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Numerical Analysis – Lecture 20
Algorithm 4.26 (The conjugate gradient method) Here it is.

(A) For any initial vector x(0), set d(0) = r(0) = b−Ax(0);

(B) For k ≥ 0, calculate x(k+1) = x(k) + αkd
(k) and the residual

r(k+1) = r(k) − αkAd(k), with αk := { r(k+1) ⊥ d(k)} = (r(k),d(k))

(Ad(k),d(k))
, k ≥ 0 . (4.8)

(C) For the same k, the next conjugate direction is the vector

d(k+1) = r(k+1) + βkd
(k), with βk := {d(k+1) ⊥ Ad(k)} = − (r(k+1), Ad(k))

(d(k), Ad(k))
, k ≥ 0 . (4.9)

Theorem 4.27 (Properties of CGM) For every m ≥ 0, the conjugate gradient method has the following
properties.

(1) The linear space spanned by the residuals {r(i)} is the same as the linear space spanned by the
conjugate directions {d(i)} and it coincides with the space spanned by {Air(0)}:

span{r(i)}mi=0 = span{d(i)}mi=0 = span{Air(0)}mi=0 .

(2) The residuals satisfy the orthogonality conditions: (r(m), r(i)) = (r(m),d(i)) = 0 for i < m .
(3) The directions are conjugate (A-orthogonal): (d(m),d(i))A = (d(m), Ad(i)) = 0 for i < m .

Proof. We use induction on m ≥ 0, the assertions being trivial for m = 0, since d(0) = r(0) and
(2)-(3) are void. Therefore, assuming that the assertions are true for some m = k, we ask if they
remain true when m = k + 1.

(1) Formula (4.9)
d(k+1) = r(k+1) + βkd

(k)

readily implies that equivalence of the spaces spanned by (r(i))k0 and (d(i))k0 , is preserved when
k is increased to k + 1. Similarly, from r(k+1) = r(k) − αkAd(k) in (4.8), and from the inductive
assumption r(k),d(k) ∈ span{Air(0)}ki=0, it follows that r(k+1) ∈ span{Air(0)}k+1

i=0 .
(2) Turning to assertion (2), we need r(k+1) ⊥ r(i) for i ≤ k, which by (1) is equivalent to

r(k+1) ⊥ d(i) for i ≤ k .

We have r(k+1) ⊥ d(k) by the definition of αk in (4.8), so we need

r(k+1) (4.8)
= r(k) − αkAd(k) ⊥ d(i) for i < k ,

and this follow from the inductive assumptions r(k) ⊥ d(i) and Ad(k) ⊥ d(i).

(3) It remains to justify (3), namely that d(k+1) defined in (4.9) satisfies

d(k+1) ⊥ Ad(i) for i ≤ k .

The value of βk in (4.9) is defined to give d(k+1) ⊥ Ad(k), so we need

d(k+1) (4.9)
= r(k+1) + βkd

(k) ⊥ Ad(i) for i < k .

By the inductive hypothesis d(k) ⊥ Ad(i), hence it remains to establish that r(k+1) ⊥ Ad(i) for
i < k. Now, the formula (4.8) yields Ad(i) = (r(i)−r(i+1))/αi, therefore we require the conditions
r(k+1) ⊥ (r(i) − r(i+1)) for i < k, and they are a consequence of the assertion (2) for m = k + 1
obtained previously. �
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Corollary 4.28 (A termination property) If the conjugate gradient method is applied in exact arith-
metic, then, for any x(0) ∈ Rn, termination occurs after at most n iterations. More precisely, termination
occurs after at most s iterations, where s = dim span{Air0}n−1

i=0 (which can be smaller than n).

Proof. Assertion (2) of Theorem 4.27 states that residuals (r(k))k≥0 form a sequence of mutually
orthogonal vectors in Rn, therefore at most n of them can be nonzero. Since they also belong to
the space span{Air0}n−1

i=0 , their number is bounded by the dimension of that space. �

Definition 4.29 (The Krylov subspaces) Let A be an n × n matrix, v ∈ Rn nonzero, and m ∈ N.
The linear space Km(A,v) := span{Aiv}m−1

i=0 is called the m-th Krylov subspace of Rn.

Theorem 4.30 (Number of iterations in CGM) Let A > 0, and let s be the number of its distinct
eigenvalues. Then, for any v,

dimKm(A,v) ≤ s ∀m. (4.10)

Hence, for any A > 0, the number of iterations of the CGM for solving Ax = b is bounded by the number
of distinct eigenvalues of A.

Proof. Inequality (4.10) is true not just for positive definite A > 0, but for any A with n linearly
independent eigenvectors (ui). Indeed, in that case one can expand v =

∑n
i=1 aiui, and then

group together eigenvectors with the same eigenvalues: for each λν we set wν =
∑mν
k=1 aikuik if

Auik = λνuik . Then
v =

∑s
ν=1 cνwν , cν ∈ {0, 1} ,

hence Aiv =
∑s
ν=1 cνλ

i
νwν , thus for any m we get Km(A,v) ⊆ span{w1,w2, . . . ,ws}, and that

proves (4.10). By Corollary 4.28, the number of iteration in CGM is bounded by dimKm(A, r(0)),
hence the final conclusion. �

Remark 4.31 Theorem 4.30 shows that, unlike other iterative schemes, the conjugate gradient
method is both iterative and direct: each iteration produces a reasonable approximation to the
exact solution, and the exact solution itself will be recovered after n iterations at most.

We now simplify and reformulate Algorithm 4.26.
Firstly, we rewrite expressions for the parameters αk and βk in (4.8)-(4.9) as follows:

αk =
(r(k),d(k))

(d(k), Ad(k))

(c)
=

‖r(k)‖2

(d(k), Ad(k))
> 0 ,

βk = − (r(k+1), Ad(k))

(d(k), Ad(k))

(a)
= − (r(k+1), r(k+1) − r(k))

(d(k), r(k+1) − r(k))

(b)
=
‖r(k+1)‖2

(d(k), r(k))

(c)
=
‖r(k+1)‖2

‖r(k)‖2
> 0 .

Here, for β, we used in (a) the fact that Ad(k) is a multiple of r(k+1) − r(k) by (4.8), and in (b)
orthogonality of r(k+1) to both r(k),d(k) proved in Theorem 4.27(2). Then, for both β and α, we
used in (c) the property (d(k), r(k)) = ‖r(k)‖2 which follows from (4.9) with index k + 1, taking in
account orthogonality r(k+1)⊥d(k).

Secondly, we let x(0) be the zero vector.

Algorithm 4.32 (Standard form of the conjugate gradient method) Here it is.

(1) Set k = 0, x(0) = 0, r(0) = b, and d(0) = r(0);
(2) Calculate the matrix-vector product v(k) = Ad(k) and αk = ‖r(k)‖2/(d(k),v(k)) > 0;

(3) Apply the formulae x(k+1) = x(k) + αkd
(k) and r(k+1) = r(k) − αkv(k);

(4) Stop if ‖r(k+1)‖ is acceptably small;

(5) Set d(k+1) = r(k+1) + βkd
(k), where βk = ‖r(k+1)‖2/‖r(k)‖2 > 0;

(6) Increase k → k + 1 and go back to (2).

The total work is dominated by the number of iterations, multiplied by the time it takes to
compute v(k) = Ad(k). Thus the conjugate gradient algorithm is highly suitable when most of the
elements of A are zero, i.e. when A is sparse.
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