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Numerical Analysis – Lecture 17
Definition 4.10 (Strictly diagonally dominant matrices) A matrix A is called strictly diagonally
dominant by rows (resp. by columns) if

|aii| >
∑
j 6=i |aij |, i = 1..n (resp. |ajj | >

∑
i 6=j |aij |, j = 1..n ).

From Gershgorin theorem, it follows that strictly diagonally dominant matrices are nonsingular.

Theorem 4.11 If A is strictly diagonally dominant, then both the Jacobi and the Gauss-Seidel methods
converge.

Proof. For the Gauss-Seidel method, the eigenvalues of the iteration matrixHGS = −(L0+D)−1U0

satisfy the equation

det[HGS − λI] = det[−(L0 +D)−1U0 − λI] = 0 ⇒ det[Aλ] := det[U0 + λD + λL0] = 0

It is easy to see that if A = L0 +D+U0 is strictly diagonally dominant, then for |λ| ≥ 1 the matrix
Aλ = λL0 + λD + U0 is strictly diagonally dominant too, hence it is nonsingular, and therefore
the equality det[Aλ] = 0 is impossible. Thus |λ| < 1, hence convergence. The proof for the Jacobi
method is the same. �

Theorem 4.12 (The Householder–John theorem) If A and B are real matrices such that both A and
A−B−BT are symmetric positive definite, then the spectral radius of H = −(A−B)−1B is strictly less
than one.

Proof. Let λ be an eigenvalue of H , so Hw = λw holds, where w 6= 0 is an eigenvector. (Note
that both λ and w may have nonzero imaginary parts whenH is not symmetric, e.g. in the Gauss–
Seidel method.) The definition ofH provides equality−Bw = λ(A−B)w, and we note that λ 6= 1
since otherwise A would be singular (which it is not). Thus, we deduce

wTBw =
λ

λ− 1
wTAw, (4.3)

where the bar means complex conjugation. Moreover, writing w = u+ iv, where u and v are real,
we find (for C = CT ) the identity wTCw = uTCu+ vTCv, so symmetric positive definiteness in
the assumption implies wTAw > 0 and wT (A − B − BT )w > 0. In the latter inequality, we use
relation (4.3) and its conjugate transpose to obtain

0 < wTAw −wTBw −wTBTw =

(
1− λ

λ− 1
− λ

λ− 1

)
wTAw =

1− |λ|2

|λ− 1|2
wTAw.

Now λ 6= 1 implies |λ− 1|2 > 0. Hence, recalling that wTAw > 0, we see that 1− |λ|2 is positive.
Therefore |λ| < 1 occurs for every eigenvalue of H as required. �

Corollary 4.13 1) If A is symmetric positive definite, then the Gauss-Seidel method converges.
2) If both A and 2D−A are symmetric positive definite, then the Jacobi method converges.

Proof. 1) For the Gauss-Seidel method,B is the superdiagonal part of symmetricA, henceA−B−
BT is equal to D, the diagonal part of A, and if A is positive definite, then D is positive definite
too (this is the first part of the Exercise 23 from Example Sheets).

2) For the Jacobi method, we haveB = A−D, and ifA is symmetric, thenA−B−BT = 2D−A.
(The latter matrix is the same asA except that the signs of the off-diagonal elements are reversed.)
�
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Example 4.14 (Poisson’s equation on a square) As we have seen in the previous sections linear
systems Ax = b, where A is a real symmetric positive (negative) definite matrix, frequently occur
in numerical methods for solving elliptic partial differential equations. A typical example we
already encountered is Poisson’s equation on a square where the five-point formula approximation
yields an n× n system of linear equations with n = m2 unknowns up,q :

up−1,q + up+1,q + up,q−1 + up,q+1 − 4up,q = h2f(ph, qh) (4.4)

(Note that when p or q is equal to 1 or m, then the values u0,q , up,0 or up,m+1, um+1,q are known
boundary values and they should be moved to the right-hand side, thus leaving fewer unknowns
on the left.)

For any ordering of the grid points (ph, qh) we have shown in Lemma 1.11 that the matrix A
of this linear system is symmetric and negative definite.

Corollary 4.15 For linear system (4.4), for any ordering of the grid, both Jacobi and Gauss-Seidel methods
converge.

Proof. By Lemma 1.11, A is symmetric and negative definite, hence convergence of Gauss-Seidel.
To prove convergence of the Jacobi method, we need negative definiteness of the matrix 2D − A,
and that follows by the same arguments as in Lemma 1.11: recall that the proof operates with the
modulus of the off-diagonal elements and does not depend on their sign. �

Method 4.16 (Relaxation) It is often possible to improve the efficiency of the splitting method by
relaxation. Specifically, instead of letting (A−B)x(k+1) = −Bx(k) + b, we let

(A−B)x̂(k+1) = −Bx(k) + b, and then x(k+1) = ωx̂(k+1) + (1− ω)x(k) k = 0, 1, . . . ,

where ω is a real constant called the relaxation parameter. (Note that ω = 1 corresponds to the
standard “unrelaxed” iteration.) Good choice of ω leads to a smaller spectral radius of the iteration
matrix (compared with the ”unrelaxed” method), and the smaller the spectral radius, the faster
the iteration converges. To this end, let us express the relaxation iteration matrix Hω in terms of
H = −(A−B)−1B. We have

x̂(k+1) = Hx(k) + v ⇒ x(k+1) = ωx̂(k+1) + (1− ω)x(k) = ωHx(k) + (1− ω)x(k) + ωv

hence
Hω = ωH + (1− ω)I.

It follows that the spectra of Hω and H are related by the rule λω = ωλ + (1 − ω), therefore one
may try to choose ω ∈ R to minimize

ρ(Hω) = max {|ωλ+ (1− ω)| : λ ∈ σ(H)}.

In general, σ(H) is unknown, but often we have some information about it which can be utilized
to find a ”good” (rather than ”best”) value of ω. For example, suppose that it is known that σ(H)
is real and resides in the interval [α, β] where −1 < α < β < 1. In that case we seek ω to minimize

max {|ωλ+ (1− ω)| : λ ∈ [α, β]} .

It is readily seen that, for a fixed λ < 1, the function f(ω) = ωλ+(1−ω) is decreasing, therefore, as
ω increases (decreases) from 1 the spectrum of Hω moves to the left (to the right) of the spectrum
of H . It is clear that the optimal location of the spectrum σ(Hω) (or of the interval [αω, βω] that
contains σ(Hω)) is the one which is centralized around the origin:

−[ωα+ (1− ω)] = ωβ + (1− ω) ⇒ ωopt =
2

2−(α+β)
, −αωopt = βωopt =

β−α
2−(α+β)

.
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