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Numerical Analysis – Lecture 9
Problem 2.25 (The diffusion equation in two space dimensions) We are solving

∂u

∂t
= ∇2u, 0 ≤ x, y ≤ 1, t ≥ 0, (2.11)

where u = u(x, y, t), together with initial conditions at t = 0 and Dirichlet boundary conditions
at ∂Ω, where Ω = [0, 1]2 × [0,∞). It is straightforward to generalize our derivation of numerical
algorithms, e.g. by the method of lines. Thus, let u`,m(t) ≈ u(`h,mh, t), where h = ∆x = ∆y, and
let un`,m ≈ u`,m(nk) where k = ∆t. The five-point formula results in

u′`,m = 1
h2

(u`−1,m + u`+1,m + u`,m−1 + u`,m+1 − 4u`,m),

or in the matrix form
u′ = 1

h2
A∗u, u = (u`,m) ∈ RN , (2.12)

where A∗ is the block TST matrix of the five-point scheme:

A∗ =


H I

I
. . . . . .. . . . . . I

I H

 , H =


−4 1

1
. . . . . .. . . . . . 1

1 −4

 .
Thus, the Euler method yields

un+1
`,m = un`,m + µ(un`−1,m + un`+1,m + un`,m−1 + un`,m+1 − 4un`,m), (2.13)

or in the matrix form
un+1 = Aun, A = I + µA∗

where, as before, µ = k
h2

= ∆t
(∆x)2

. The local error is η = O(k2+kh2) = O(h4). To analyse stability,
we notice that A is symmetric, hence normal, and its eigenvalues are related to those of A∗ by the
rule

λk,`(A) = 1 + µλk,`(A∗)
Prop. 1.12

= 1− 4µ
(

sin2 πkh
2

+ sin2 π`h
2

)
.

Consequently,

sup
h>0

ρ(A) = max{1, |1− 8µ|}, hence µ ≤ 1
4 ⇔ stability.

Method 2.26 (Fourier analysis) Fourier analysis generalizes to two dimensions: of course, we
now need to extend the range of (x, y) in (2.11) from 0 ≤ x, y ≤ 1 to x, y ∈ R. A 2D Fourier
transform reads

û(θ, ψ) =
∑
`,m∈Z

u`,me−i(`θ+mψ)

and all our results readily generalize. In particular, the Fourier transform is an isometry from
`2[Z2] to L2([−π, π]2), i.e.( ∑

`,m∈Z
|u`,m|2

)1/2
=: ‖u‖ = ‖û‖∗ :=

( 1

4π2

∫ π

−π

∫ π

−π
|û(θ, ψ)|2 dθ dψ

)1/2
,

and the method is stable iff |H(θ, ψ)| ≤ 1 for all θ, ψ ∈ [−π, π]. The proofs are an easy elaboration
on the one-dimensional theory. Insofar as the Euler method (2.13) is concerned,

H(θ, ψ) = 1 + µ
(
e−iθ + eiθ + e−iψ + eiψ − 4

)
= 1− 4µ

(
sin2 θ

2
+ sin2 ψ

2

)
,

and we again deduce stability if and only if µ ≤ 1
4 .
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Method 2.27 (Crank-Nicolson for 2D) Applying the trapezoidal rule to our semi-dicretization
(2.12) we obtain the two-dimensional Crank-Nicolson method:

(I − 1
2
µA∗)u

n+1 = (I + 1
2
µA∗)u

n , (2.14)

in which we move from the n-th to the (n+1)-st level by solving the system of linear equations
Bun+1 = Cun, or un+1 = B−1Cun. For stability, similarly to the one-dimensional case, the
eigenvalue analysis implies that A = B−1C is normal and shares the same eigenvectors with B
and C, hence

λ(A) =
λ(C)

λ(B)
=

1 + 1
2µλ(A∗)

1− 1
2µλ(A∗)

⇒ |λ(A)| < 1 as λ(A∗) < 0

and the method is stable for all µ. The same result can be obtained through the Fourier analysis.

Technique 2.28 (Splitting) We would like to find a fast solver to the system (2.14). The matrix
B = I − 1

2
µA∗ has a structure similar to that of A∗, so we may apply the Hockney method.

However, since the method (2.14) has a local truncation errorO(k3 +kh2), we don’t need an exact
solution of the system: it would be enough to have one within the error.

Let us employ the notation

∆2
xu`,m = u`−1,m − 2u`,m + u`+1,m, ∆2

yu`,m = u`,m−1 − 2u`,m + u`,m+1 .

Then the Crank-Nicolson method calculates un+1 by solving the system[
I − 1

2
µ(∆2

x + ∆2
y)
]
un+1
`,m =

[
I + 1

2
µ(∆2

x + ∆2
y)
]
un`,m , `,m = 1...M. (2.15)

The local error is however preserved if we replace this formula by the difference equation[
I − 1

2
µ∆2

x

][
I − 1

2
µ∆2

y

]
un+1
`,m =

[
I + 1

2
µ∆2

x

][
I + 1

2
µ∆2

y

]
un`,m , (2.16)

which is called the split version of Crank-Nicolson. Indeed, the difference between two schemes
is equal to

1
4
µ2∆2

x∆2
y(un+1

`,m − u
n
`,m) = k2

4
1
h2

∆2
x

1
h2

∆2
y

(
k ∂
∂t
un`,m +O(k2)

)
= k3

4

(
∂2

∂x2
∂2

∂y2
∂
∂t
un`,m +O(k + h2)

)
= O(k3 + kh2) ,

the same magnitude as of the local error. In the matrix form, (2.16) is equivalent to splitting the
matrix A∗ into the sum of two matrices Ax and Ay as

A∗ = Ax +Ay, Ax =


−2I I

I
. . . . . .. . . . . . I

I −2I

 , Ay =

 HH . . .
H

 , H =


−2 1

1
. . . . . .. . . . . . 1

1 −2


and solving the uncoupled system[

I − 1
2
µAx

][
I − 1

2
µAy

]
un+1 =

[
I + 1

2
µAx

][
I + 1

2
µAy

]
un .

as
Bxu

n+1/2 = CxCyu
n, Byu

n+1 = un+1/2.

Matrix By = I − 1
2µAy is block diagonal, and solving Byu = v is just solving one and the same

tridiagonal systemBui = vi with different right-hand sides. MatrixBx = I− 1
2µAx is of the same

form up to a permutation (reodering of the grid), so solving Bxv = b is again a fast procedure.
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