Numerical Analysis - Part II

Anders C. Hansen

Lecture 8

Partial differential equations of evolution

Solving the diffusion equation

We consider the solution of the diffusion equation

$$\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2}, \qquad 0 \le x \le 1, \quad t \ge 0,$$

with initial conditions $u(x,0)=u_0(x)$ for t=0 and Dirichlet boundary conditions $u(0,t)=\phi_0(t)$ at x=0 and $u(1,t)=\phi_1(t)$ at x=1.

What if $-\infty < x < \infty$?

Fourier analysis of stability

Let us now assume a recurrence of the form

$$\sum_{k=r}^{s} a_{k} u_{m+k}^{n+1} = \sum_{k=r}^{s} b_{k} u_{m+k}^{n}, \qquad n \in \mathbb{Z}^{+},$$
 (1)

where m ranges over \mathbb{Z} . (Within our framework of discretizing PDEs of evolution, this corresponds to $-\infty < x < \infty$ in the undelying PDE and so there are no explicit boundary conditions, but the initial condition must be square-integrable in $(-\infty,\infty)$: this is known as a *Cauchy problem*.)

The coefficients a_k and b_k are independent of m, n, but typically depend upon μ . We investigate stability by Fourier analysis. [Note that it doesn't matter what is the underlying PDE: numerical stability is a feature of algebraic recurrences, not of PDEs!]

Fourier analysis of stability

Let $\mathbf{v} = (v_m)_{m \in \mathbb{Z}} \in \ell_2[\mathbb{Z}]$. Its Fourier transform is the function

$$\widehat{\mathbf{v}}(\theta) = \sum_{m \in \mathbb{Z}} e^{-\mathrm{i}m\theta} \mathbf{v}_m, \qquad -\pi \le \theta \le \pi.$$

We equip sequences and functions with the norms

$$\|\mathbf{v}\| = \left\{\sum_{m \in \mathbb{Z}} |v_m|^2\right\}^{\frac{1}{2}} \quad \text{and} \quad \|\widehat{v}\|_* = \left\{\frac{1}{2\pi} \int_{-\pi}^{\pi} |\widehat{v}(\theta)|^2 d\theta\right\}^{\frac{1}{2}}.$$

Parseval's identity

Lemma 1 (Parseval's identity)

For any $\mathbf{v} \in \ell_2[\mathbb{Z}]$, we have $\|\mathbf{v}\| = \|\widehat{\mathbf{v}}\|_*$.

Proof. By definition,

$$\begin{split} \|\widehat{\mathbf{v}}\|_{*}^{2} &= \frac{1}{2\pi} \int_{-\pi}^{\pi} \left| \sum_{m \in \mathbb{Z}} e^{-im\theta} v_{m} \right|^{2} d\theta = \frac{1}{2\pi} \int_{-\pi}^{\pi} \sum_{m \in \mathbb{Z}} \sum_{k \in \mathbb{Z}} v_{m} \overline{v}_{k} e^{-i(m-k)\theta} d\theta \\ &= \frac{1}{2\pi} \sum_{m \in \mathbb{Z}} \sum_{k \in \mathbb{Z}} v_{m} \overline{v}_{k} \int_{-\pi}^{\pi} e^{-i(m-k)\theta} d\theta \stackrel{(*)}{=} \sum_{m \in \mathbb{Z}} \sum_{k \in \mathbb{Z}} v_{m} \overline{v}_{k} \delta_{m-k} = \|\mathbf{v}\|^{2}, \end{split}$$

where equality (*) is due to the fact that

$$\int_{-\pi}^{\pi} \mathrm{e}^{-\mathrm{i}\ell heta} d heta = \left\{egin{array}{ll} 2\pi, & \ell = 0, \ \ 0, & \ell \in \mathbb{Z} \setminus \{0\}, \end{array}
ight.$$

The implication of the lemma is that the Fourier transform is an *isometry* of the Euclidean norm. This is an important reason underlying its many applications in mathematics and beyond.

