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Numerical Analysis – Lecture 3

Let ûi,j = u(ih, jh) be the grid values of the exact solution of the Poisson equation, and let ei,j =
ui,j − ûi,j be the pointwise error of the 5-point formula. Set e = (ei,j) ∈ Rn where n = m2, and
for x ∈ Rn let ∥x∥ = ∥x∥ℓ2 be the Eucledian norm of the vector x:

∥x∥2 =

n∑
k=1

|xk|2 =

m∑
i=1

m∑
j=1

|xi,j |2.

Theorem 1.11 Subject to sufficient smoothness of the function f and of the boundary conditions, there
exists a number c > 0, independent of h = 1

m+1
, such that

∥e∥ ≤ ch .

Proof. 1) We already know (having constructed the 5-point formula by matching Taylor expan-
sions) that, for the exact solution, we have

ûi−1,j + ûi+1,j + ûi,j−1 + ûi,j+1 − 4ûi,j = h2fi,j + ηi,j , ηi,j = O(h4).

Subtracting this from numerical approximation (1.6), we obtain

ei−1,j + ei+1,j + ei,j−1 + ei,j+1 − 4ei,j = ηi,j

or, in the matrix form, Ae = η, where A is symmetric (negative definite). It follows that

Ae = η ⇒ e = A−1η ⇒ ∥e∥ ≤ ∥A−1∥ ∥η∥ .

2) Since every component of η satisfies |ηi,j |2 < c2h8, where h = 1
m+1 , and there are m2

components, we have

∥η∥2 =

m∑
i=1

m∑
j=1

|ηi,j |2 ≤ c2m2h8 < c2 1
h2 h8 = c2h6 ⇒ ∥η∥ ≤ ch3.

3) The matrix A is symmetric, hence so is A−1 and therefore ∥A−1∥ = ρ(A−1). Here ρ(A−1)
is the spectral radius of A−1, that is ρ(A−1) = maxi |λi|, where λi are the eigenvalues of A−1.
The eigenvalues of A−1 are the reciprocals of the eigenvalues of A, and the latter are given by
Proposition 1.12. Thus,

∥A−1∥ = 1
4

max
k,ℓ=1...m

(
sin2 kπh

2
+ sin2 ℓπh

2

)−1

= 1
8 sin2( 1

2
πh)

< 1
8h2 .

Therefore ∥e∥ ≤ ∥A−1∥ ∥η∥ ≤ ch for some constant c > 0. □

Observation 1.12 (Special structure of 5-point equations) We wish to motivate and introduce a
family of efficient solution methods for the 5-point equations: the fast Poisson solvers. Thus, sup-
pose that we are solving ∇2u = f in a square m × m grid with the 5-point formula (all this can
be generalized a great deal, e.g. to the nine-point formula). Let the grid be enumerated in natural
ordering, i.e. by columns. Thus, the linear system Au = b can be written explicitly in the block
form 

B I
I B

. . .. . . . . . I
I B


︸ ︷︷ ︸

A


u1

u2

...
um

 =


b1
b2
...

bm

 , B =


−4 1
1 −4

. . .. . . . . . 1
1 −4


m×m

,

where uk, bk ∈ Rm are portions of u and b, respectively, and B is a TST-matrix which means
tridiagonal, symmetric and Toeplitz (i.e., constant along diagonals). By Exercise 4, its eigenvalues
and orthonormal eigenvectors are given as

Bqℓ = λℓqℓ, λℓ = −4 + 2 cos ℓπ
m+1

, qℓ = γm
(
sin

jℓπ
m+1

)m
j=1

, ℓ = 1..m,
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where γm =
√

2
m+1 is the normalization factor. Hence B = QDQ−1 = QDQ, where D = diag (λℓ)

and Q = QT = (qjℓ). Note that all m×m TST matrices share the same full set of eigenvectors,
hence they all commute!

Method 1.13 (The Hockney method) Set vk = Quk, ck = Qbk, therefore our system becomes
D I
I D

. . .. . . . . . I
I D




v1

v2

...
vm

 =


c1
c2
...

cm

 .

Let us by this stage reorder the grid by rows, instead of by columns.. In other words, we permute
v 7→ v̂ = Pv, c 7→ ĉ = Pc, so that the portion ĉ1 is made out of the first components of the
portions c1, . . . , cm, the portion ĉ2 out of the second components and so on. This results in new
system

 Λ1
Λ2 . . .

Λm




v̂1

v̂2

...
v̂m

 =


ĉ1
ĉ2
...

ĉm

 , Λk =

 λk 1
1 λk 1. . . . . . . . .

1 λk


m×m

, k = 1...m.

These are m uncoupled systems, Λkv̂k = ĉk for k = 1...m. Being tridiagonal, each such system can
be solved fast, at the cost of O(m). Thus, the steps of the algorithm and their computational cost
are as follows.

1. Form the products ck = Qbk, k = 1...m . . . . . . . . . . . . . . . . . . . . . . . . O(m3)
2. Solve m×m tridiagonal systems Λkv̂k = ĉk, k = 1...m . . . . . . . . O(m2)
3. Form the products uk = Qvk, k = 1...m . . . . . . . . . . . . . . . . . . . . . . . O(m3)

(Permutations c 7→ ĉ and v̂ 7→ v are basically free.)

Method 1.14 (Improved Hockney algorithm) We observe that the computational bottleneck is to
be found in the 2m matrix-vector products by the matrix Q. Recall further that the elements of Q are
qjℓ = γm sin πjℓ

m+1 . This special form lends itself to a considerable speedup in matrix multiplication.
Before making the problem simpler, however, let us make it more complicated! We write a typical
product in the form

(Qy)ℓ =

m∑
j=1

sin
πjℓ

m+ 1
yj = Im

m∑
j=0

exp
iπjℓ

m+ 1
yj = Im

2m+1∑
j=0

exp
2iπjℓ

2m+ 2
yj , ℓ = 1...m, (1.7)

where ym+1 = · · · = y2m+1 = 0.

Definition 1.15 (The discrete Fourier transform (DFT)) Let Πn be the space of all bi-infinite com-
plex n-periodic sequences x = {xℓ}ℓ∈Z (such that xℓ+n = xℓ). Set ωn = exp 2πi

n , the primitive root of
unity of degree n. The discrete Fourier transform (DFT) of x is

Fn : Πn → Πn such that y = Fnx, where yj =
1

n

n−1∑
ℓ=0

ω−jℓ
n xℓ, j = 0...n−1.

Trivial exercise: You can easily prove that Fn is an isomorphism of Πn onto itself and that

x = F−1
n y, where xℓ =

n−1∑
j=0

ωjℓ
n yj , ℓ = 0...n−1.

An important observation: Thus, multiplication by Q in (1.7) can be reduced to calculating an
inverse of DFT.

Since we need to evaluate DFT (or its inverse) only in a single period, we can do so by multi-
plying a vector by a matrix, at the cost of O(n2) operations. This, however, is suboptimal and the
cost of calculation can be lowered a great deal!
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