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Numerical Analysis – Lecture 18
Observation 4.17 (Attenuation for different frequencies) The speed of convergence of some iter-
ative methods (Jacobi with relaxation, Gauss–Seidel, etc.) can be increased drastically within the
context of solving linear equations that originate in the discretization of PDEs. Herewith we analyse
(with a great deal of hand-waving) the system Au = b originated from the 5-point formula for the
Poisson equation on an m×m square grid Ωh, being solved by the damped Jacobi iteration.

Method 4.18 (The damped Jacobi iteration) This is the Jacobi method with a relaxation parameter
ω (see Lect. 17):

û(ν+1) = −D−1(A−D)u(ν) +D−1b = (I −D−1A)u(ν) +D−1b

u(ν+1) = ωû(ν+1) + (1− ω)u(ν) = (I − ωD−1A)u(ν) + ωD−1b .

The error decay is expressed in terms of the iteration matrix Hω :

e(ν) = [Hω]νe(0), Hω = I − ωD−1A = I + 1
4
ωA ,

and it follows from the results of Lecture 2 that the eigenvectors and the eigenvalues of Hω are

wk,` = (sin ix sin jy), λk,`(ω) = 1− ω
(

sin2 x
2

+ sin2 y
2

)
, x = kπ

m+1
, y = `π

m+1
.

We see that ρ(Hω) < 1 for any ω in (0, 1], guaranteeing convergence, although a very slow one. In
particular, for the ”pure” Jacobi iteration (with ω = 1) we have ρ(HJ) = 1− 2 sin2 π

2(m+1) ≈ 1− π2

2m2 ,
and for ω < 1 the spectral radius is even closer to 1.

However, expanding the error with respect to the (orthogonal) eigenvectors we obtain

e(ν) =
∑

k,`
a

(ν)
k,`w

k,`, e(ν) = [Hω]νe(0) ⇒ |a(ν)
k,` | = |λk,`(ω)|ν |a(0)

k,`| ,

i.e. the components of e(ν) (with respect to the basis of eigenvectors) decay at a different rate for
different frequences (k, `). To this end, we define

Ωh-low frequences (LF): w(k,`) = (sinπkφ sinπ`ψ)
∣∣
Ωh

with both k and ` from [1, m+1
2 ),

Ωh-high frequences (HF): w(k,`) = (sinπkφ sinπ`ψ)
∣∣
Ωh

with either k or ` from [m+1
2 ,m].

Let us determine the least factor µ(ω) by which the amplitudes of HF components are damped per
iteration. We have

µ(ω) = max { |λk,`(ω)| : m+1
2
≤ k ≤ m, 1 ≤ ` ≤ m}

= max { |1− ω (sin2 x
2

+ sin2 y
2

)| : π
2
≤ x ≤ π, 0 ≤ y ≤ π}

= max { |1− 1
2
ω|, |1− 2ω|} ,

and it is seen that the optimal factor µ∗ is attained when 1− 1
2 ω = −(1− 2ω), i.e. for ω∗ = 4

5 , and its
value is µ∗ = 3

5 . Therefore, for the coefficients at the HF components of e(ν) we obtain

|a(ν)
k,` | ≤ |µ∗|ν |a(0)

k,`| =
(

3
5

)ν
|a(0)
k,`| � |a

(0)
k,`| ,

i.e. the damped Jacobi method converges fast for high frequencies.
For the remaining Ωh-low frequences we notice that

k, ` ∈ [1, m+1
2

) = [1, 1
2h

) ⇒ {w(k,`)
h = (sinπkφ sinπ`ψ)

∣∣
Ωh
}︸ ︷︷ ︸

Ωh-low frequences

≈ {w(k,`)
2h = (sinπkφ sinπ`ψ)

∣∣
Ω2h
}︸ ︷︷ ︸

Ω2h-high frequences
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Algorithm 4.19 (The multigrid method) The idea of the multigrid method is that, although the global error
may decrease slowly by iteration, its components with high frequencies relative to Ωh are suppressed (or
smoothed) very quickly, and that dealing with the remaining components (with low frequences relative to Ωh)
we can move to the coarse grid Ω2h, where these components (in part) would be of high frequencies, and thus
they can be smoothed in a similar way. Therefore, we cover the square domain by a range of nested grids, of
increasing coarseness, say,

Ωh ⊂ Ω2h ⊂ Ω4h ⊂ · · · ⊂ Ω2mh .

At every Ωhi , the iterations (damped Jacobi, or Gauss-Seidel) remove the high frequencies relative to this grid,
and we move to Ω2hi . On the coarsest grid, where the number of variables is small, we can afford to solve the
equations with a direct method, by Cholesky, say.

A multigrid sweep starts at the finest grid, travels to the coarsest (where we apply a direct solver) and back to
the finest:

Ωh r r
@@Ω2h r r

@
@Ω4h r r��r r��r r

1) Each coarsening stage involves few (ν) iterations, then computing the residual r(ν)
h = bh −Ahu(ν)

h (where
h is the size of the grid Ωh) and restricting it to the coarser grid Ω2h via ”restriction” mapping R : RN → RN/4

as r(0)
2h = Rr

(ν)
h :

r
(ν)
h = bh −Ahu(ν)

h = Ahe
(ν)
h =

∑
1≤k<m+1

∑
1≤`<m+1

a
(ν)
k,`w

k,`
h

=
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1≤k< 1
h

∑
1≤`< 1

h

a
(ν)
k,` sinπkφ sinπ`ψ
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Ωh

=
∑

1≤k< 1
2h

∑
1≤`< 1

2h

a
(ν)
k,` sinπkφ sinπ`ψ

∣∣∣∣
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1
2h
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h
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h
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∑
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h
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≤`< 1
h

)
a

(ν)
k,` sinπkφ sinπ`ψ

∣∣∣∣
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↓ ↓
transferred (restricted) to Ω2h as suppressed to ε

(ν)
h and transferred to Ω2h as∑

1≤k< 1
2h

∑
1≤`< 1

2h

a
(ν)
k,` sinπkφ sinπ`ψ
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Ω2h

+ ε
(ν)
2h =: r

(0)
2h

A typical restriction operator R combines nine ”fine” values around the ”coarse” one according to the rule:
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At the coarse grid Ω2h, we are solving for the residual, i.e. we iterate µ times for (or apply a direct solver to) the
low-dimensional system

A2hv2h = 4 r
(0)
2h .

The factor 4 on the right is due to the fact that our linear system is of the form Ahuh = h2fh, hence its coarse
version is A2hv2h = (2h)2g2h. Having found approximative (or exact solution) v(µ)

2h we move back to Ωh.

2) Refinement entails a prolongation via mapping P : RN/4 → RN as

v
(µ)
h = Pv

(µ)
2h ,

e.g. by linear interpolation (the exact opposite of the above procedure), and correction

unew
h = u

(ν)
h + v

(µ)
h .

The resulting vector is close to the exact solution,

u
(ν)
h + PA−1

2hRr
(ν)
h ≈ u(ν)

h +A−1
h (bh −Ahu(ν)

h ) = u∗
h .

It is usual to employ only a moderate number of iterations in each restriction (3–5, say) and prolongation
(just 1–2 iterations, to take care of high frequencies that have been reintroduced by prolongation) and to check
for convergence only by the end of the sweep. Unless convergence occurs, we embark on another multigrid
sweep and so on.
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