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Numerical Analysis – Lecture 13
Problem 3.13 (The Poisson equation) We consider the Poisson equation

∇2u = f, −1 ≤ x, y ≤ 1, (3.11)

where f is analytic and obeys the periodic boundary conditions

f(−1, y) = f(1, y), −1 ≤ y ≤ 1, f(x,−1) = f(x, 1), −1 ≤ x ≤ 1.

Moreover, we add to (3.11) the following periodic boundary conditions

u(−1, y) = u(1, y), ux(−1, y) = ux(1, y), −1 ≤ y ≤ 1

u(x,−1) = u(x, 1), uy(x,−1) = uy(x, 1), −1 ≤ x ≤ 1.
(3.12)

With these boundary conditions alone, a solution of (3.11) is only defined up to an additive con-
stant. Hence, we add a normalisation condition to fix the constant:∫ 1

−1

∫ 1

−1
u(x, y) dx dy = 0. (3.13)

We have the spectrally convergent Fourier expansion

f(x, y) =

∞∑
k,l=−∞

f̂k,`e
iπ(kx+`y)

and seek the Fourier expansion of u

u(x, y) =

∞∑
k,`=−∞

ûk,`e
iπ(kx+`y).

Since

0 =

∫ 1

−1

∫ 1

−1
u(x, y) dx dy =

∞∑
k,`=−∞

ûk,`

∫ 1

−1

∫ 1

−1
eiπ(kx+`y) dx dy = û0,0,

and

∇2u(x, y) = −π2
∞∑

k,`=−∞

(k2 + `2)ûk,`e
iπ(kx+`y),

together with (3.11), we haveûk,` = −
1

(k2 + `2)π2
f̂k,`, k, ` ∈ Z, (k, `) 6= (0, 0)

û0,0 = 0.

Remark 3.14 Applying a spectral method to the Poisson equation is not representative for its
application to other PDEs. The reason is the special structure of the Poisson equation. In fact,
φk,` = eiπ(kx+`y) are the eigenfunctions of the Laplace operator with

∇2φk,` = −π2(k2 + `2)φk,`,

and they obey periodic boundary conditions.
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Problem 3.15 (General second-order linear elliptic PDE) We consider the more general second-
order linear elliptic PDE

∇>(a∇u) = f, −1 ≤ x, y ≤ 1,

with a(x, y) > 0, and a and f periodic. We again impose the periodic boundary conditions (3.12)
and the normalisation condition (3.13). We rewrite

∇>(a∇u) = ∂

∂x
(aux) +

∂

∂y
(auy) = f ,

and use the Fourier expansions

g(x, y) =
∑
k,`∈Z

ĝk,`φk,`(x, y), h(x, y) =
∑
m,n∈Z

ĥm,nφm,n(x, y),

together with the bivariate versions of (3.4)-(3.5)

(̂g · h)k,` =
∑
m,n∈Z

ĝk−m,`−nĥm,n, (̂gx)k,` = iπk ĝk,` , (̂gy)k,` = iπ` ĝk,` ,

(̂hx)m,n = iπm ĥm,n , (̂hy)m,n = iπn ĥm,n .

This gives

−π2
∑
k,`∈Z

∑
m,n∈Z

(km+ `n) âk−m,`−nûm,nφk,`(x, y) =
∑
k,`∈Z

f̂k,`φk,`(x, y) .

In the next steps, we truncate the expansions to −N/2 + 1 ≤ k, `,m, n ≤ N/2 and impose the
normalisation condition û0,0 = 0. This results in a system of N2 − 1 linear algebraic equations in
the unknowns ûm,n, where m,n = −N/2 + 1...N/2, and (m,n) 6= (0, 0):

N/2∑
m,n=−N/2+1

(km+ `n) âk−m,`−n ûm,n = − 1

π2
f̂k,` , k, ` = −N/2 + 1...N/2 .

Discussion 3.16 (Analyticity and periodicity) The fast convergence of spectral methods rests on
two properties of the underlying problem: analyticity and periodicity. If one is not satisfied the
rate of convergence in general drops to polynomial. However, to a certain extent, we can relax
these two assumptions while still retaining the substantive advantages of Fourier expansions.

• Relaxing analyticity: In general, the speed of convergence of the truncated Fourier series of
a function f depends on the smoothness of the function. In fact, the smoother the function
the faster the truncated series converges, i.e., for f ∈ Cp(−1, 1) we receive an O(N−p) order
of convergence.

Spectral convergence can be recovered, once analyticity is replaced by the requirement that
f ∈ C∞(−1, 1), i.e., f (m)(x) exists for all x ∈ (−1, 1) and m = 0, 1, 2, . . .. Consider, for
instance, f(x) = e−1/(1−x

2). Then, f ∈ C∞(−1, 1) but cannot be extended analytically
because of essential singularities at ±1. Nevertheless, one can show that |f̂n| ∼ O(e−cn

α

),
where c > 0 and α ≈ 0.44. While this is slower than exponential convergence in the analytic
case (cf. Remark 3.7), it is still faster than O(n−m) for any integer m and hence, we have
spectral convergence.

• Relaxing periodicity: Disappointingly, periodicity is necessary for spectral convergence. Once
this condition is dropped, we are back to the setting of Theorem 3.3, i.e., Fourier series
converge asO(N−1) unless f(−1) = f(1). One way around this is to change our set of basis
functions, e.g., to Chebyshev polynomials.
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