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Numerical Analysis — Lecture 8
Problem 2.18 (The advection equation) A useful paradigm for hyperbolic PDEs is the advection equation
Up = Uy, 0<z<1, t>0, (2.6)

where u = u(z,t). It is given with the initial condition u(z,0) = ¢(z), z € [0, 1] and (for simplicity) the
boundary condition u(1,t) = ¢(t+ 1). The exact solution of (2.6) is simply u(z,t) = ¢(z+1), a unilateral
shift leftwards. This, however, does not mean that its numerical modelling is easy.

Example 2.19 (Instability) We commence by semidiscretizing 6“5—;5@) R~ ﬁ [tm41(t) — Um—1(t)], SO com-

ing to the ODE ], (t) = % [trm+1(t) — tm—1(t)]. For the Euler method, the outcome is

1 1
ut :u:}n-|-E,u(unmﬂ—u"mfl)7 m=0.M, neZ,,

with uf = 0 for all n. In matrix form this reads

un+1 — A’U.n7 A

The matrix A is normal, with the eigenvalues \; = 1-+iyu cos ¢7h (see Example 2.15), so that || A||? = 1+42,
hence instability for any p.

N (t)

Method 2.20 (Upwind method) If we semidiscretize —5~

again by Euler’s method, then the result is

~ % [ty s1(t) — Uy (t)], and solve the ODE

wlhtt =l ol — k),  m=0..M, neZ,; (2.7)

The local error is O(k?+kh) which is O(h?) for a fixed y, hence convergence if the method is stable.

The eigenvalue analysis of stability does not apply here, since the matrix A in v"** = Au" is no
longer normal (see Example 2.16), so we do it directly (as in Lecture 5). We let the boundary condition
at x = 1 be zero and define ||u”|| = max,, |ul,|. It follows at once from (2.7) that

) = mae gyt < a1 — g [ufy| + g fufoa [} < (1=l + "], n€Zy.

Therefore, u € (0, 1] means that [|[u™ ™| < [|[u”]| < --- < ||u?||, hence stability.

Qum(t) . 1
ox ~ 2h

Method 2.21 (The leapfrog method) We semidicretize (2.6) as
solve the ODE with the second-order midpoint rule

[trnt1(t) —tm—1(t)], but now

yn+1 =Yn-1 + 2k.f(tn7yn)a ne Z-‘r .

The outcome is the two-step leapfrog method
Wit = ey =) ol 28)

The error is now O(k3+kh?) = O(h*). We analyse stability by the Fourier technique, assuming that we
are solving a Cauchy problem. Thus, proceeding as before,

"t O) = p (e —e ) un(0) + a1 (0) (2.9)
whence

"t () — 2ip sinu™(0) —u" () = 0, neZy,

and our goal is to determine values of i such that |u"(8)| is uniformly bounded for all n, 6. This is a
difference equation wy,+1 + bwy, + cw,_1 = 0 with the general solution w,, = c1 AT + c2 A3, where A1, A\,
are the roots of the characteristic equation A? + b\ + ¢ = 0, and ¢1, ¢ are constants, dependent on the
initial values wg and wy. If Ay = Ao, then solution is w, = (¢1 + can)A™. In our case, we obtain

Ai2(0) =ipsin® + /1 — u2sin?6.

Stability is equivalent to |\ 2(6)| < 1 for all # and this is true if and only if ¢ < 1.
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Problem 2.22 (Stability in the presence of boundaries) It is easy to extend Fourier analysis for the Eu-
ler method u%t! = u?, + p(ull,,, — u?), with the initial condition u(z,0) = ¢(z), = € [0,1), and zero
boundary condition along z = 1. Consider the Cauchy problem for the advection equation with the
initial condition u(z,0) = ¢(z) for z € [0,1), and u(z,0) = 0 otherwise (it isn’t differentiable, but this
is not much of a problem). Solving the Cauchy problem with Euler, we recover u” that is identical to
the solution obtained from the zero boundary condition. This justifies using Fourier analysis for the
problem with a boundary, and we obtain

atHO) = H(O)u"(0),  H(0)=(1-p)+pe’,

so that max |[H(6)| = |1 — | + |p|, hence stability if and only if p < 1.

Unfortunately, this is no longer true for leapfrog. Closer examination reveals that we cannot use
leapfrog at m = 0, since u”™; is unknown. The naive remedy, setting u”; = 0, leads to instability, which
propagates from the boundary inwards. We can recover stability letting, for example, uf ™ = u} (the

proof is very difficult).

Problem 2.23 (The wave equation) Consider the wave equation

Pu  0*u

-7 = a3 € [0,1], t>0,

o~z "€

given with initial (for © and u;) and boundary conditions. The usual approximation looks as follows
W = 2, = (g — 20 )

with the Courant number being now p = k2 /h%.

To advance in time we have to pick up the numbers ul, = u(z,,, k) (of course they should depend
on the initial derivative u;(z,0). Euler’s method provides the obvious choice u(z,, k) = u(x,,0) +
kut(x,, 0), but the following technique enjoys better accuracy. Specifically, we set u., to the right-hand
side of the formula

WTm, k) = w(Tm,0) + kug(zm,0) + %kQUtt(xm, 0)
= w(xm,0) + kug(xm,0) + %k2u$3; (Tm, 0)

ul, + $u(ul, g — 2ul, +uy ) + ku(zm, 0).

Q

The Fourier analysis (for Cauchy problem) provides
anti(0) — 2am(0) + un~(0) = —4psin® £un(0),

with the characteristic equation A2 — 2(1 — 2usin® )\ + 1 = 0. The product of the roots is one, therefore
stability (that requires the moduli of both X to be at most one) is equivalent to the roots being complex
conjugate, so we require

(1—2psin*$)2 < 1.

This condition is achieved if and only if u = k? /h? < 1.
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