Numerical Analysis - Part II

Anders C. Hansen

Lecture 9

Partial differential equations of evolution

We consider the solution of the diffusion equation

$$\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2}, \qquad 0 \le x \le 1, \quad t \ge 0,$$

with initial conditions $u(x,0) = u_0(x)$ for t = 0 and Dirichlet boundary conditions $u(0,t) = \phi_0(t)$ at x = 0 and $u(1,t) = \phi_1(t)$ at x = 1.

What if $-\infty < x < \infty$?

Let us now assume a recurrence of the form

$$\sum_{k=r}^{s} a_{k} u_{m+k}^{n+1} = \sum_{k=r}^{s} b_{k} u_{m+k}^{n}, \qquad n \in \mathbb{Z}^{+},$$
(1)

where *m* ranges over \mathbb{Z} . (Within our framework of discretizing PDEs of evolution, this corresponds to $-\infty < x < \infty$ in the undelying PDE and so there are no explicit boundary conditions, but the initial condition must be square-integrable in $(-\infty, \infty)$: this is known as a *Cauchy problem*.)

The coefficients a_k and b_k are independent of m, n, but typically depend upon μ . We investigate stability by *Fourier analysis*. [Note that it doesn't matter what is the underlying PDE: numerical stability is a feature of algebraic recurrences, not of PDEs!]

Let $\mathbf{v} = (v_m)_{m \in \mathbb{Z}} \in \ell_2[\mathbb{Z}]$. Its Fourier transform is the function

$$\widehat{\mathbf{v}}(\theta) = \sum_{m \in \mathbb{Z}} \mathrm{e}^{-\mathrm{i}m\theta} \mathbf{v}_m, \qquad -\pi \le \theta \le \pi.$$

We equip sequences and functions with the norms

$$\|\mathbf{v}\| = \left\{ \sum_{m \in \mathbb{Z}} |v_m|^2 \right\}^{\frac{1}{2}} \quad \text{and} \quad \|\widehat{v}\|_* = \left\{ \frac{1}{2\pi} \int_{-\pi}^{\pi} |\widehat{v}(\theta)|^2 d\theta \right\}^{\frac{1}{2}}$$

-1

٠

Amplification factor

For $\theta \in [-\pi, \pi]$, let $\widehat{u}^n(\theta) = \sum_{m \in \mathbb{Z}} e^{-im\theta} u_m^n$ be the Fourier transform of the sequence $\mathbf{u}^n \in \ell_2[\mathbb{Z}]$. We multiply the discretized equations (1) by $e^{-im\theta}$ and sum up for $m \in \mathbb{Z}$. Thus, the left-hand side yields

$$\sum_{m=-\infty}^{\infty} e^{-im\theta} \sum_{k=r}^{s} a_k u_{m+k}^{n+1} = \sum_{k=r}^{s} a_k \sum_{m=-\infty}^{\infty} e^{-im\theta} u_{m+k}^{n+1}$$
$$= \sum_{k=r}^{s} a_k \sum_{m=-\infty}^{\infty} e^{-i(m-k)\theta} u_m^{n+1} = \left(\sum_{k=r}^{s} a_k e^{ik\theta}\right) \widehat{u}^{n+1}(\theta).$$
(2)

Similarly manipulating the right-hand side, we deduce that

$$\widehat{u}^{n+1}(\theta) = H(\theta)\widehat{u}^{n}(\theta), \quad \text{where} \quad H(\theta) = \frac{\sum_{k=r}^{s} b_{k} \mathrm{e}^{\mathrm{i}k\theta}}{\sum_{k=r}^{s} a_{k} \mathrm{e}^{\mathrm{i}k\theta}}.$$
 (3)

The function H is sometimes called the *amplification factor* of the recurrence (1)

Theorem 1 The method (1) is stable \Leftrightarrow $|H(\theta)| \le 1$ for all $\theta \in [-\pi, \pi]$.

