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Approach 4.20 (Minimization of quadratic function) The methods we considered so far for solv-
ing Az = b, namely Jacobi, Gauss-Seidel, and those with relaxation, fit into the scheme

2D — p®) 4 o g®)

where we were aimed at getting p(H) < 1 for the iteration matix H. Say, for Jacobi with relaxation,
we set ¢y =wand d® = D~1(b— Az®).

For solving Az = b with a (positive definite) matrix A > 0, there is a different approach
to constructing good iterative methods. It is based on succesive minimization of the quadratic

function
F(a®) = [lz* — ™% = e[,

since the minimizer is clearly the exact solution. Here, ||y[la = (Ay,y)'/? := /yTAy is a
Euclidean-type distance which is well-defined for A > 0. So, at each step k, we are decreas-
ing the A-distance between z(*) and the exact solution z*. Thus, for a symmetric positive definite
A > 0, we choose an iterative method that provides the descent condition

e*+D) — g0 Lo g® F(:c(’““)) < F(a:(k)). (4.5)

An equivalent approach is to minimize the quadratic function

Fi(z) = %mTAa: —z'b,

which attains its minimum when VFi(x) = Az — b = 0, and which does not involve the unknown x*.
It is easy to check that Fi(z) = 1F(z) — ic, where ¢ = =*7 Az" is a constant independent of k, hence
equivalence.

Example 4.21 Both the Jacobi and the Gauss-Seidel methods satisfy (4.5), precisely
(Ae(kJrl)’e(kH)) - (Ae(k),e(k)) _ (C’y(k),y(k)) < (Ae(’“),e(k)),

where for Gauss-Seidel: C =D >0, y®) .= (Lo + D)~ 4e®);
and forJacobi: C=2D—-A>0, y* =D 14el,
Method 4.22 (A-orthogonal projection) Next, we strengthen the descent condition (4.5), namely

given z(*) and some a® (called a search direction), we will seek z(**1) from the set of vectors

on the line £ = {z( +ad®} ,cg such that it makes the value of F(z(**1)) not just smaller than
F(z™), but as small as possible (with respect to this set), namely

2D .= arg min F(x® + ad®) . (4.6)
«
Lemma 4.23 The minimizer in (4.6) is given by the formula

(k). k)
(k+1) _ (k) ) _ (@.dT)
T =z + apd", o = (Ad®_a®) 4.7)

Proof. From the definition of F, it follows that in (4.6) we should choose the point ) ¢ ¢
that minimizes the A-distance between x* and the points y € ¢. Geometrically, it is clear that the
minimum occurs when z(*+1) is the A-orthogonal projection of z* onto the line £ = {z*) +ad™},
i.e., when

et —x®t) 1, d® = A —2*Y) LdP = pEED = B oy Ad® | @)

This gives expression for oy, in (4.7). O
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Method 4.24 (The steepest descent method) This method takes d*) = —~VF, (x*)) = b — Az
for every k, the reason being that, locally, the negative gradient of a quadratic function shows the
direction of the (locally) steepest descent at a given point. Thus, the iterations have the form

2D = 2®) Loy (b— Az®)),  k>0. (4.8)

It can be proved that the sequence (x(*)) converges to the solution x* of the system Az = b as
required, but usually the speed of convergence is rather slow. The reason is that the iteration (4.8)
decreases the value of F(z(*+1)) locally, relatively to F(z*)), but the global decrease, with respect
to F(z(©)), is often not that large. The use of conjugate directions provides a method with a global
minimization property.
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(a) Worst case scenario of steepest descent (b) Conjugate gradient method applied to the same
problem as in (a)

Definition 4.25 (Conjugate directions) The vectors u,v € R" are conjugate with respect to a sym-
metric positive definite matrix A if they are nonzero and A-orthogonal: (u, v) 4 := (Au,v) = 0.

Theorem 4.26 (Non-examinable) Given A € R™*", A > 0, let {d™}"Z! be a set of the conjugate
directions, i.e., (Ad™ d") = 0 for i < k. Then the value of F(x(™+1)) obtained through step-by-step
minimization for each k = 0..m as described in (4.7) coincides with the minimum of F(y) taken over all
y =0 4 37 c,d® simultaneously, namely

€0y--sCm pard

Proof. Again, it is clear geometrically that the minimal A-distance between the exact solution z*
and the points y on the plane P := {z(® + "7 ¢,d™ : ¢, € R} is attained when z(™*+1 € P is
the A-orthogonal projection of * onto P, i.e.,

arg mei%F(y) — M) o g gt {d(k)};cn:O'
Yy

It can be shown then, that (for conjugate {d*'}) the latter conditions provide expressions for a,
as given in (4.7). O

So, if a sequence (d*)) of conjugate directions is at hands, we have an iterative procedure with
good approximation properties.

The (A-orthogonal) basis of conjugate directions is constructed by A-orthogonalization of the
sequence {rg, Arg, A%rg, ..., A" 'ro} with 7o = b — Az,. This is done in the way similar to or-
thogonalization of the monomial sequence {1, z,2?, ...,2" "1} using a recurrence relation.
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Remark 4.27 It is possible to extend the methods for solving Az = b with symmetric positive
definite A to any other matrices by a simple trick. Suppose we want to solve Bx = ¢, where
B € R™*™ is nonsingular. We can convert the above system to the symmetric and positive definite
setting by defining A = BT B, b = B”c and then solving Az = b with the conjugate gradient
algorithm (or any other method for positive definite A).
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