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Numerical Analysis – Lecture 11

3 Spectral Methods

General idea of spectral methods. The basic idea of spectral methods is simple. Consider a PDE
of the form

Lu = f (3.1)

where L is a differential operator (e.g., L = ∂2

∂x2 , or L = ∂2

∂x2 + ∂2

∂y2
, etc.) and f is a right-hand

side function. We consider a finite-dimensional subspace of functions V spanned by a basis
ψ1, . . . , ψN . A typical choice for V is a space of (trigonometric) polynomials of finite degree.
We seek an approximate solution to the PDE by a linear combination of the ψn, i.e., uN (x) =∑N
n=1 cnψn(x). Plugging uN (x) in the PDE we get the following linear equation in the unknowns

(cn):
N∑
n=1

cnLψn = f. (3.2)

In general the equation will not have a solution, as there is no reason to expect that the original
PDE has a solution in the subspace V . However, we can seek to satisfy equation (3.2) approxi-
mately. Assume that the (ψn)1≤n≤N are an orthonormal family of functions, with respect to some
inner product 〈·, ·〉. Then instead of looking for (cn) that satisfy (3.2), we will require only that the
projection of LuN − f on the subspace V is zero. This is the same as requiring that

N∑
n=1

cn 〈Lψn, ψm〉 = 〈f, ψm〉 ∀m = 1, . . . , N. (3.3)

If we call A the matrix Am,n = 〈Lψn, ψm〉, we end up with a N ×N linear system Ac = f̃ , where
f̃m = 〈f, ψm〉.

Discussion 3.1 (Large matrices versus small matrices) Finite difference schemes rest upon the
replacement of derivatives by a linear combination of function values. This leads to the solu-
tion of a system of algebraic equations, which on the one hand tends to be large (due to the slow
convergence properties of the approximation) but on the other hand is highly structured and
sparse, leading itself to effective algorithms for its solution. We will get to know some of these
algorithms in Section 4.

However, an enticing alternative to this strategy are methods that produce small matrices in
the first place. Although, these matrices will usually not be sparse anymore, the much smaller
the size of the matrices renders its solution affordable. The key point for such approximations are
better convergence properties requiring much smaller number of parameters.

Problem 3.2 (Fourier approximation of functions) We consider the truncated Fourier approxima-
tion of a function f on the interval [−1, 1]:

f(x) ≈ φN (x) =

N/2∑
n=−N/2+1

f̂ne
iπnx, x ∈ [−1, 1], (3.4)

where here and elsewhere in this section N ≥ 2 is an even integer and

f̂n =
1

2

∫ 1

−1
f(t)e−iπnt dt, n ∈ Z

are the (Fourier) coefficients of this approximation. We want to analyse the approximation prop-
erties of (3.4).
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Theorem 3.3 (The de la Valleé Poussin theorem) If the function f is Riemann integrable and f̂n =
O(n−1) for |n| � 1, then φN (x) = f(x) + O(N−1) as N → ∞ for every point x ∈ (−1, 1) where f is
Lipschitz.

Remark 3.4 (The Gibbs effect at the end points) Note that if f is smoothly differentiable then,
integrating by parts,

f̂n =
(−1)n+1

2πin
[f(1)− f(−1)] +

1

πin
f̂ ′n = O(n−1) for |n| � 1.

Since such an f is Lipschitz on (−1, 1), we deduce from Theorem 3.3 that φN converges to f there
with speed O(N−1). However, convergence with speed O(N−1) is very slow and moreover, we
cannot guarantee convergence at the endpoints −1 and 1. In fact, it is possible to show that

φN (±1)→ 1

2
[f(−1) + f(1)] as n→∞

and hence, unless f is periodic we fail to converge.

Method 3.5 (Fourier approximation for periodic functions) Suppose f is an analytic function in
[−1, 1], that can be extended analytically to a closed complex domain Ω. In addition let f be
periodic with period 2. In particular, f (m)(−1) = f (m)(1) for all m ∈ Z+. Then, by multiple
integration by parts, we get

f̂n =
1

πin
f̂ ′n =

1

(πin)2
f̂ ′′n =

1

(πin)3
f̂ ′′′n = . . . .

Thus, we have

f̂n =
1

(πin)m
f̂
(m)
n , m = 0, 1, . . . . (3.5)

But, how large is
∣∣f̂ (m)
n

∣∣? To answer this question we use Cauchy’s theorem of complex analysis,
which states that

f (m)(x) =
m!

2πi

∫
γ

f(z) dz

(z − x)m+1
, x ∈ [−1, 1],

where γ is the positively oriented boundary of Ω. Therefore, with α−1 > 0 being the minimal
distance between γ and [−1, 1] and M = max{|f(z)| : z ∈ γ} <∞, it follows that

|f (m)(x)| ≤ m!

2π

∫
γ

|f(z)| |dz|
|z − x|m+1

≤ M length γ
2π

m!αm+1,

and hence, we can bound
∣∣f̂ (m)
n

∣∣ ≤ cm!αm+1 for some c > 0. Now, using (3.5) and the above
upper bound,

|φN (x)− f(x)| =
∣∣∣ N/2∑
n=−N/2+1

f̂ne
iπnx −

∞∑
n=−∞

f̂ne
iπnx

∣∣∣
≤

∑
|n|≥N/2

|f̂n| =
∑

|n|≥N/2

|f̂ (m)
n |
|πn|m

≤ cm!αm+1

πm

+∞∑
n=N/2

1

nm
.

Using, that for any r ∈ N, and m > 1

+∞∑
n=r+1

1

nm
≤
∫ ∞
r

dt

tm
=

1

m− 1
r−m+1,

x
1/x2

r, r+1,r+2

1/(r + 1)2
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we deduce that
|φN (x)− f(x)| ≤ c′m!

( α

πN

)m−1
, m ≥ 2.

Finally, we have a competition between (α/(πN))m−1 and m! for large m. Because of Stirling’s
formula

m! ≈
√

2πmm+1/2e−m

we have
m!
( α

πN

)m−1
≈
√

2πm
m

e

( αm
πeN

)m−1
which becomes very small for large N . Hence, |φN − f | = O(N−p) for any p ∈ N and we deduce
that the Fourier approximation of an analytic periodic function is of infinite order.

Definition 3.6 (Convergence at spectral speed) An N -term approximation φN of a function f
converges to f at spectral speed if ‖φN − f‖ decays faster than O(N−p) for any p = 1, 2, . . ..

Remark 3.7 It is possible to prove that there exist constants c1, w > 0 such that ‖φN−f‖ ≤ c1e−wN
for all N ∈ N uniformly in [−1, 1]. Thus, convergence is at least at an exponential rate.
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