The advection and wave equations

Problem 2 (The advection equation)

A useful paradigm for hyperbolic PDEs is the *advection equation*

$$u_t = u_x, \qquad 0 \le x \le 1, \qquad t \ge 0, \tag{4}$$

where u = u(x, t). It is given with the initial condition $u(x, 0) = \varphi(x), x \in [0, 1]$ and (for simplicity) the boundary condition $u(1, t) = \varphi(t + 1)$. The exact solution of (4) is simply $u(x, t) = \varphi(x + t)$, a unilateral shift leftwards. This, however, does not mean that its numerical modelling is easy.

Instability and the advection equation

We commence by semidiscretizing $\frac{\partial u_m(t)}{\partial x} \approx \frac{1}{2h} [u_{m+1}(t) - u_{m-1}(t)]$, so coming to the ODE $u'_m(t) = \frac{1}{2h} [u_{m+1}(t) - u_{m-1}(t)]$. For the Euler method, the outcome is

$$u_m^{n+1} = u_m^n + \frac{1}{2}\mu(u_{m+1}^n - u_{m-1}^n), \qquad m = 0...M, \quad n \in \mathbb{Z}_+,$$

with $u_0^n = 0$ for all *n*. In matrix form this reads

$$\mathbf{u}^{n+1} = A\mathbf{u}^{n}, \qquad A = \begin{bmatrix} 1 & \frac{1}{2}\mu & & \\ -\frac{1}{2}\mu & 1 & \ddots & \\ & \ddots & \ddots & \frac{1}{2}\mu \\ & & -\frac{1}{2}\mu & 1 \end{bmatrix}$$

The matrix A is normal, with the eigenvalues $\lambda_{\ell} = 1 + i\mu \cos \ell \pi h$ (see Example 2.15), so that $||A||^2 = 1 + \mu^2$, hence instability for any μ . Consider the wave equation

$$rac{\partial^2 u}{\partial t^2} = rac{\partial^2 u}{\partial x^2}, \qquad x \in [0,1], \qquad t \ge 0,$$

given with initial (for u and u_t) and boundary conditions. The usual approximation looks as follows

$$u_m^{n+1} - 2u_m^n + u_m^{n-1} = \mu(u_{m+1}^n - 2u_m^n + u_{m-1}^n),$$

with the Courant number being now $\mu = k^2/h^2$.

To advance in time we have to pick up the numbers $u_m^1 = u(x_m, k)$ (of course they should depend on the initial derivative $u_t(x, 0)$. Euler's method provides the obvious choice $u(x_m, k) = u(x_m, 0) + ku_t(x_m, 0)$, but the following technique enjoys better accuracy. Specifically, we set u_m^1 to the right-hand side of the formula

$$\begin{aligned} u(x_m, k) &\approx u(x_m, 0) + ku_t(x_m, 0) + \frac{1}{2}k^2 u_{tt}(x_m, 0) \\ &= u(x_m, 0) + ku_t(x_m, 0) + \frac{1}{2}k^2 u_{xx}(x_m, 0) \\ &\approx u_m^0 + \frac{1}{2}\mu(u_{m-1}^0 - 2u_m^0 + u_{m+1}^0) + ku_t(x_m, 0) \,. \end{aligned}$$

The Fourier analysis (for Cauchy problem) provides

$$\widehat{u}^{n+1}(heta) - 2\widehat{u}^n(heta) + \widehat{u}^{n-1}(heta) = -4\mu\sin^2rac{ heta}{2}\,\widehat{u}^n(heta)\,,$$

with the characteristic equation $\lambda^2 - 2(1 - 2\mu \sin^2 \frac{\theta}{2})\lambda + 1 = 0$. The product of the roots is one, therefore stability (that requires the moduli of both λ to be at most one) is equivalent to the roots being complex conjugate, so we require

$$(1-2\mu\sin^2\frac{\theta}{2})^2 \le 1.$$

This condition is achieved if and only if $\mu = k^2/h^2 \leq 1$.

