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Numerical Analysis — Lecture 13

Problem 3.13 (The Poisson equation) We consider the Poisson equation

Viu=f, —-1<mzy<l, (3.11)
where f is analytic and obeys the periodic boundary conditions

fELy) =fy), —1<y<l,  fle,-1)=f(1), -1<z<L

Moreover, we add to (3.11) the following periodic boundary conditions

1) = u(l =Ly =u.(ly), —-1<y<l1
u(=1,y) = u(l,y), us(~1,9) = us(1,y) y<1 (3.12)

u(z,—1) =u(z, 1), uy(z,-1) =uy(z,1), —-1<z

With these boundary conditions alone, a solution of (3.11) is only defined up to an additive con-
stant. Hence, we add a normalisation condition to fix the constant:

11
/ / u(z,y) de dy = 0. (3.13)
—1J-1

We have the spectrally convergent Fourier expansion

f(CU,y): Z ﬁc’zem(k’m+£y)

kl=—oc0

and seek the Fourier expansion of u

o0
U(I, y) — Z ak,ﬂeiﬂ(kz+£y)~

k4=—o00
Since
1,1 o0 11
0 :/ / u(z,y) dedy = Z ﬂw/ / et (katly) qo dy = Uo 0,
—1J-1 P —1J-1
and -
Viu(z,y) = -2 Z (k? +f2)ﬂk$ge”(k”+€y)7
k,4=—o00
together with (3.11), we have
po == oy kiEZ (k,0) # (0,0)
k4 — (I{i2+€2)ﬂ'2 k,ls ) ) ) )

ﬂop =0.

Remark 3.14 Applying a spectral method to the Poisson equation is not representative for its
application to other PDEs. The reason is the special structure of the Poisson equation. In fact,
b0 = €™ FH) are the eigenfunctions of the Laplace operator with

V2ppo = =12 (k% 4+ 02) g0,

and they obey periodic boundary conditions.
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Problem 3.15 (General second-order linear elliptic PDE) We consider the more general second-
order linear elliptic PDE
Viavu) =f, —-1<zy<l,

with a(z,y) > 0, and a and f periodic. We again impose the periodic boundary conditions (3.12)
and the normalisation condition (3.13). We rewrite

0 0
T = — _ =
VT (@Va) = (o) + (o) = 1
and use the Fourier expansions

9(@,y) = > Geetre(@y),  h@y) = Y hmabma(z,y),

k€L m,n€z

together with the bivariate versions of (3.4)-(3.5)

— —

(9 : h)k’z = Z gk—m,f—nhm,n; (gw)k,g =mk @c,b (gy)k,g = iﬂe@c,e,
m,n€”z

(hm)m n = Zﬂ-m hm,n ) (hy)m n = Z7TTL hm_’n .

Ly )

This gives

—m2 3" DT (ke ) G T e () = D Fratre(@,y) -

k,l€Z m,n€EZ kLEZ

In the next steps, we truncate the expansions to —N/2 +1 < k,¢,m,n < N/2 and impose the
normalisation condition % o = 0. This results in a system of N2 — 1 linear algebraic equations in
the unknowns ,, ,, where m,n = —N/2 4+ 1...N/2, and (m,n) # (0,0):

N/2

Z (k:m + En) ak,ml,n am)n =
m,n=—N/2+1

1 -~
—pf]ﬁg, k,{=—-N/2+1..N/2.
Discussion 3.16 (Analyticity and periodicity) The fast convergence of spectral methods rests on
two properties of the underlying problem: analyticity and periodicity. If one is not satisfied the
rate of convergence in general drops to polynomial. However, to a certain extent, we can relax
these two assumptions while still retaining the substantive advantages of Fourier expansions.

* Relaxing analyticity: In general, the speed of convergence of the truncated Fourier series of
a function f depends on the smoothness of the function. In fact, the smoother the function
the faster the truncated series converges, i.e., for f € C?(—1, 1) we receive an O(N ~P) order
of convergence.

Spectral convergence can be recovered, once analyticity is replaced by the requirement that
f € C®(-1,1), ie., f™(z) exists for all z € (—1,1) and m = 0,1,2,.... Consider, for
instance, f(z) = e~/ (1=2*) Then, f € C*(—1,1) but cannot be extended analytically
because of essential singularities at +1. Nevertheless, one can show that \fn| ~ O(en"),
where ¢ > 0 and o ~ 0.44. While this is slower than exponential convergence in the analytic
case (cf. Remark 3.7), it is still faster than O(n~™) for any integer m and hence, we have
spectral convergence.

* Relaxing periodicity: Disappointingly, periodicity is necessary for spectral convergence. Once
this condition is dropped, we are back to the setting of Theorem 3.3, i.e., Fourier series
converge as O(N ') unless f(—1) = f(1). One way around this is to change our set of basis
functions, e.g., to Chebyshev polynomials.
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