
boundary conditions u(0, t) = φ0(t) at x = 0 and u(1, t) = φ1(t) at
x = 1.

What if −∞ < x <∞?
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Fourier analysis of stability

Let us now assume a recurrence of the form∑s
k=r akun+1

m+k =
∑s

k=r bkun
m+k , n ∈ Z+, (1)

where m ranges over Z. (Within our framework of discretizing PDEs
of evolution, this corresponds to −∞ < x <∞ in the undelying
PDE and so there are no explicit boundary conditions, but the initial
condition must be square-integrable in (−∞,∞): this is known as a
Cauchy problem.)

The coefficients ak and bk are independent of m, n, but typically
depend upon µ. We investigate stability by Fourier analysis. [Note
that it doesn’t matter what is the underlying PDE: numerical
stability is a feature of algebraic recurrences, not of PDEs!]
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Fourier analysis of stability

Let v = (vm)m∈Z ∈ `2[Z]. Its Fourier transform is the function

v̂(θ) =
∑

m∈Z e
−imθvm, −π ≤ θ ≤ π.

We equip sequences and functions with the norms

‖v‖ =
{∑

m∈Z
|vm|2

} 1
2 and ‖v̂‖∗ =

{
1
2π

∫ π

−π
|v̂(θ)|2dθ

} 1
2

.
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Parseval’s identity

Lemma 1 (Parseval’s identity)

For any v ∈ `2[Z], we have ‖v‖ = ‖v̂‖∗.
Proof. By definition,

‖v̂‖2∗ = 1
2π

∫ π

−π

∣∣∑
m∈Z

e−imθvm
∣∣2dθ = 1

2π

∫ π

−π

∑
m∈Z

∑
k∈Z

vmv̄ke
−i(m−k)θdθ

= 1
2π

∑
m∈Z

∑
k∈Z

vmv̄k

∫ π

−π
e−i(m−k)θdθ

(∗)
=
∑
m∈Z

∑
k∈Z

vmv̄kδm−k = ‖v‖2 ,

where equality (∗) is due to the fact that

∫ π

−π
e−i`θdθ =


2π, ` = 0,

0, ` ∈ Z \ {0},
�

The implication of the lemma is that the Fourier transform is an
isometry of the Euclidean norm. This is an important reason
underlying its many applications in mathematics and beyond.
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Amplification factor

For θ ∈ [−π, π], let ûn(θ) =
∑

m∈Z e
−imθun

m be the Fourier
transform of the sequence un ∈ `2[Z]. We multiply the discretized
equations (1) by e−imθ and sum up for m ∈ Z. Thus, the left-hand
side yields

∞∑
m=−∞

e−imθ
s∑

k=r

akun+1
m+k =

s∑
k=r

ak

∞∑
m=−∞

e−imθun+1
m+k

=
s∑

k=r

ak

∞∑
m=−∞

e−i(m−k)θun+1
m =

( s∑
k=r

ake
ikθ
)

ûn+1(θ).

(2)

Similarly manipulating the right-hand side, we deduce that

ûn+1(θ) = H(θ)ûn(θ) , where H(θ) =

∑s
k=r bke

ikθ∑s
k=r akeikθ

. (3)

The function H is sometimes called the amplification factor of the
recurrence (1)
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Fourier analysis of stability

Theorem 2
The method (1) is stable ⇔ |H(θ)| ≤ 1 for all θ ∈ [−π, π].
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Stability: Euler and the diffusion equation

Consider the Cauchy problem for the diffusion equation.