The diffusion equation in two space dimensions

We are solving

$$\frac{\partial u}{\partial t} = \nabla^2 u, \qquad 0 \le x, y \le 1, \quad t \ge 0, \tag{5}$$

where u = u(x, y, t), together with initial conditions at t = 0 and Dirichlet boundary conditions at $\partial\Omega$, where $\Omega = [0, 1]^2 \times [0, \infty)$. It is straightforward to generalize our derivation of numerical algorithms, e.g. by the method of lines.

Recall the five point formula

We have the five-point method

discretising the two dimensional Laplacian.

The diffusion equation in two space dimensions

Thus, let $u_{\ell,m}(t) \approx u(\ell h, mh, t)$, where $h = \Delta x = \Delta y$, and let $u_{\ell,m}^n \approx u_{\ell,m}(nk)$ where $k = \Delta t$. The five-point formula results in

$$u_{\ell,m}' = \frac{1}{h^2}(u_{\ell-1,m} + u_{\ell+1,m} + u_{\ell,m-1} + u_{\ell,m+1} - 4u_{\ell,m}),$$

or in the matrix form

$$\mathbf{u}' = \frac{1}{h^2} A_* \mathbf{u}, \qquad \mathbf{u} = (u_{\ell,m}) \in \mathbb{R}^N,$$
 (6)

where A_* is the block TST matrix of the five-point scheme:

$$A_* = \begin{bmatrix} H & I \\ I & \ddots & \ddots \\ \ddots & \ddots & I \\ I & H \end{bmatrix}, \quad H = \begin{bmatrix} -4 & 1 \\ 1 & \ddots & \ddots \\ \ddots & \ddots & 1 \\ 1 & -4 \end{bmatrix}$$

The diffusion equation in two space dimensions

Thus, the Euler method yields

$$u_{\ell,m}^{n+1} = u_{\ell,m}^n + \mu (u_{\ell-1,m}^n + u_{\ell+1,m}^n + u_{\ell,m-1}^n + u_{\ell,m+1}^n - 4u_{\ell,m}^n), \quad (7)$$

or in the matrix form

$$\mathbf{u}^{n+1} = A\mathbf{u}^n, \qquad A = I + \mu A_*$$

where, as before, $\mu = \frac{k}{h^2} = \frac{\Delta t}{(\Delta x)^2}$. The local error is $\eta = \mathcal{O}(k^2 + kh^2) = \mathcal{O}(h^4)$. To analyse stability, we notice that A is symmetric, hence normal, and its eigenvalues are related to those of A_* by the rule

$$\lambda_{k,\ell}(A) = 1 + \mu \lambda_{k,\ell}(A_*) \stackrel{\text{Prop. 1.12}}{=} 1 - 4\mu \left(\sin^2 \frac{\pi kh}{2} + \sin^2 \frac{\pi \ell h}{2} \right) \,.$$

Consequently,

$$\sup_{h>0}
ho(A)=\max\{1,|1-8\mu|\},$$
 hence $\mu\leqrac{1}{4}$ \Leftrightarrow stability.

Fourier analysis generalizes to two dimensions: of course, we now need to extend the range of (x, y) in (5) from $0 \le x, y \le 1$ to $x, y \in \mathbb{R}$. A 2D Fourier transform reads

$$\widehat{u}(\theta,\psi) = \sum_{\ell,m\in\mathbb{Z}} u_{\ell,m} \mathrm{e}^{-\mathrm{i}(\ell\theta+m\psi)}$$

and all our results readily generalize.

In particular, the Fourier transform is an isometry from $\ell_2[\mathbb{Z}^2]$ to $L_2([-\pi,\pi]^2)$, i.e.

$$\Big(\sum_{\ell,m\in\mathbb{Z}}|u_{\ell,m}|^2\Big)^{1/2}=:\|\mathbf{u}\|=\|\widehat{u}\|_*:=\Big(\frac{1}{4\pi^2}\int_{-\pi}^{\pi}\int_{-\pi}^{\pi}|\widehat{u}(\theta,\psi)|^2\,d\theta\,d\psi\Big)^{1/2},$$

and the method is stable iff $|H(\theta, \psi)| \le 1$ for all $\theta, \psi \in [-\pi, \pi]$. The proofs are an easy elaboration on the one-dimensional theory. Insofar as the Euler method (7) is concerned,

$$H(\theta,\psi) = 1 + \mu \left(e^{-i\theta} + e^{i\theta} + e^{-i\psi} + e^{i\psi} - 4 \right) = 1 - 4\mu \left(\sin^2 \frac{\theta}{2} + \sin^2 \frac{\psi}{2} \right),$$

and we again deduce stability if and only if $\mu \leq \frac{1}{4}$.

