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Numerical Analysis — Lecture 20

Algorithm 4.26 (The conjugate gradient method) Here it is.
(A) For any initial vector (9, set d = 70 = b — Az(©);

(B) For k > 0, calculate z*+1) = £® 4+ o, d* and the residual
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(C) For the same k, the next conjugate direction is the vector
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Theorem 4.27 (Properties of CGM) For every m > 0, the conjugate gradient method has the following
properties.

(1) The linear space spanned by the residuals {r")} is the same as the linear space spanned by the
conjugate directions {d'"} and it coincides with the space spanned by {Air(®}:

span{rM" = span{d@}" , = span{A'r©}7 .

(2) The residuals satisfy the orthogonality conditions: (r(™ 7)) = (r(m) dD) = 0 for i < m.
(3) The directions are conjugate (A-orthogonal): (d™ ., dD) 4 = (d™, AdD) =0 for i <m.
Proof. We use induction on m > 0, the assertions being trivial for m = 0, since d® = r© and

(2)-(3) are void. Therefore, assuming that the assertions are true for some m = k, we ask if they
remain true when m = k + 1.

(1) Formula (4.9)
dFTD) — p(k+1) + ﬁkd(k)

readily implies that equivalence of the spaces spanned by (r(®)% and (d”)}, is preserved when
k is increased to k + 1. Similarly, from r(*+1) = p(¥) — arAd™ in (4.8), and from the inductive
assumption r®), d*) € span{ArO}F_ it follows that #(*+1) € span{Air(©)}F+1,

(2) Turning to assertion (2), we need 1) | r() for i < k, which by (1) is equivalent to
r*+D 1 a9 for i<k.

We have r*+1) | ) by the definition of a4, in (4.8), so we need

p+1) @8 ) _ o Ad® 1 @D for i<k,

and this follow from the inductive assumptions r*) | d”) and Ad*) 1 d¥.
(3) It remains to justify (3), namely that d**Y defined in (4.9) satisfies

dF) 1 AdD for i<k.

The value of 3, in (4.9) is defined to give d* ) 1 A4d™, so we need

dt+D D) L) g g® | 4d®D for i< k.

By the inductive hypothesis d*) 1 Ad'”, hence it remains to establish that #*+1 | Ad" for
i < k. Now, the formula (4.8) yields AdY = (r() — »(i+1) /o, therefore we require the conditions
rk+D) | (@ — 2(+D) for i < k, and they are a consequence of the assertion (2) for m = k + 1
obtained previously. O
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Corollary 4.28 (A termination property) If the conjugate gradient method is applied in exact arith-
metic, then, for any () € R™, termination occurs after at most n iterations. More precisely, termination
occurs after at most s iterations, where s = dim span{ A'rq}}"_;' (which can be smaller than n).

Proof. Assertion (2) of Theorem 4.27 states that residuals (r(*));( form a sequence of mutually
orthogonal vectors in R”, therefore at most n of them can be nonzero. Since they also belong to

the space span{A’r(}"~;, their number is bounded by the dimension of that space. O

Definition 4.29 (The Krylov subspaces) Let A be an n x n matrix, v € R" nonzero, and m € N.
The linear space K, (A,v) := span{ Av}" " is called the m-th Krylov subspace of R™.

Theorem 4.30 (Number of iterations in CGM) Let A > 0, and let s be the number of its distinct
eigenvalues. Then, for any v,
dim K,,(A,v) <s Vm. (4.10)

Hence, for any A > 0, the number of iterations of the CGM for solving Ax = b is bounded by the number
of distinct eigenvalues of A.

Proof. Inequality (4.10) is true not just for positive definite A > 0, but for any A with n linearly
independent eigenvectors (u;). Indeed, in that case one can expand v = Y " | a;u;, and then
group together eigenvectors with the same eigenvalues: for each A\, we set w, = Y ;" a;, u;, if
Au;, = Ayu;,,. Then
v=>"_cw,, ¢, €{0,1},

hence A'v = Y7 _, e, M, w,, thus for any m we get K,,(A,v) C span{w;,ws,...,w,}, and that
proves (4.10). By Corollary 4.28, the number of iteration in CGM is bounded by dim K., (4, (")),
hence the final conclusion. O

Remark 4.31 Theorem 4.30 shows that, unlike other iterative schemes, the conjugate gradient
method is both iterative and direct: each iteration produces a reasonable approximation to the
exact solution, and the exact solution itself will be recovered after n iterations at most.

We now simplify and reformulate Algorithm 4.26.
Firstly, we rewrite expressions for the parameters «, and jj, in (4.8)-(4.9) as follows:
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Here, for 3, we used in (a) the fact that Ad™® is a multiple of #*+1) — () by (4.8), and in (b)
orthogonality of 1) to both 7*), d*) proved in Theorem 4.27(2). Then, for both 3 and a, we
used in (c) the property (d®,r*)) = ||r®)||2 which follows from (4.9) with index k + 1, taking in
account orthogonality r*+1) | d*).

Secondly, we let 29 be the zero vector.
Algorithm 4.32 (Standard form of the conjugate gradient method) Here it is.

(1) Setk=0,20 =0,7r® =b and d = r©);

(2) Calculate the matrix-vector product v*) = Ad*) and oy, = ||r®|2/(d®,v®) > 0;

(3) Apply the formulae z*+1) = 2®) 4 0, d* and r*+D) = () — q0®);

(4) Stop if ||r(*+1)]|| is acceptably small;

(5) Setd™) =+l 4 5,d"), where g, = [rETD |12/ r®)|2 > 0;

(6) Increase k — k + 1 and go back to (2).

The total work is dominated by the number of iterations, multiplied by the time it takes to
compute v*) = Ad*). Thus the conjugate gradient algorithm is highly suitable when most of the
elements of A are zero, i.e. when A is sparse.
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