Amplification factor

For $\theta \in [-\pi, \pi]$, let $\widehat{u}^n(\theta) = \sum_{m \in \mathbb{Z}} \mathrm{e}^{-\mathrm{i} m \theta} u_m^n$ be the Fourier transform of the sequence $\boldsymbol{u}^n \in \ell_2[\mathbb{Z}]$. We multiply the discretized equations (1) by $\mathrm{e}^{-\mathrm{i} m \theta}$ and sum up for $m \in \mathbb{Z}$. Thus, the left-hand side yields

$$\sum_{m=-\infty}^{\infty} e^{-im\theta} \sum_{k=r}^{s} a_k u_{m+k}^{n+1} = \sum_{k=r}^{s} a_k \sum_{m=-\infty}^{\infty} e^{-im\theta} u_{m+k}^{n+1}$$

$$= \sum_{k=r}^{s} a_k \sum_{m=-\infty}^{\infty} e^{-i(m-k)\theta} u_m^{n+1} = \left(\sum_{k=r}^{s} a_k e^{ik\theta}\right) \widehat{u}^{n+1}(\theta).$$
(2)

Similarly manipulating the right-hand side, we deduce that

$$\widehat{u}^{n+1}(\theta) = H(\theta)\widehat{u}^n(\theta), \text{ where } H(\theta) = \frac{\sum_{k=r}^s b_k e^{ik\theta}}{\sum_{k=r}^s a_k e^{ik\theta}}.$$
 (3)

The function H is sometimes called the *amplification factor* of the recurrence (1)

Fourier analysis of stability

Theorem 2

The method (1) is stable \Leftrightarrow $|H(\theta)| \le 1$ for all $\theta \in [-\pi, \pi]$.

Fourier analysis of stability (proof)

Proof. The definition of stability is equivalent to the statement that there exists c>0 such that $\|\boldsymbol{u}^n\|\leq c$ for all $n\in\mathbb{Z}^+$. [Because we are solving a Cauchy problem, equations are identical for all $h=\Delta x$, and this simplifies our analysis and eliminates a major difficulty: there is no need to insist explicitly that $\|\boldsymbol{u}^n\|$ remains uniformly bounded when $h\!\to\!0$]. The Fourier transform being an isometry, stability is thus equivalent to $\|\widehat{u}^n\|_*\leq c$ for all $n\in\mathbb{Z}^+$. Iterating (3), we obtain

$$\widehat{u}^n(\theta) = [H(\theta)]^n \widehat{u}^0(\theta), \qquad |\theta| \le \pi, \quad n \in \mathbb{Z}^+.$$
 (4)

Fourier analysis of stability (proof)

Proof. (Continuing)

1) Assume first that $|H(\theta)| \le 1$ for all $|\theta| \le \pi$. Then, by (4),

$$|\widehat{u}^{n}(\theta)| \leq |\widehat{u}^{0}(\theta)|$$

$$\Rightarrow \|\widehat{u}^{n}\|_{*}^{2} = \frac{1}{2\pi} \int_{-\pi}^{\pi} |\widehat{u}^{n}(\theta)|^{2} d\theta \leq \frac{1}{2\pi} \int_{-\pi}^{\pi} |\widehat{u}^{0}(\theta)|^{2} d\theta = \|\widehat{u}^{0}\|_{*}^{2}$$
(5)

Hence stability.

Fourier analysis of stability (proof)

Proof. (Continuing) 2) Suppose, on the other hand, that there exists $\theta_0 \in [-\pi, \pi]$ such that $|H(\theta_0)| = 1 + 2\epsilon > 1$, say. Since H is continuous, there exist $-\pi \leq \theta_1 < \theta_2 \leq \pi$ such that $|H(\theta)| \geq 1 + \epsilon$ for all $\theta \in [\theta_1, \theta_2]$. We set $\eta = \theta_2 - \theta_1$ and choose as our initial condition the function (or the $\ell_2[\mathbb{Z}]$ -sequence)

$$\widehat{u}^0(\theta) = \left\{ egin{array}{ll} \sqrt{rac{2\pi}{\eta}}, & heta_1 \leq heta \leq heta_2, \\ 0, & ext{otherwise}, \end{array}
ight.$$

Then

$$\|\widehat{u}^{n}\|_{*}^{2} = \frac{1}{2\pi} \int_{-\pi}^{\pi} |H(\theta)|^{2n} |\widehat{u}^{0}(\theta)|^{2} d\theta = \frac{1}{2\pi} \int_{\theta_{1}}^{\theta_{2}} |H(\theta)|^{2n} |\widehat{u}^{0}(\theta)|^{2} d\theta$$
$$\geq \frac{1}{2\pi} (1+\epsilon)^{2n} \int_{\theta_{1}}^{\theta_{2}} \frac{2\pi}{\eta} d\theta = (1+\epsilon)^{2n} \to \infty \quad (n \to \infty).$$

We deduce that the method is unstable.