Parseval's identity

Lemma 3 (Parseval's identity)

For any $\mathbf{v} \in \ell_2[\mathbb{Z}]$, we have $\|\mathbf{v}\| = \|\hat{\mathbf{v}}\|_*$. **Proof.** By definition,

$$\begin{split} \|\widehat{\boldsymbol{v}}\|_{*}^{2} &= \frac{1}{2\pi} \int_{-\pi}^{\pi} \big| \sum_{m \in \mathbb{Z}} \mathrm{e}^{-\mathrm{i}m\theta} \boldsymbol{v}_{m} \big|^{2} d\theta = \frac{1}{2\pi} \int_{-\pi}^{\pi} \sum_{m \in \mathbb{Z}} \sum_{k \in \mathbb{Z}} \boldsymbol{v}_{m} \overline{\boldsymbol{v}}_{k} \mathrm{e}^{-\mathrm{i}(m-k)\theta} d\theta \\ &= \frac{1}{2\pi} \sum_{m \in \mathbb{Z}} \sum_{k \in \mathbb{Z}} \boldsymbol{v}_{m} \overline{\boldsymbol{v}}_{k} \int_{-\pi}^{\pi} \mathrm{e}^{-\mathrm{i}(m-k)\theta} d\theta \stackrel{(*)}{=} \sum_{m \in \mathbb{Z}} \sum_{k \in \mathbb{Z}} \boldsymbol{v}_{m} \overline{\boldsymbol{v}}_{k} \delta_{m-k} = \|\boldsymbol{v}\|^{2} \,, \end{split}$$

where equality (*) is due to the fact that

$$\int_{-\pi}^{\pi} \mathrm{e}^{-\mathrm{i}\ell\theta} d\theta = \begin{cases} 2\pi, & \ell = 0, \\ 0, & \ell \in \mathbb{Z} \setminus \{0\} \end{cases}$$

The implication of the lemma is that the Fourier transform is an *isometry* of the Euclidean norm. This is an important reason underlying its many applications in mathematics and beyond.

Applying the trapezoidal rule to our semi-dicretization (6) we obtain the two-dimensional Crank-Nicolson method:

$$(I - \frac{1}{2}\mu A_*) \mathbf{u}^{n+1} = (I + \frac{1}{2}\mu A_*) \mathbf{u}^n, \qquad (8)$$

in which we move from the *n*-th to the (n+1)-st level by solving the system of linear equations $B\mathbf{u}^{n+1} = C\mathbf{u}^n$, or $\mathbf{u}^{n+1} = B^{-1}C\mathbf{u}^n$. For stability, similarly to the one-dimensional case, the eigenvalue analysis implies that $A = B^{-1}C$ is normal and shares the same eigenvectors with B and C, hence

$$\lambda(A) = rac{\lambda(\mathcal{C})}{\lambda(B)} = rac{1+rac{1}{2}\mu\lambda(A_*)}{1-rac{1}{2}\mu\lambda(A_*)} \hspace{3mm} \Rightarrow \hspace{3mm} |\lambda(A)| < 1 ext{ as } \lambda(A_*) < 0$$

and the method is stable for all μ . The same result can be obtained through the Fourier analysis.