1) For the Euler method

un+1
m = un

m + µ(un
m−1 − 2un

m + un
m+1) ,

we obtain

H(θ) = 1 + µ
(
e−iθ − 2 + eiθ

)
= 1− 4µ sin2 θ

2
∈ [1− 4µ, 1] ,

thus the method is stable iff µ ≤ 1
2 .
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Stability: Backward Euler and the diffusion equation

2) For the backward Euler method

un+1
m − µ(un+1

m−1 − 2un+1
m + un+1

m+1) = un
m ,

we have

H(θ) =
[
1− µ

(
e−iθ − 2 + eiθ

)]−1
=
[
1 + 4µ sin2 θ

2

]−1
∈ (0, 1] .

thus stability for all µ.
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Stability: Crank–Nicolson and the diffusion equation

3) The Crank–Nicolson scheme

un+1
m − 1

2
µ(un+1

m−1− 2un+1
m + un+1

m+1) = un
m + 1

2
µ(un

m−1− 2un
m + un

m+1),

results in

H(θ) =
1 + 1

2µ(e−iθ − 2 + eiθ)

1− 1
2µ(e−iθ − 2 + eiθ)

=
1− 2µ sin2 θ

2

1 + 2µ sin2 θ
2

∈ (−1, 1]

Hence stability for all µ > 0.
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The advection and wave equations
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The advection equation

Problem 3 (The advection equation)

A useful paradigm for hyperbolic PDEs is the advection equation

ut = ux , 0 ≤ x ≤ 1, t ≥ 0, (4)

where u = u(x , t). It is given with the initial condition
u(x , 0) = ϕ(x), x ∈ [0, 1] and (for simplicity) the boundary
condition u(1, t) = ϕ(t + 1). The exact solution of (4) is simply
u(x , t) = ϕ(x + t), a unilateral shift leftwards. This, however,
does not mean that its numerical modelling is easy.
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Instability and the advection equation

We commence by semidiscretizing
∂um(t)
∂x
≈ 1

2h
[um+1(t)− um−1(t)],

so coming to the ODE u′m(t) = 1
2h

[um+1(t)− um−1(t)]. For the
Euler method, the outcome is

un+1
m = un

m + 1
2
µ(un

m+1 − un
m−1), m = 0...M, n ∈ Z+,

with un
0 = 0 for all n. In matrix form this reads

un+1 = Aun, A =


1 1

2µ

− 1
2µ 1

. . .
. . .

. . . 1
2µ

− 1
2µ 1

 .

The matrix A is normal, with the eigenvalues λ` = 1 + iµ cos `πh
(see Example 2.15), so that ‖A‖2 = 1 + µ2, hence instability for any
µ.
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The upwind method

If we semidiscretize
∂um(t)
∂x
≈ 1

h
[um+1(t)− um(t)], and solve the

ODE again by Euler’s method, then the result is

un+1
m = un

m + µ(un
m+1 − un

m), m = 0...M, n ∈ Z+ (5)

The local error is O(k2+kh) which is O(h2) for a fixed µ, hence
convergence if the method is stable.
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The upwind method

The eigenvalue analysis of stability does not apply here, since the
matrix A in un+1 = Aun is no longer normal (see Example 2.16), so
we do it directly (as in Lecture 5). We let the boundary condition at
x = 1 be zero and define ‖un‖ = maxm |un

m|. It follows at once from
(5) that

‖un+1‖ = max
m
|un+1

m | ≤ max
m
{|1−µ| |un

m|+µ |un
m+1|} ≤ (|1−µ|+µ)‖un‖, n ∈ Z+.

Therefore, µ ∈ (0, 1] means that ‖un+1‖ ≤ ‖un‖ ≤ · · · ≤ ‖u0‖,
hence stability.
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The leapfrog method

We semidicretize (4) as
∂um(t)
∂x
≈ 1

2h
[um+1(t)− um−1(t)], but now

solve the ODE with the second-order midpoint rule

yn+1 = yn−1 + 2kf(tn, yn), n ∈ Z+ .