Stability: Euler and the diffusion equation

Consider the Cauchy problem for the diffusion equation.

1) For the Euler method

$$u_m^{n+1} = u_m^n + \mu(u_{m-1}^n - 2u_m^n + u_{m+1}^n),$$

we obtain

$$\mathit{H}(heta) = 1 + \mu \left(\mathrm{e}^{-\mathrm{i} heta} - 2 + \mathrm{e}^{\mathrm{i} heta}
ight) = 1 - 4 \mu \sin^2 rac{ heta}{2} \; \in \; \left[1 - 4 \mu, 1
ight],$$

thus the method is stable iff $\mu \leq \frac{1}{2}.$

Stability: Backward Euler and the diffusion equation

2) For the backward Euler method

$$u_m^{n+1} - \mu(u_{m-1}^{n+1} - 2u_m^{n+1} + u_{m+1}^{n+1}) = u_m^n$$

we have

$$H(\theta) = \left[1 - \mu \left(e^{-\mathrm{i}\theta} - 2 + e^{\mathrm{i}\theta}\right)\right]^{-1} = \left[1 + 4\mu \sin^2\frac{\theta}{2}\right]^{-1} \in (0,1].$$

thus stability for all μ .

Stability: Crank-Nicolson and the diffusion equation

3) The Crank-Nicolson scheme

$$u_m^{n+1} - \frac{1}{2}\mu(u_{m-1}^{n+1} - 2u_m^{n+1} + u_{m+1}^{n+1}) = u_m^n + \frac{1}{2}\mu(u_{m-1}^n - 2u_m^n + u_{m+1}^n),$$

results in

$$H(\theta) = \frac{1 + \frac{1}{2}\mu(e^{-i\theta} - 2 + e^{i\theta})}{1 - \frac{1}{2}\mu(e^{-i\theta} - 2 + e^{i\theta})} = \frac{1 - 2\mu\sin^2\frac{\theta}{2}}{1 + 2\mu\sin^2\frac{\theta}{2}} \in (-1, 1]$$

Hence stability for all $\mu > 0$.

The advection and wave equations

The advection equation

We look at the *advection equation* which we already considered in Lecture 6.

$$u_t = u_x, t \ge 0, (6)$$

where u=u(x,t). It is given with the initial condition $u(x,0)=\varphi(x)$. The exact solution of (6) is simply $u(x,t)=\varphi(x+t)$, a unilateral shift leftwards.

This, however, does not mean that its numerical modelling is easy.

Instability and the advection equation

1) Downwind instability: Consider the discretization $\frac{\partial u_m(t)}{\partial x} \approx \frac{1}{2h} \left[u_m(t) - u_{m-1}(t) \right]$, so coming to the ODE $u_m'(t) = \frac{1}{2h} \left[u_m(t) - u_{m-1}(t) \right]$. For the Euler method, the outcome is

$$u_m^{n+1} = u_m^n + \mu(u_m^n - u_{m-1}^n), \quad n \in \mathbb{Z}_+.$$

We can analyze the stability of this method using Fourier analysis. The amplification factor is

$$H(\theta) = 1 + \mu - \mu e^{-i\theta}.$$

We see that for $\theta = \pi/2$, $|H(\theta)|^2 = (1 + \mu)^2 + \mu^2 > 1$, and so the method is unstable for all $\mu > 0$.

The upwind method

Upwind scheme: If we semidiscretize $\frac{\partial u_m(t)}{\partial x} \approx \frac{1}{h} [u_{m+1}(t) - u_m(t)]$, and solve the ODE again by Euler's method, then the result is

$$u_m^{n+1} = u_m^n + \mu(u_{m+1}^n - u_m^n), \quad n \in \mathbb{Z}_+$$
 (7)

The local error is $\mathcal{O}(k^2+kh)$ which is $\mathcal{O}(h^2)$ for a fixed μ , hence convergence if the method is stable. We can again use Fourier analysis to analyze stability. The amplification factor is

$$H(\theta) = 1 - \mu + \mu e^{\mathrm{i}\theta}$$

and we see that $|H(\theta)|=|1-\mu+\mu\mathrm{e}^{\mathrm{i}\theta}|\leq |1-\mu|+\mu=1$ for $\mu\in[0,1].$ Hence we have stability for $\mu\leq 1$. If $\mu>1$, then note that $|H(\pi)|=|1-2\mu|>1$, and so we have instability for $\mu>1$.