We would like to find a fast solver to the system (8). The matrix $B = I - \frac{1}{2}\mu A_*$ has a structure similar to that of A_* , where

$$A_* = \begin{bmatrix} H & I \\ I & \ddots & \ddots \\ \ddots & \ddots & I \\ I & H \end{bmatrix}, \quad H = \begin{bmatrix} -4 & 1 \\ 1 & \ddots & \ddots \\ \ddots & \ddots & 1 \\ 1 & -4 \end{bmatrix}$$

so we may apply the Hockney method.

•

Special structure of 5-point equations

Observation 4 (Special structure of 5-point equations)

We wish to motivate and introduce a family of efficient solution methods for the 5-point equations: the *fast Poisson solvers*. Thus, suppose that we are solving $\nabla^2 u = f$ in a square $m \times m$ grid with the 5-point formula (all this can be generalized a great deal, e.g. to the nine-point formula). Let the grid be enumerated in *natural ordering*, i.e. by columns. Thus, the linear system $A\mathbf{u} = \mathbf{b}$ can be written explicitly in the block form

$$\underbrace{\begin{bmatrix} B & I \\ I & B & \ddots \\ & \ddots & \ddots & I \\ & & I & B \end{bmatrix}}_{A} \begin{bmatrix} \mathbf{u}_1 \\ \mathbf{u}_2 \\ \vdots \\ \mathbf{u}_m \end{bmatrix} = \begin{bmatrix} \mathbf{b}_1 \\ \mathbf{b}_2 \\ \vdots \\ \mathbf{b}_m \end{bmatrix}, \qquad B = \begin{bmatrix} -4 & 1 \\ 1 & -4 & \ddots \\ & \ddots & \ddots & 1 \\ & & 1 & -4 \end{bmatrix}_{m \times m},$$

where $\mathbf{u}_k, \mathbf{b}_k \in \mathbb{R}^m$ are portions of \mathbf{u} and \mathbf{b} , respectively, and B is a TST-matrix which means *tridiagonal, symmetric* and *Toeplitz* (i.e., constant along diagonals).

Observation 5 (Special structure of 5-point equations)

By Exercise 4, its eigenvalues and orthonormal eigenvectors are given as

$$B\mathbf{q}_{\ell} = \lambda_{\ell} \mathbf{q}_{\ell}, \qquad \lambda_{\ell} = -4 + 2\cos\frac{\ell\pi}{m+1};$$
$$\mathbf{q}_{\ell} = \gamma_m (\sin\frac{j\ell\pi}{m+1})_{i=1}^m, \qquad \ell = 1..m,$$

where $\gamma_m = \sqrt{\frac{2}{m+1}}$ is the normalization factor. Hence $B = QDQ^{-1} = QDQ$, where $D = \text{diag}(\lambda_\ell)$ and $Q = Q^T = (q_{j\ell})$. Note that all $m \times m$ TST matrices share the same full set of eigenvectors, hence they all commute!

The Hockney method

Set $\mathbf{v}_k = Q \mathbf{u}_k$, $\mathbf{c}_k = Q \mathbf{b}_k$, therefore our system becomes

$$\begin{bmatrix} D & I & & \\ I & D & \ddots & \\ & \ddots & \ddots & I \\ & & I & D \end{bmatrix} \begin{bmatrix} \mathbf{v}_1 \\ \mathbf{v}_2 \\ \vdots \\ \mathbf{v}_m \end{bmatrix} = \begin{bmatrix} \mathbf{c}_1 \\ \mathbf{c}_2 \\ \vdots \\ \mathbf{c}_m \end{bmatrix}$$

Let us by this stage reorder the grid by rows, instead of by columns.. In other words, we permute $\mathbf{v} \mapsto \hat{\mathbf{v}} = P\mathbf{v}$, $\mathbf{c} \mapsto \hat{\mathbf{c}} = P\mathbf{c}$, so that the portion $\hat{\mathbf{c}}_1$ is made out of the first components of the portions $\mathbf{c}_1, \ldots, \mathbf{c}_m$, the portion $\hat{\mathbf{c}}_2$ out of the second components and so on.