The outcome is the two-step leapfrog method

un+1
m = µ (un

m+1 − un
m−1) + un−1

m . (6)

The error is now O(k3+kh2) = O(h3).
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Stability of the leapfrog method with Fourier analysis

We analyse stability by the Fourier technique, assuming that we are
solving a Cauchy problem. Thus, proceeding as before,

ûn+1(θ) = µ
(
eiθ − e−iθ

)
ûn(θ) + ûn−1(θ) (7)

whence

ûn+1(θ)− 2iµ sin θ ûn(θ)− ûn−1(θ) = 0, n ∈ Z+ ,

and our goal is to determine values of µ such that |ûn(θ)| is
uniformly bounded for all n, θ.
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Stability of the leapfrog method with Fourier analysis

This is a difference equation wn+1 + bwn + cwn−1 = 0 with the
general solution wn = c1λ

n
1 + c2λ

n
2, where λ1, λ2 are the roots of the

characteristic equation λ2 + bλ+ c = 0, and c1, c2 are constants,
dependent on the initial values w0 and w1. If λ1 = λ2, then solution
is wn = (c1 + c2n)λn. In our case, we obtain

λ1,2(θ) = iµ sin θ ±
√

1− µ2 sin2 θ .

Stability is equivalent to |λ1,2(θ)| ≤ 1 for all θ and this is true if and
only if µ ≤ 1.
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Stability in the presence of boundaries

It is easy to extend Fourier analysis for the Euler method
un+1
m = un

m + µ(un
m+1 − un

m), with the initial condition
u(x , 0) = φ(x), x ∈ [0, 1), and zero boundary condition along x = 1.

Consider the Cauchy problem for the advection equation with the
initial condition u(x , 0) = φ(x) for x ∈ [0, 1), and u(x , 0) = 0
otherwise (it isn’t differentiable, but this is not much of a problem).
Solving the Cauchy problem with Euler, we recover un that is
identical to the solution obtained from the zero boundary condition.
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Stability in the presence of boundaries

This justifies using Fourier analysis for the problem with a boundary,
and we obtain

ûn+1(θ) = H(θ) ûn(θ) , H(θ) = (1− µ) + µe iθ ,

so that max |H(θ)| = |1− µ|+ |µ|, hence stability if and only if
µ ≤ 1.

Unfortunately, this is no longer true for leapfrog. Closer examination
reveals that we cannot use leapfrog at m = 0, since un

−1 is unknown.
The naive remedy, setting un

−1 = 0, leads to instability, which
propagates from the boundary inwards. We can recover stability
letting, for example, un+1

0 = un
1 (the proof is very difficult).
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The wave equation

Consider the wave equation

∂2u

∂t2
=
∂2u

∂x2
, x ∈ [0, 1], t ≥ 0,

given with initial (for u and ut) and boundary conditions. The usual
approximation looks as follows

un+1
m − 2un

m + un−1
m = µ(un

m+1 − 2un
m + un

m−1) ,

with the Courant number being now µ = k2/h2.
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Discretising the wave equation

To advance in time we have to pick up the numbers u1
m = u(xm, k)

(of course they should depend on the initial derivative ut(x , 0).
Euler’s method provides the obvious choice
u(xm, k) = u(xm, 0) + kut(xm, 0), but the following technique enjoys
better accuracy. Specifically, we set u1

m to the right-hand side of the
formula

u(xm, k) ≈ u(xm, 0) + kut(xm, 0) + 1
2

k2utt(xm, 0)

= u(xm, 0) + kut(xm, 0) + 1
2

k2uxx(xm, 0)

≈ u0
m + 1

2
µ(u0

m−1 − 2u0
m + u0

m+1) + kut(xm, 0) .

23 / 24



Stability using Fourier analysis

The Fourier analysis (for Cauchy problem) provides

ûn+1(θ)− 2ûn(θ) + ûn−1(θ) = −4µ sin2 θ
2 ûn(θ) ,

with the characteristic equation λ2 − 2(1− 2µ sin2 θ
2)λ+ 1 = 0. The

product of the roots is one, therefore stability (that requires the
moduli of both λ to be at most one) is equivalent to the roots being
complex conjugate, so we require

(1− 2µ sin2 θ
2)2 ≤ 1.

This condition is achieved if and only if µ = k2/h2 ≤ 1.
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