Matlab demo: Download the Matlab GUI for *Solving the Advection Equation, Upwinding and Stability* from https:

//www.damtp.cam.ac.uk/user/hf323/M21-II-NA/demos/index.html and solve the advection equation (6) with the different methods provided in the demonstration. Experience what can go wrong when "winding" in the wrong direction!

Euler for advection equation – Upwind method

What about the case when $0 \le x \le 1$ (bounded domain)?

Recall from Lecture 6 when we considered the Euler method for the advection equation

$$u_m^{n+1} - u_m^n = \mu(u_{m+1}^n - u_m^n), \qquad m = 1...M.$$

We have $\boldsymbol{u}^{n+1} = A\boldsymbol{u}^n$, where

$$A = \left[egin{array}{cccc} 1 - \mu & \mu & & & \ & 1 - \mu & \ddots & & \ & & \ddots & \mu & \ & & 1 - \mu \end{array}
ight],$$

but A is *not* normal, and although its eigenvalues are bounded by 1 for $\mu \leq 2$ (note $1-\mu$ is the only eigenvalue of A), it is the matrix induced norm of A that matters. For this example, it is easier to work with $\|A\|_{\infty \to \infty}$ which we see is given by $|1-\mu|+\mu$ (by the formula in Lecture 5), and this is smaller than 1 precisely when $\mu \leq 1$.

The leapfrog method

Leap-frog method: We semidicretize (6) as $\frac{\partial u_m(t)}{\partial x} \approx \frac{1}{2h} \left[u_{m+1}(t) - u_{m-1}(t) \right]$, but now solve the ODE with the second-order midpoint rule

$$\mathbf{y}_{n+1} = \mathbf{y}_{n-1} + 2k\mathbf{f}(t_n, \mathbf{y}_n), \qquad n \in \mathbb{Z}_+.$$

The outcome is the two-step *leapfrog* method

$$u_m^{n+1} = \mu \left(u_{m+1}^n - u_{m-1}^n \right) + u_m^{n-1}. \tag{8}$$

The local error is now $\mathcal{O}(k^3+kh^2)=\mathcal{O}(h^3)$.

Stability of the leapfrog method with Fourier analysis

We analyse stability by the Fourier technique, assuming that we are solving a Cauchy problem. Thus, proceeding as before,

$$\widehat{u}^{n+1}(\theta) = \mu \left(e^{i\theta} - e^{-i\theta} \right) \widehat{u}^{n}(\theta) + \widehat{u}^{n-1}(\theta)$$
(9)

whence

$$\widehat{u}^{n+1}(\theta) - 2i\mu \sin\theta \, \widehat{u}^n(\theta) - \widehat{u}^{n-1}(\theta) = 0, \qquad n \in \mathbb{Z}_+,$$

and our goal is to determine values of μ such that $|\widehat{u}^n(\theta)|$ is uniformly bounded for all n, θ .

Stability of the leapfrog method with Fourier analysis

This is a difference equation $w_{n+1}+bw_n+cw_{n-1}=0$ with the general solution $w_n=c_1\lambda_1^n+c_2\lambda_2^n$, where λ_1,λ_2 are the roots of the characteristic equation $\lambda^2+b\lambda+c=0$, and c_1,c_2 are constants, dependent on the initial values w_0 and w_1 . If $\lambda_1=\lambda_2$, then solution is $w_n=(c_1+c_2n)\lambda^n$. In our case, we obtain

$$\lambda_{1,2}(\theta) = i\mu \sin \theta \pm \sqrt{1 - \mu^2 \sin^2 \theta}$$
.

Stability is equivalent to $|\lambda_{1,2}(\theta)| \leq 1$ for all θ and this is true if and only if $\mu \leq 1$.

The wave equation

Consider the wave equation

$$\frac{\partial^2 u}{\partial t^2} = \frac{\partial^2 u}{\partial x^2} \qquad t \ge 0,$$

given with initial conditions u(x,0) and $u_t(x,0) = \frac{\partial u}{\partial t}(x,0)$. The usual approximation looks as follows

$$u_m^{n+1} - 2u_m^n + u_m^{n-1} = \mu(u_{m+1}^n - 2u_m^n + u_{m-1}^n),$$

with the Courant number being now $\mu = k^2/h^2$.