The Hockney method

This results in new system

$$\begin{bmatrix} \Lambda_1 & & \\ & \Lambda_2 & \\ & & \ddots & \\ & & & \Lambda_m \end{bmatrix} \begin{bmatrix} \hat{\mathbf{v}}_1 \\ \hat{\mathbf{v}}_2 \\ \vdots \\ \hat{\mathbf{v}}_m \end{bmatrix} = \begin{bmatrix} \hat{\mathbf{c}}_1 \\ \hat{\mathbf{c}}_2 \\ \vdots \\ \hat{\mathbf{c}}_m \end{bmatrix}, \quad \Lambda_k = \begin{bmatrix} \lambda_k & 1 & & \\ 1 & \lambda_k & 1 & & \\ & \ddots & \ddots & \ddots & \\ & & 1 & \lambda_k \end{bmatrix}_{m \times m}$$

where k = 1...m.

These are *m* uncoupled systems, $\Lambda_k \widehat{\mathbf{v}}_k = \widehat{\mathbf{c}}_k$ for k = 1...m. Being *tridiagonal*, each such system can be solved fast, at the cost of $\mathcal{O}(m)$. Thus, the steps of the algorithm and their computational cost are as follows.

1. Form the products $\mathbf{c}_k = Q\mathbf{b}_k$, k = 1...m $\mathcal{O}(m^3)$

2. Solve $m \times m$ tridiagonal systems $\Lambda_k \widehat{\mathbf{v}}_k = \widehat{\mathbf{c}}_k$, k = 1...m $\mathcal{O}(m^2)$

3. Form the products $\mathbf{u}_k = Q\mathbf{v}_k$, k = 1...m $\mathcal{O}(m^3)$

However, since the method (8) has a local truncation error $\mathcal{O}(k^3 + kh^2)$, we don't need an exact solution of the system: it would be enough to have one within the error. Let us employ the notation

$$\Delta_x^2 u_{\ell,m} = u_{\ell-1,m} - 2u_{\ell,m} + u_{\ell+1,m}, \qquad \Delta_y^2 u_{\ell,m} = u_{\ell,m-1} - 2u_{\ell,m} + u_{\ell,m+1}.$$

Then the Crank-Nicolson method calculates \mathbf{u}^{n+1} by solving the system

$$\left[I - \frac{1}{2}\mu(\Delta_x^2 + \Delta_y^2)\right] u_{\ell,m}^{n+1} = \left[I + \frac{1}{2}\mu(\Delta_x^2 + \Delta_y^2)\right] u_{\ell,m}^n, \quad \ell, m = 1...M.$$
(9)

The local error is however preserved if we replace this formula by the difference equation

$$\left[I - \frac{1}{2}\mu\Delta_x^2\right]\left[I - \frac{1}{2}\mu\Delta_y^2\right]u_{\ell,m}^{n+1} = \left[I + \frac{1}{2}\mu\Delta_x^2\right]\left[I + \frac{1}{2}\mu\Delta_y^2\right]u_{\ell,m}^{n},$$
(10)

which is called the split version of Crank-Nicolson. Indeed, the difference between two schemes is equal to

$$\frac{1}{4}\mu^{2}\Delta_{x}^{2}\Delta_{y}^{2}\left(u_{\ell,m}^{n+1}-u_{\ell,m}^{n}\right) = \frac{k^{2}}{4}\frac{1}{h^{2}}\Delta_{x}^{2}\frac{1}{h^{2}}\Delta_{y}^{2}\left(k\frac{\partial}{\partial t}u_{\ell,m}^{n}+\mathcal{O}(k^{2})\right)$$

$$= \frac{k^{3}}{4}\left(\frac{\partial^{2}}{\partial x^{2}}\frac{\partial}{\partial y^{2}}\frac{\partial}{\partial t}u_{\ell,m}^{n}+\mathcal{O}(k+h^{2})\right) = \mathcal{O}(k^{3}+kh^{2}),$$
(11)

the same magnitude as of the local error.

