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Numerical Analysis – Lecture 19
Approach 4.20 (Minimization of quadratic function) The methods we considered so far for solv-
ing Ax = b, namely Jacobi, Gauss-Seidel, and those with relaxation, fit into the scheme

x(k+1) = x(k) + ckd
(k) ,

where we were aimed at getting ρ(H) < 1 for the iteration matixH . Say, for Jacobi with relaxation,
we set ck = ω and d(k) = D−1(b−Ax(k)).

For solving Ax = b with a (positive definite) matrix A > 0, there is a different approach
to constructing good iterative methods. It is based on succesive minimization of the quadratic
function

F (x(k)) := ‖x∗ − x(k)‖2A = ‖e(k)‖2A ,

since the minimizer is clearly the exact solution. Here, ‖y‖A := (Ay,y)1/2 :=
√
yTAy is a

Euclidean-type distance which is well-defined for A > 0. So, at each step k, we are decreas-
ing the A-distance between x(k) and the exact solution x∗. Thus, for a symmetric positive definite
A > 0, we choose an iterative method that provides the descent condition

x(k+1) = x(k) + ckd
(k) ⇒ F (x(k+1)) < F (x(k)) . (4.5)

An equivalent approach is to minimize the quadratic function

F1(x) =
1
2
xTAx− xT b ,

which attains its minimum when ∇F1(x) = Ax − b = 0, and which does not involve the unknown x∗.
It is easy to check that F1(x) = 1

2
F (x) − 1

2
c, where c = x∗TAx∗ is a constant independent of k, hence

equivalence.

Example 4.21 Both the Jacobi and the Gauss–Seidel methods satisfy (4.5), precisely

(Ae(k+1), e(k+1)) = (Ae(k), e(k))− (Cy(k),y(k)) < (Ae(k), e(k)) ,

where for Gauss-Seidel: C = D > 0, y(k) := (L0 +D)−1Ae(k);
and for Jacobi: C = 2D −A > 0, y(k) := D−1Ae(k).

Method 4.22 (A-orthogonal projection) Next, we strengthen the descent condition (4.5), namely
given x(k) and some d(k) (called a search direction), we will seek x(k+1) from the set of vectors
on the line ` = {x(k)+αd(k)}α∈R such that it makes the value of F (x(k+1)) not just smaller than
F (x(k)), but as small as possible (with respect to this set), namely

x(k+1) := argmin
α
F (x(k) + αd(k)) . (4.6)

Lemma 4.23 The minimizer in (4.6) is given by the formula

x(k+1) = x(k) + αkd
(k) , αk =

(r(k),d(k))

(Ad(k),d(k))
. (4.7)

Proof. From the definition of F , it follows that in (4.6) we should choose the point x(k+1) ∈ `
that minimizes the A-distance between x∗ and the points y ∈ `. Geometrically, it is clear that the
minimum occurs when x(k+1) is the A-orthogonal projection of x∗ onto the line ` = {x(k)+αd(k)},
i.e., when

x∗ − x(k+1) ⊥A d(k) ⇒ A(x∗ − x(k+1)) ⊥ d(k) ⇒ r(k+1) = r(k) − αkAd(k) ⊥ d(k) .

This gives expression for αk in (4.7). �
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Method 4.24 (The steepest descent method) This method takes d(k) =−∇F1(x
(k)) = b − Ax(k)

for every k, the reason being that, locally, the negative gradient of a quadratic function shows the
direction of the (locally) steepest descent at a given point. Thus, the iterations have the form

x(k+1) = x(k) + αk(b−Ax(k)), k ≥ 0 . (4.8)

It can be proved that the sequence (x(k)) converges to the solution x∗ of the system Ax = b as
required, but usually the speed of convergence is rather slow. The reason is that the iteration (4.8)
decreases the value of F (x(k+1)) locally, relatively to F (x(k)), but the global decrease, with respect
to F (x(0)), is often not that large. The use of conjugate directions provides a method with a global
minimization property.

Definition 4.25 (Conjugate directions) The vectors u,v ∈ Rn are conjugate with respect to a sym-
metric positive definite matrix A if they are nonzero and A-orthogonal: (u,v)A := (Au,v) = 0.

Theorem 4.26 (Non-examinable) Given A ∈ Rn×n, A > 0, let {d(k)}n−1k=0 be a set of the conjugate
directions, i.e., (Ad(k),d(i)) = 0 for i < k. Then the value of F (x(m+1)) obtained through step-by-step
minimization for each k = 0..m as described in (4.7) coincides with the minimum of F (y) taken over all
y = x(0) +

∑m
k=0 ckd

(k) simultaneously, namely

arg min
c0,...,cm

F (y) = x(m+1) = x(0) +

m∑
k=0

αkd
(k) .

Proof. Again, it is clear geometrically that the minimal A-distance between the exact solution x∗

and the points y on the plane P := {x(0) +
∑m
k=0 ckd

(k) : ck ∈ R} is attained when x(m+1) ∈ P is
the A-orthogonal projection of x∗ onto P , i.e.,

argmin
y∈P

F (y) = x(m+1) ⇔ x∗ − x(m+1) ⊥A {d(k)}mk=0 .

It can be shown then, that (for conjugate {d(k)}) the latter conditions provide expressions for αk
as given in (4.7). �

So, if a sequence (d(k)) of conjugate directions is at hands, we have an iterative procedure with
good approximation properties.

The (A-orthogonal) basis of conjugate directions is constructed by A-orthogonalization of the
sequence {r0, Ar0, A2r0, ..., A

n−1r0} with r0 = b − Ax0. This is done in the way similar to or-
thogonalization of the monomial sequence {1, x, x2, ..., xn−1} using a recurrence relation.
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Remark 4.27 It is possible to extend the methods for solving Ax = b with symmetric positive
definite A to any other matrices by a simple trick. Suppose we want to solve Bx = c, where
B ∈ Rn×n is nonsingular. We can convert the above system to the symmetric and positive definite
setting by defining A = BTB, b = BT c and then solving Ax = b with the conjugate gradient
algorithm (or any other method for positive definite A).
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