Stability using Fourier analysis

The Fourier analysis (for Cauchy problem) provides

$$\widehat{u}^{n+1}(\theta) - 2\widehat{u}^n(\theta) + \widehat{u}^{n-1}(\theta) = -4\mu \sin^2 \frac{\theta}{2} \, \widehat{u}^n(\theta) \,,$$

with the characteristic equation $\lambda^2-2(1-2\mu\sin^2\frac{\theta}{2})\lambda+1=0$. The product of the roots is one, therefore stability (that requires the moduli of both λ to be at most one) is equivalent to the roots being complex conjugate, so we require

$$(1-2\mu\sin^2\frac{\theta}{2})^2 \le 1.$$

This condition is achieved if and only if $\mu = k^2/h^2 \le 1$.

Recall: For any quadratic equation $ax^2 + bx + c = 0$ whose roots are α and β , the sum of the roots, $\alpha + \beta = -\frac{b}{a}$. The product of the roots, $\alpha \times \beta = \frac{c}{a}$.

The diffusion equation in two space dimensions

The diffusion equation in two space dimensions

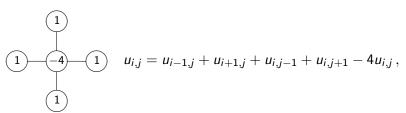
We are solving

$$\frac{\partial u}{\partial t} = \nabla^2 u, \qquad 0 \le x, y \le 1, \quad t \ge 0, \tag{10}$$

where u=u(x,y,t), together with initial conditions at t=0 and Dirichlet boundary conditions at $\partial\Omega$, where $\Omega=[0,1]^2\times[0,\infty)$. It is straightforward to generalize our derivation of numerical algorithms, e.g. by the method of lines.

Recall the five point formula

We have the five-point method



discretising the two dimensional Laplacian.

The diffusion equation in two space dimensions

Thus, let $u_{\ell,m}(t) \approx u(\ell h, mh, t)$, where $h = \Delta x = \Delta y$, and let $u_{\ell,m}^n \approx u_{\ell,m}(nk)$ where $k = \Delta t$. The five-point formula results in

$$u'_{\ell,m} = \frac{1}{h^2} (u_{\ell-1,m} + u_{\ell+1,m} + u_{\ell,m-1} + u_{\ell,m+1} - 4u_{\ell,m}),$$

or in the matrix form

$$\mathbf{u}' = \frac{1}{h^2} A_* \mathbf{u}, \qquad \mathbf{u} = (u_{\ell,m}) \in \mathbb{R}^N,$$
 (11)

where A_* is the block TST matrix of the five-point scheme:

$$A_* = \begin{bmatrix} H & I & & & \\ I & \ddots & \ddots & & \\ & \ddots & \ddots & I \\ & & I & H \end{bmatrix}, \quad H = \begin{bmatrix} -4 & 1 & & \\ 1 & \ddots & \ddots & \\ & \ddots & \ddots & 1 \\ & & 1 & -4 \end{bmatrix}.$$

The diffusion equation in two space dimensions

Thus, the Euler method yields

$$u_{\ell,m}^{n+1} = u_{\ell,m}^{n} + \mu (u_{\ell-1,m}^{n} + u_{\ell+1,m}^{n} + u_{\ell,m-1}^{n} + u_{\ell,m+1}^{n} - 4u_{\ell,m}^{n}), (12)$$

or in the matrix form

$$\mathbf{u}^{n+1} = A\mathbf{u}^n, \qquad A = I + \mu A_*$$

where, as before, $\mu = \frac{k}{h^2} = \frac{\Delta t}{(\Delta x)^2}$. The local error is $\eta = \mathcal{O}(k^2 + kh^2) = \mathcal{O}(h^4)$. To analyse stability, we notice that A is symmetric, hence normal, and its eigenvalues are related to those of A_* by the rule

$$\lambda_{k,\ell}(A) = 1 + \mu \lambda_{k,\ell}(A_*) \stackrel{\operatorname{Prop.} 1.12}{=} 1 - 4\mu \left(\sin^2 \frac{\pi kh}{2} + \sin^2 \frac{\pi \ell h}{2} \right) .$$

Consequently,

$$\sup_{h>0} \rho(A) = \max\{1, |1-8\mu|\}, \qquad \text{hence} \qquad \mu \leq \frac{1}{4} \quad \Leftrightarrow \quad \text{stability}.$$