Splitting

In the matrix form, (10) is equivalent to splitting the matrix A_* into the sum of two matrices A_x and A_y as

$$A_{*} = A_{x} + A_{y},$$

$$A_{x} = \begin{bmatrix} -2I & I \\ I & \ddots & \ddots \\ & \ddots & \ddots & I \\ & I & -2I \end{bmatrix}, A_{y} = \begin{bmatrix} H \\ H \\ H \\ & \ddots \\ & H \end{bmatrix}, H = \begin{bmatrix} -2 & 1 \\ 1 & \ddots & \ddots \\ & \ddots & \ddots & 1 \\ & 1 & -2 \end{bmatrix}$$

and solving the uncoupled system

$$\left[I - \frac{1}{2}\mu A_{\mathsf{x}}\right] \left[I - \frac{1}{2}\mu A_{\mathsf{y}}\right] \mathbf{u}^{n+1} = \left[I + \frac{1}{2}\mu A_{\mathsf{x}}\right] \left[I + \frac{1}{2}\mu A_{\mathsf{y}}\right] \mathbf{u}^{n}.$$

as

$$B_{\mathsf{x}}\mathbf{u}^{n+1/2} = C_{\mathsf{x}}C_{\mathsf{y}}\mathbf{u}^n, \qquad B_{\mathsf{y}}\mathbf{u}^{n+1} = \mathbf{u}^{n+1/2}.$$

The matrix

$$B_y = I - \frac{1}{2}\mu A_y$$

is block diagonal, and solving $B_y \mathbf{u} = \mathbf{v}$ is just solving one and the same tridiagonal system $B\mathbf{u}_i = \mathbf{v}_i$ with different right-hand sides. Matrix $B_x = I - \frac{1}{2}\mu A_x$ is of the same form up to a permutation (reodering of the grid), so solving $B_x \mathbf{v} = \mathbf{b}$ is again a fast procedure.

The general diffusion equation

Consider the general diffusion equation

$$\frac{\partial u}{\partial t} = \nabla^{\top} \left(\mathbf{a}(x, y) \nabla u \right) + f(x, y)
= \frac{\partial}{\partial x} \left(\mathbf{a}(x, y) \frac{\partial u}{\partial x} \right) + \frac{\partial}{\partial y} \left(\mathbf{a}(x, y) \frac{\partial u}{\partial y} \right) + f(x, y),$$
(12)

where $a(x, y) > \alpha > 0$ and f(x, y) are given, together with initial conditions on $[0, 1]^2$ and Dirichlet boundary conditions along $\partial [0, 1]^2 \times [0, \infty)$. Replace each space derivative by *central differences* at midpoints,

$$rac{\mathrm{d} g(\xi)}{\mathrm{d} \xi} pprox rac{g(\xi+rac{1}{2}h)-g(\xi-rac{1}{2}h)}{h}\,,$$

resulting in the ODE system

$$u_{\ell,m}' = \frac{1}{h^2} \left[a_{\ell-\frac{1}{2},m} u_{\ell-1,m} + a_{\ell+\frac{1}{2},m} u_{\ell+1,m} + a_{\ell,m-\frac{1}{2}} u_{\ell,m-1} + a_{\ell,m+\frac{1}{2}} u_{\ell,m+1} - \left(a_{\ell-\frac{1}{2},m} + a_{\ell+\frac{1}{2},m} + a_{\ell,m-\frac{1}{2}} + a_{\ell,m+\frac{1}{2}} \right) u_{\ell,m} \right] + f_{\ell,m}.$$
(13)

Assuming zero boundary conditions and $f \equiv 0$, we have a system $\mathbf{u}' = A\mathbf{u}$, and we may solve it again by Crank–Nicolson, and apply the split

$$A=A_x+A_y.$$

Here, A_x and A_y are again constructed from the contribution of discretizations in the x- and y-directions respectively, namely A_x includes all the $a_{\ell \pm \frac{1}{2},m}$ terms, and A_y consists of the remaining $a_{\ell,m\pm\frac{1}{2}}$ components. Arguments similar to what we used in moving from (9) to (10) justify the use of the split version in this general case as well.